首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
FimH is a mannose-specific adhesin located on the tip of type 1 fimbriae of Escherichia coli that is capable of mediating shear-enhanced bacterial adhesion. FimH consists of a fimbria-associated pilin domain and a mannose-binding lectin domain, with the binding pocket positioned opposite the interdomain interface. By using the yeast two-hybrid system, purified lectin and pilin domains, and docking simulations, we show here that the FimH domains interact with one another. The affinity for mannose is greatly enhanced (up to 300-fold) in FimH variants in which the interdomain interaction is disrupted by structural mutations in either the pilin or lectin domains. Also, affinity to mannose is dramatically enhanced in isolated lectin domains or in FimH complexed with the chaperone molecule that is wedged between the domains. Furthermore, FimH with native structure mediates weak binding at low shear stress but shifts to strong binding at high shear, whereas FimH with disrupted interdomain contacts (or the isolated lectin domain) mediates strong binding to mannose-coated surfaces even under low shear. We propose that interactions between lectin and pilin domains decrease the affinity of the mannose-binding pocket via an allosteric mechanism. We further suggest that mechanical force at high shear stress separates the two domains, allowing the lectin domain to switch from a low affinity to a high affinity state. This shift provides a mechanism for FimH-mediated shear-enhanced adhesion by enabling the adhesin to form catch bond-like interactions that are longer lived at high tensile force.  相似文献   

2.
Despite sharing the name and the ability to mediate mannose-sensitive adhesion, the type 1 fimbrial FimH adhesins of Salmonella Typhimurium and Escherichia coli share only 15% sequence identity. In the present study, we demonstrate that even with this limited identity in primary sequence, these two proteins share remarkable similarity of complex receptor binding and structural properties. In silico simulations suggest that, like E. coli FimH, Salmonella FimH has a two-domain tertiary structure topology, with a mannose-binding pocket located on the apex of a lectin domain. Structural analysis of mutations that enhance S. Typhimurium FimH binding to eukaryotic cells and mannose-BSA demonstrated that they are not located proximal to the predicted mannose-binding pocket but rather occur in the vicinity of the predicted interface between the lectin and pilin domains of the adhesin. This implies that the functional effect of such mutations is indirect and probably allosteric in nature. By analogy with E. coli FimH, we suggest that Salmonella FimH functions as an allosteric catch bond adhesin, where shear-induced separation of the lectin and pilin domains results in a shift from a low affinity to a high affinity binding conformation of the lectin domain. Indeed, we observed shear-enhanced binding of whole bacteria expressing S. Typhimurium type 1 fimbriae. In addition, we observed that anti-FimH antibodies activate rather than inhibit S. Typhimurium FimH mannose binding, consistent with the allosteric catch bond properties of this adhesin.  相似文献   

3.
The FimH protein of Escherichia coli is a model two-domain adhesin that is able to mediate an allosteric catch bond mechanism of bacterial cell attachment, where the mannose-binding lectin domain switches from an ‘inactive’ conformation with fast binding to mannose to an ‘active’ conformation with slow detachment from mannose. Because mechanical tensile force favors separation of the domains and, thus, FimH activation, it has been thought that the catch bonds can only be manifested in a fluidic shear-dependent mode of adhesion. Here, we used recombinant FimH variants with a weakened inter-domain interaction and show that a fast and sustained allosteric activation of FimH can also occur under static, non-shear conditions. Moreover, it appears that lectin domain conformational activation happens intrinsically at a constant rate, independently from its ability to interact with the pilin domain or mannose. However, the latter two factors control the rate of FimH deactivation. Thus, the allosteric catch bond mechanism can be a much broader phenomenon involved in both fast and strong cell-pathogen attachments under a broad range of hydrodynamic conditions. This concept that allostery can enable more effective receptor-ligand interactions is fundamentally different from the conventional wisdom that allostery provides a mechanism to turn binding off under specific conditions.  相似文献   

4.
The bacterial adhesive protein, FimH, is the most common adhesin of Escherichia coli and mediates weak adhesion at low flow but strong adhesion at high flow. There is evidence that this occurs because FimH forms catch bonds, defined as bonds that are strengthened by tensile mechanical force. Here, we applied force to single isolated FimH bonds with an atomic force microscope in order to test this directly. If force was loaded slowly, most of the bonds broke up at low force (<60 piconewtons of rupture force). However, when force was loaded rapidly, all bonds survived until much higher force (140-180 piconewtons of rupture force), behavior that indicates a catch bond. Structural mutations or pretreatment with a monoclonal antibody, both of which allosterically stabilize a high affinity conformation of FimH, cause all bonds to survive until high forces regardless of the rate at which force is applied. Pretreatment of FimH bonds with intermediate force has the same strengthening effect on the bonds. This demonstrates that FimH forms catch bonds and that tensile force induces an allosteric switch to the high affinity, strong binding conformation of the adhesin. The catch bond behavior of FimH, the amount of force needed to regulate FimH, and the allosteric mechanism all provide insight into how bacteria bind and form biofilms in fluid flow. Additionally, these observations may provide a means for designing antiadhesive mechanisms.  相似文献   

5.
FimH is a bacterial adhesin protein located at the tip of Escherichia coli fimbria that functions to adhere bacteria to host cells. Thus, FimH is a critical factor in bacterial infections such as urinary tract infections and is of interest in drug development. It is also involved in vaccine development and as a model for understanding shear-enhanced catch bond cell adhesion. To date, over 60 structures have been deposited in the Protein Data Bank showing interactions between FimH and mannose ligands, potential inhibitors, and other fimbrial proteins. In addition to providing insights about ligand recognition and fimbrial assembly, these structures provide insights into conformational changes in the two domains of FimH that are critical for its function. To gain further insights into these structural changes, we have superposed FimH's mannose binding lectin domain in all these structures and categorized the structures into five groups of lectin domain conformers using RMSD as a metric. Many structures also include the pilin domain, which anchors FimH to the fimbriae and regulates the conformation and function of the lectin domain. For these structures, we have also compared the relative orientations of the two domains. These structural analyses enhance our understanding of the conformational changes associated with FimH ligand binding and domain-domain interactions, including its catch bond behavior through allosteric action of force in bacterial adhesion.  相似文献   

6.
The protein FimH is expressed by the majority of commensal and uropathogenic strains of Escherichia coli on the tips of type 1 fimbriae and mediates adhesion via a catch bond to its ligand mannose. Crystal structures of FimH show an allosteric conformational change, but it remains unclear whether all of the observed structural differences are part of the allosteric mechanism. Here we use the protein structural analysis tool RosettaDesign combined with human insight to identify and synthesize 10 mutations in four regions that we predicted would stabilize one of the conformations of that region. The function of each variant was characterized by measuring binding to the ligand mannose, whereas the allosteric state was determined using a conformation-specific monoclonal antibody. These studies demonstrated that each region investigated was indeed part of the FimH allosteric mechanism. However, the studies strongly suggested that some regions were more tightly coupled to mannose binding and others to antibody binding. In addition, we identified many FimH variants that appear locked in the low affinity state. Knowledge of regulatory sites outside the active and effector sites as well as the ability to make FimH variants locked in the low affinity state may be crucial to the future development of novel antiadhesive and antimicrobial therapies using allosteric regulation to inhibit FimH.  相似文献   

7.
There is increasing evidence that the catch bond mechanism, where binding becomes stronger under tensile force, is a common property among non-covalent interactions between biological molecules that are exposed to mechanical force in vivo. Here, by using the multi-protein tip complex of the mannose-binding type 1 fimbriae of Escherichia coli, we show how the entire quaternary structure of the adhesive organella is adapted to facilitate binding under mechanically dynamic conditions induced by flow. The fimbrial tip mediates shear-dependent adhesion of bacteria to uroepithelial cells and demonstrates force-enhanced interaction with mannose in single molecule force spectroscopy experiments. The mannose-binding, lectin domain of the apex-positioned adhesive protein FimH is docked to the anchoring pilin domain in a distinct hooked manner. The hooked conformation is highly stable in molecular dynamics simulations under no force conditions but permits an easy separation of the domains upon application of an external tensile force, allowing the lectin domain to switch from a low- to a high-affinity state. The conformation between the FimH pilin domain and the following FimG subunit of the tip is open and stable even when tensile force is applied, providing an extended lever arm for the hook unhinging under shear. Finally, the conformation between FimG and FimF subunits is highly flexible even in the absence of tensile force, conferring to the FimH adhesin an exploratory function and high binding rates. The fimbrial tip of type 1 Escherichia coli is optimized to have a dual functionality: flexible exploration and force sensing. Comparison to other structures suggests that this property is common in unrelated bacterial and eukaryotic adhesive complexes that must function in dynamic conditions.  相似文献   

8.
The bacterial adhesin FimH consists of an allosterically regulated mannose‐binding lectin domain and a covalently linked inhibitory pilin domain. Under normal conditions, the two domains are bound to each other, and FimH interacts weakly with mannose. However, under tensile force, the domains separate and the lectin domain undergoes conformational changes that strengthen its bond with mannose. Comparison of the crystallographic structures of the low and the high affinity state of the lectin domain reveals conformational changes mainly in the regulatory inter‐domain region, the mannose binding site and a large β sheet that connects the two distally located regions. Here, molecular dynamics simulations investigated how conformational changes are propagated within and between different regions of the lectin domain. It was found that the inter‐domain region moves towards the high affinity conformation as it becomes more compact and buries exposed hydrophobic surface after separation of the pilin domain. The mannose binding site was more rigid in the high affinity state, which prevented water penetration into the pocket. The large central β sheet demonstrated a soft spring‐like twisting. Its twisting motion was moderately correlated to fluctuations in both the regulatory and the binding region, whereas a weak correlation was seen in a direct comparison of these two distal sites. The results suggest a so called “population shift” model whereby binding of the lectin domain to either the pilin domain or mannose locks the β sheet in a rather twisted or flat conformation, stabilizing the low or the high affinity state, respectively. Proteins 2016; 84:990–1008. © 2016 The Authors. Proteins: Structure, Function, and Bioinformatics Published by Wiley Periodicals, Inc.  相似文献   

9.
The FimH protein is the adhesive subunit of Escherichia coli type 1 fimbriae. It mediates shear-dependent bacterial binding to monomannose (1M)-coated surfaces manifested by the existence of a shear threshold for binding, below which bacteria do not adhere. The 1M-specific shear-dependent binding of FimH is consistent with so-called catch bond interactions, whose lifetime is increased by tensile force. We show here that the oligosaccharide-specific interaction of FimH with another of its ligands, trimannose (3M), lacks a shear threshold for binding, since the number of bacteria binding under static conditions is higher than under any flow. However, similar to 1M, the binding strength of surface-interacting bacteria is enhanced by shear. Bacteria transition from rolling into firm stationary surface adhesion as the shear increases. The shear-enhanced bacterial binding on 3M is mediated by catch bond properties of the 1M-binding subsite within the extended oligosaccharide-binding pocket of FimH, since structural mutations in the putative force-responsive region and in the binding site affect 1M- and 3M-specific binding in an identical manner. A shear-dependent conversion of the adhesion mode is also exhibited by P-fimbriated E. coli adhering to digalactose surfaces.  相似文献   

10.
While the lifetime of conventional receptor-ligand interactions is shortened by tensile mechanical force, some recently discovered interactions, termed catch bonds, can be strengthened by force. Motivated by the search for the underpinning structural mechanisms, we here explore the structural dynamics of the binding site of the bacterial adhesive protein FimH by molecular dynamics and steered molecular dynamics. While the crystal structure of only one FimH conformation has been reported so far, we describe two distinctively different conformations of the mannose-bound FimH binding site. Force-induced dissociation was slowed when the mannose ring rotated such that additional force-bearing hydrogen bonds formed with the base of the FimH binding pocket. The lifetime of the complex was further enhanced significantly by rigidifying this base. We finally show how even sub-angstrom spatial alterations of the hydrogen bonding pattern within the base can lead to significantly decreased bond lifetimes.  相似文献   

11.
High shear enhances the adhesion of Escherichia coli bacteria binding to mannose coated surfaces via the adhesin FimH, raising the question as to whether FimH forms catch bonds that are stronger under tensile mechanical force. Here, we study the length of time that E. coli pause on mannosylated surfaces and report a double exponential decay in the duration of the pauses. This double exponential decay is unlike previous single molecule or whole cell data for other catch bonds, and indicates the existence of two distinct conformational states. We present a mathematical model, derived from the common notion of chemical allostery, which describes the lifetime of a catch bond in which mechanical force regulates the transitions between two conformational states that have different unbinding rates. The model explains these characteristics of the data: a double exponential decay, an increase in both the likelihood and lifetime of the high-binding state with shear stress, and a biphasic effect of force on detachment rates. The model parameters estimated from the data are consistent with the force-induced structural changes shown earlier in FimH. This strongly suggests that FimH forms allosteric catch bonds. The model advances our understanding of both catch bonds and the role of allostery in regulating protein activity.  相似文献   

12.
Valency conversion in the type 1 fimbrial adhesin of Escherichia coli   总被引:1,自引:0,他引:1  
FimH protein is a lectin-like adhesive subunit of type 1, or mannose-sensitive, fimbriae that are found on the surface of most Escherichia coli strains. All naturally occurring FimH variants demonstrate a conserved mannotriose-specific (i.e. multivalent) binding. Here, we demonstrate that replacement of residues 185-279 within the FimH pilin domain with a corresponding segment of the type 1C fimbrial adhesin FocH leads to a loss of the multivalent mannotriose-specific binding property accompanied by the acquisition of a distinct monomannose-specific (i.e. monovalent) binding capability. Bacteria expressing the monovalent hybrid adhesins were capable of binding strongly to uroepithelial tissue culture cells and guinea pig erythrocytes. They could not, however, agglutinate yeast or bind human buccal cells -- functions readily accomplished by the E. coli-expressing mannotriose-specific FimH variants. Based on the relative potency of inhibiting compounds of different structures, the receptor binding site within monovalent FimH-FocH adhesin has an extended structure with an overall configuration similar to that within the multivalent FimH of natural origin. The monomannose-only specific phenotype could also be invoked by a single point mutation, E89K, located within the lectin domain of FimH, but distant from the receptor binding site. The structural alterations influence the receptor-binding valency of the FimH adhesin via distal effects on the combining pocket, obviously by affecting the FimH quaternary structure.  相似文献   

13.
The 70-kDa heat shock proteins (Hsp70) are essential members of the cellular chaperone machinery that assists protein-folding processes. To perform their functions Hsp70 chaperones toggle between two nucleotide-controlled conformational states. ATP binding to the ATPase domain triggers the transition to the low affinity state of the substrate-binding domain, while substrate binding to the substrate-binding domain in synergism with the action of a J-domain-containing cochaperone stimulates ATP hydrolysis and thereby transition to the high affinity state. Thus, ATPase and substrate-binding domains mutually affect each other through an allosteric control mechanism, the basis of which is largely unknown. In this study we identified two positively charged, surface-exposed residues in the ATPase domain and a negatively charged residue in the linker connecting both domains that are important for interdomain communication. Furthermore, we demonstrate that the linker alone is sufficient to stimulate the ATPase activity, an ability that is lost upon amino acid replacement. The linker therefore is most likely the lever that is wielded by the substrate-binding domain and the cochaperone onto the ATPase domain to induce a conformation favorable for ATP hydrolysis. Based on our results we propose a mechanism of interdomain communication.  相似文献   

14.
Bacterial adhesion to target cells enhanced by shear force   总被引:24,自引:0,他引:24  
Surface adhesion of bacteria generally occurs in the presence of shear stress, and the lifetime of receptor bonds is expected to be shortened in the presence of external force. However, by using Escherichia coli expressing the lectin-like adhesin FimH and guinea pig erythrocytes in flow chamber experiments, we show that bacterial attachment to target cells switches from loose to firm upon a 10-fold increase in shear stress applied. Steered molecular dynamics simulations of tertiary structure of the FimH receptor binding domain and subsequent site-directed mutagenesis studies indicate that shear-enhancement of the FimH-receptor interactions involves extension of the interdomain linker chain under mechanical force. The ability of FimH to function as a force sensor provides a molecular mechanism for discrimination between surface-exposed and soluble receptor molecules.  相似文献   

15.
Tensile mechanical force was long assumed to increase the detachment rates of biological adhesive bonds (Bell, 1978). However, in the last few years, several receptor-ligand pairs were shown to form "catch bonds," whose lifetimes are enhanced by moderate amounts of force. These include the bacterial adhesive protein FimH binding to its ligand mannose (Thomas et al., 2002; Thomas et al., 2006), blood cell adhesion proteins P- and L-selectin binding to sialyl Lewis X (sLe(X))-containing ligands (Marshall et al., 2003; Evans et al., 2004; Sarangapani et al., 2004), and the myosin-actin motor protein interaction (Guo and Guilford, 2006). The structural mechanism behind this counterintuitive force-enhanced catch bond behavior is of great interest.  相似文献   

16.
Mannose-binding type 1 pili are important virulence factors for the establishment of Escherichia coli urinary tract infections (UTIs). These infections are initiated by adhesion of uropathogenic E. coli to uroplakin receptors in the uroepithelium via the FimH adhesin located at the tips of type 1 pili. Blocking of bacterial adhesion is able to prevent infection. Here, we provide for the first time binding data of the molecular events underlying type 1 fimbrial adherence, by crystallographic analyses of the FimH receptor binding domains from a uropathogenic and a K-12 strain, and affinity measurements with mannose, common mono- and disaccharides, and a series of alkyl and aryl mannosides. Our results illustrate that the lectin domain of the FimH adhesin is a stable and functional entity and that an exogenous butyl alpha-D-mannoside, bound in the crystal structures, exhibits a significantly better affinity for FimH (Kd = 0.15 microM) than mannose (Kd = 2.3 microM). Exploration of the binding affinities of alpha- d-mannosides with longer alkyl tails revealed affinities up to 5 nM. Aryl mannosides and fructose can also bind with high affinities to the FimH lectin domain, with a 100-fold improvement and 15-fold reduction in affinity, respectively, compared with mannose. Taken together, these relative FimH affinities correlate exceptionally well with the relative concentrations of the same glycans needed for the inhibition of adherence of type 1 piliated E. coli. We foresee that our findings will spark new ideas and initiatives for the development of UTI vaccines and anti-adhesive drugs to prevent anticipated and recurrent UTIs.  相似文献   

17.
Hsp70 chaperones assist in protein folding, disaggregation, and membrane translocation by binding to substrate proteins with an ATP-regulated affinity that relies on allosteric coupling between ATP-binding and substrate-binding domains. We have studied single- and two-domain versions of the E. coli Hsp70, DnaK, to explore the mechanism of interdomain communication. We show that the interdomain linker controls ATPase activity by binding to a hydrophobic cleft between subdomains IA and IIA. Furthermore, the domains of DnaK dock only when ATP binds and behave independently when ADP is bound. Major conformational changes in both domains accompany ATP-induced docking: of particular importance, some regions of the substrate-binding domain are stabilized, while those near the substrate-binding site become destabilized. Thus, the energy of ATP binding is used to form a stable interface between the nucleotide- and substrate-binding domains, which results in destabilization of regions of the latter domain and consequent weaker substrate binding.  相似文献   

18.
19.
In this work we discover that a specific recognition of the N-terminal lectin domain of FimH adhesin by the usher FimD is essential for the biogenesis of type 1 pili in Escherichia coli. These filamentous organelles are assembled by the chaperone-usher pathway, in which binary complexes between fimbrial subunits and the periplasmic chaperone FimC are recognized by the outer membrane protein FimD (the usher). FimH adhesin initiates fimbriae polymerization and is the first subunit incorporated in the filament. Accordingly, FimD shows higher affinity for the FimC/FimH complex although the structural basis of this specificity is unknown. We have analysed the assembly into fimbria, and the interaction with FimD in vivo, of FimH variants in which the N-terminal lectin domain of FimH was deleted or substituted by different immunoglobulin (Ig) domains, or in which these Ig domains were fused to the N-terminus of full-length FimH. From these data, along with the analysis of a FimH mutant with a single amino acid change (G16D) in the N-terminal lectin domain, we conclude that the lectin domain of FimH is recognized by FimD usher as an essential step for type 1 pilus biogenesis.  相似文献   

20.
Activation of cyclic nucleotide-gated (CNG) ion channels involves a conformational change in the channel protein referred to as the allosteric transition. The amino terminal region and the carboxyl terminal cyclic nucleotide-binding domain of CNG channels have been shown to be involved in the allosteric transition, but the sequence of molecular events occurring during the allosteric transition is unknown. We recorded single-channel currents from bovine rod CNG channels in which mutations had been introduced in the binding domain at position 604 and/or the rat olfactory CNG channel amino terminal region had been substituted for the bovine rod amino terminal region. Using a hidden Markov modeling approach, we analyzed the kinetics of these channels activated by saturating concentrations of cGMP, cIMP, and cAMP. We used thermodynamic mutant cycles to reveal an interaction during the allosteric transition between the purine ring of the cyclic nucleotides and the amino acid at position 604 in the binding site. We found that mutations at position 604 in the binding domain alter both the opening and closing rate constants for the allosteric transition, indicating that the interactions between the cyclic nucleotide and this amino acid are partially formed at the time of the transition state. In contrast, the amino terminal region affects primarily the closing rate constant for the allosteric transition, suggesting that the state-dependent stabilizing interactions between amino and carboxyl terminal regions are not formed at the time of the transition state for the allosteric transition. We propose that the sequence of events that occurs during the allosteric transition involves the formation of stabilizing interactions between the purine ring of the cyclic nucleotide and the amino acid at position 604 in the binding domain followed by the formation of stabilizing interdomain interactions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号