首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
M Ouabonzi  M Bruneteau  G Michel 《Biochimie》1978,60(6-7):639-644
The structure of the core of the lipopolysaccharide from T 83 mutant of Escherichia coli K 12 CR 34 was partially determined. Using dephosphorylation, enzymic hydrolysis, Smith degradation, methylations and analysis by gas chromatography/mass spectrometry an oligosaccharide sequence was determined with D-glucose, D-galactose and L-glycero-D-mannoheptose as sugar components. The structure which was demonstrated could be that of the characteristic core fragment of the K 12 type lipopolysaccharides from Escherichia coli.  相似文献   

2.
The composition of the lipopolysaccharides from E. coli K12 P678 and from a mutant strain PM61 was investigated. No difference was found between the lipopolysaccharides of both strains. These bacteria belong to the CR34 serologic type in the group of E. coli K12.  相似文献   

3.
Membrane-defective mutants of Escherichia coli J5 were isolated on the basis of supersensitivity to the antibiotic novobiocin. These mutants display an increased sensitivity to a wide range of antibiotics and to several dyes and detergents. In addition, several mutants leak the periplasmic enzymes, alkyline phosphatase and ribonuclease. This evidence indicates an outer membrane defect in these mutants. The inner and outer membranes of one mutant were separated and subjected to compositional analysis. A deficiency in galactose containing lipopolysaccharide in the outer membrane of the mutant was observed. Two possible causes of this deficiency were examined and discounted: defective galactose uptake into the cell, and defective translocation of lipopolysaccharide from the inner membrane. Extraction and chemical analysis of mutant and wild type lipopolysaccharides suggests that the mutant is defective in the enzyme which transfers glucose to the growing lipopolysaccharide core, UDPglucose transferase. Thus, the mutant's deficiency in galactose-containing lipopolysaccharide can be ascribed to the fact that addition of glucose to the lipopolysaccharide core is a prerequisite for galactose addition. The physiological implications of this alteration are discussed.  相似文献   

4.
Sixteen conditional lethal mutants of bacteriophage T4D have been isolated which grow on Escherichia coli CR63 (a su+ streptomycin-sensitive K12 strain) but are restricted by CR/s (a streptomycin-resistant derivative of CR63). These mutants have been given the prefix str. Four of these mutants are amber and 12 appear to be missense. Eleven of the 12 missense mutants appear to be "pseudo-amber" (i.e. they are restricted by a su- E. coli B strain but not by a su- K12 strain); the other missense mutant was not restricted by either B or K12. The str mutations mapped in 12 different genes. Most were clustered in a region of early genes (gene 56 to gene 47). Fifty-eight amber and 10 "pseudo-amber" mutants isolated previously for their inability to grow on E. coli B were tested for restriction by CR/s. All the amber mutants grew normally on CR/s, whereas all 10 "pseudo-amber" mutants were restricted by CR/s. This implies that the phenotype of the "pseudo-amber" mutants is the result of a ribosomal difference between the permissive host CR63 and the restrictive hosts B and CR/s. These str mutants should prove to be useful alternatives to amber mutants for genetic and biochemical studies of bacteriophage T4 and for studies of the E. coli ribosome. It should be possible ot isolate similar mutants in other bacteriophages provided that streptomycin resistant hosts are available.  相似文献   

5.
A dual specificity for phage T5 adsorption to Escherichia coli cells is shown. The tail fiber-containing phages T5(+) and mutant hd-3 adsorbed rapidly to E. coli F (1.2 x 10(-9) ml min(-1)), whereas the adsorption rate of the tail fiber-less mutants hd-1, hd-2, and hd-4 was low (7 x 10(-11) ml min(-1)). The differences in adsorption rates were due to the particular lipopolysaccharide structure of E. coli F. Phage T4-resistant mutants of E. coli F with an altered lipopolysaccharide structure exhibited similar low adsorption for all phage strains with and without tail fibers. The same held true for E. coli K-12 and B which also differ from E. coli F in their lipopolysaccharide structures. Only the tail fiber-containing phages reversibly bound to isolated lipopolysaccharides of E. coli F. Infection by all phage strains strictly depended on the tonA-coded protein in the outer membrane of E. coli. We assume that the reversible preadsorption by the tail fibers to lipopolysaccharide accelerates infection which occurs via the highly specific irreversible binding of the phage tail to the tonA-coded protein receptor. The difference between rapid and slow adsorption was also revealed by the competition between ferrichrome and T5 for binding to their common tonA-coded receptor in tonB strains of E. coli. Whereas binding of T5(+) to E. coli K-12 and of the tail-fiber-less mutant hd-2 to E. coli F and K-12 was inhibited 50% by about 0.01 muM ferrichrome, adsorption of T5 to E. coli F was inhibited only 40% by even 1,000-fold higher ferrichrome concentrations.  相似文献   

6.
Lipopolysaccharides of different wild-type and mutant gram-negative bacteria, as well as synthetic and bacterial free lipid A, were studied for their ability to activate arachidonic acid metabolism in mouse peritoneal macrophages in vitro. It was found that lipopolysaccharides of deep-rough mutants of Salmonella minnesota and Escherichia coli (Re to Rc chemotypes) stimulated macrophages to release significant amounts of leukotriene C4 (LTC4) and prostaglandin E2 (PGE2). Lipopolysaccharides of wild-type strains (S. abortus equi, S. friedenau) only induced PGE2 and not LTC4 formation. Unexpectedly, free bacterial and synthetic E. coli lipid A were only weak inducers of LTC4 and PGE2 production. Deacylated Re-mutant lipopolysaccharide preparations were inactive. However, co-incubation of macrophages with both deacylated lipopolysaccharide and lipid A lead to the release of significant amounts of LTC4 and PGE2, similar to those obtained with Re-mutant lipopolysaccharide. The significance of the lipid A portion of lipopolysaccharide for the induction of LTC4 was indicated by demonstrating that peritoneal macrophages of endotoxin-low-responder mice or of mice rendered tolerant to endotoxin did not respond with the release of arachidonic acid metabolites on stimulation with Re-mutant lipopolysaccharide and that polymyxin B prevented the Re-lipopolysaccharide-induced LTC4 and PGE2 release. Physical measurements showed that the phase-transition temperatures of both free lipid A and S-form lipopolysaccharide were above 37 degrees C while those of R-mutant lipopolysaccharides were significantly lower (30-35 degrees C). Thus, with the materials investigated, an inverse relationship between the phase-transition temperature and the capacity to elicit LTC4 production was revealed.  相似文献   

7.
Three classes of mutants of Escherichia coli K12, isolated by selection for resistance to lipopolysaccharide-specific bacteriophages, were agglutinated by Concanavalin A which is presumed to interact with the lipopolysaccharide component of the outer membrane. Wheat germ and soy bean agglutinins did not agglutinate the parent or mutant strains. The adsorption of certain bacteriophages was also inhibited by Concanavalin A. The pattern of inhibition of adsorption of bacteriophages suggests that non-specific masking of receptors may occur, as well as specific masking of terminal glucose residues. Although bacteria were agglutinated by Concanavalin A, the permeability of the outer membrane seemed unaffected.  相似文献   

8.
Membrane-defective mutants of Escherichia coli J5 were isolated on the basis of supersensitivity to the antibiotic novobiocin. These mutants display an increased sensitivity to a wide range of antibiotics and to several dyes and detergents. In addition, several mutants leak the periplasmic enzymes, alkaline phosphatase and ribonuclease. This evidence indicates an outer membrane defect in these mutants. The inner and outer membranes of one mutant were separated and subjected to compositional analysis. A deficiency in galactose-containing lipopolysaccharide in the outer membrane of the mutant was observed. Two possible causes of this deficiency were examined and discounted: defective galactose uptake into the cell, and defective translocation of lipopolysaccharide from the inner membrane. Extraction and chemical analysis of mutant and wild type lipopolysaccharides suggests that the mutant is defective in the enzyme which transfers glucose to the growing lipopolysaccharide core, UDPglucose transferase. Thus, the mutant's deficiency in galactose-containing lipopolysaccharide can be ascribed to the fact that addition of glucose to the lipopolysaccharide core is a prerequisite for galactose addition. The physiological implications of this alteration are discussed.  相似文献   

9.
Phospholipids in whole cells of wild type Escherichia coli K12 are not degraded by exogenous phospholipases, whereas those of isolated outer membranes are completely degraded. It is concluded that the resistance of phospholipids in whole cells is due to shielding by one or more other outer membrane components. The nature of the shielding component(s) was investigated by testing the sensitivity of whole cells of a number of outer membrane mutants. Mutants lacking both major outer membrane proteins b and d or the heptose-bound glucose of their lipopolysaccharide, are sensitive to exogenous exogenous phospholipases. Moreover, cells of a mutant which lacks protein d can be sensitized by pretreatment of the cells with EDTA. From these results and from data on the chemical composition of the outer membranes, it is concluded that proteins b and d, the heptose-bound glucose of lipopolysaccharide and divalent cations are responsible for the inaccessibility of phospholipids to to exogenous phospholipases.  相似文献   

10.
The histone-like DNA-binding proteins (HU) are a convenient model for studying factors affecting thermostability because of their relatively simple, easily comparable structures, their common function, and their presence in organisms of widely differing thermostability. We report the determination of the high-resolution structure (1.53 A) at 273 K and 100 K of the HU protein from the hyper-thermophilic eubacterium Thermotoga maritima(HU Tmar, T(m)=80.5 degrees C). The structural data presented clearly show that the HU Tmar has a fold similar to its thermophilic homologue HU from Bacillus stearothermophilus (HU Bst). Based on primary structure analysis, as well as on the results of mutational analysis of HU Bst ( T(m)=61.6 degrees C) and Bacillus subtilis (HU Bsu, T(m)=39.7 degrees C), we have designed and produced several single and combined mutations to study their effect on the thermostability of the recombinant HU Tmar. Among others, the triplet mutant HU Tmar-G15E/E34D/V42I ( T(m)=35.9 degrees C) has converted the extreme thermophilic protein HU Tmar to mesophilic, like HU Bsu. In an attempt to analyze the various mutants of HU Tmar, we crystallized the point mutation HU Tmar-E34D, in which Glu34 was replaced by Asp, similar to the mesophilic HU Bsu. The mutant has T(m)=72.9 degrees C, as measured by circular dichroism, 7.6 degrees C lower than the wild type. The crystal structure of HU Tmar-E34D was determined at 100 K and refined at 1.72 A resolution. A comparison with the wild-type structures clearly shows that two hydrogen bonds have been disrupted between Glu34 from one subunit and Thr13 from the other subunit, and vice versa. Our analysis points to this as the prime cause of the destabilization compared to the wild type. The three new structures were compared, together with the X-ray structure of a similar protein, HU Bst, with the aim of relating their structural properties and different thermal stability. The presented results show that the HU Tmar protein achieves its stability by employing a dual strategy. On the one hand, we observe local hydrophobic interactions, which stabilize the secondary structure elements, and on the other hand, electrostatic interactions between side chains.  相似文献   

11.
Adenylate kinase from Escherichia coli K12 (strains CR341 and CR341 T28, a temperature-sensitive mutant) was purified by a two-step chromatographic procedure. Denaturation by heat above 60 degrees C of pure or crude preparations of adenylate kinase from both strains of bacteria was shown to be "reversible" if the enzyme was converted to the random coiled state by guanidinium chloride after heat treatment. Like other small monomeric proteins, adenylate kinase refolded rapidly to the native active state by dilution of guanidinium chloride. Adenylate kinase from the mutant strain was irreversibly inactivated by exposure of crude extracts at 40 degrees C. This inactivation is due to proteolysis which follows thermal denaturation (or transconformation) of mutant adenylate kinase at 40 degrees C. ATP, P1, P5-di(adenosine 5')-pentaphosphate, and anti-adenylate kinase antibodies protected the thermosensitive adenylate kinase in crude extracts against denaturation and proteolysis at 40 degrees C.  相似文献   

12.
Lipopolysaccharides of Salmonella T mutants   总被引:3,自引:1,他引:2       下载免费PDF全文
The composition of lipopolysaccharides derived from various Salmonella T forms was studied. All T1-form lipopolysaccharides examined contained 14 to 22% each of both d-galactose and pentose in addition to 4 to 9% each of ketodeoxyoctonic acid, heptose, d-glucosamine, and d-glucose. The pentose was identified as d-ribose. The T2-form lipopolysaccharide examined did not contain a significant amount of pentose, nor more than the usual amounts of d-galactose. Periodate oxidation of T1 (lipo) polysaccharides followed by NaBH(4) reduction revealed that ribose was almost quantitatively protected, galactose was destroyed, and threitol and mannose were newly formed. The latter two products probably originated from 4-linked galactose and heptose, respectively. Ribose and galactose were found in specific precipitates of T1 lipopolysaccharide with anti-T1 antiserum but were not found in specific precipitates of alkali-treated T1 lipopolysaccharide and of Freeman degraded polysaccharide with anti-T1 serum Ribose and galactose are present in these degraded preparations in the form of nondialyzable polymers. The T1-form mutant lipopolysaccharides lacked the O-specific sugars constituting the side-chains in the wild-type antigens. They did not produce the soluble O-specific haptenic polysaccharide known to be accumulated in RI strains. With these properties, T1 lipopolysaccharides resemble RII lipopolysaccharides. Like RII degraded polysaccharides, T1-degraded polysaccharides also contained glucosamine. Furthermore, strong cross-reactions were found to exist between T1 and RII lipopolysaccharides in both hemagglutination inhibition assays and in precipitation tests. It is proposed that T1 lipopolysaccharides represent RII lipopolysaccharides to which polymers consisting of ribose and galactose are attached.  相似文献   

13.
A quantitative study on outer membrane components was performed in a number of envelope mutants of Escherichia coli K-12 exhibition different permeability properties for antimicrobial agents. The envA1 allele causing an increased influx for both hydrophobic and hydrophilic drugs was found to be associated with a deficiency in the amount of lipopolysaccharides. The sefA1 envA1 double mutant was found to have a higher outer membrane buoyant density, apparently due to an increase in protein content. This double mutant was still low in lipopolysaccharide content.  相似文献   

14.
Numerous facultative temperature sensitive recombination deficient mutants of Escherichia coli K-12 strain 108 were isolated after mutagenization with nitrosoguanidine. The majority of the mutants were resistant to UV irradiation. Three mutants, KBP72, KBP169 and KBP610, with marked recombination deificiency (300 to 15,000 times) at 42 degrees C, were UV resistant; their sensitivity to mitomycin C was altered only slightly or not at all. Mutation KBP72 was co-transduced with ilv (83 unit on E. coli genetic map). The mutant is not able to form a functional recombinat structure. Two other mutations are located between 0 and 19 unit of the genetic map.  相似文献   

15.
A heptose-deficient mutant of Escherichia coli has been isolated and from it a glycolipid, consisting of lipid A and 2-keto-3-deoxyoctonate (KDO), has been extracted with diisobutylketone-acetic acid-water. Based on beta-hydroxymyristic acid, the extractable glycolipid accounts for a major portion of the total lipid A in this mutant. A glycolipid, purified from the lipid extract by a combination of silicic acid and Sephadex LH-60 chromatography, contains glucosamine, phosphate, KDO, acetyl groups, and fatty acids in the following molar ratios: 1:2:2:1.7:5. These components account for over 80% of the lipid by weight. The fatty acid pattern of the glycolipid is typical of lipid A, the major component being beta-hydroxymyristic acid. The lipid also contains an amino sugar which appears to be 4-amino-4-deoxyarabinose. With the use of an ion-exchange paper chromatographic technique, gram-negative bacteria can be rapidly screened for the presence of this glycolipid. The mutant is believed to have a leaky defect in either biosynthesis of heptose or its incorporation into lipopolysaccharide. The lipopolysaccharide from the mutant contains only about a third as much heptose, glucose, and galactose as the parent CR34, a K-12 derivative. Chemical analysis and phage typing suggest that CR34 contains an incomplete core polysaccharide devoid of glucosamine.  相似文献   

16.
The components of the cell envelopes of Escherichia coli O1:K1, O7:K1, O18:K1 and O83:K1 strains were separated on SDS-polyacrylamide gels. Longitudinal slices (50 microns thick) of the gel were incubated with typing sera for E. coli O1, O7, O18 and O83, followed by detection of the bound antibodies with 125I-labelled protein A and autoradiography. The antisera reacted with many cell envelope components of strains both with the homologous O-serotype and heterologous O-serotypes. With O-typing sera cross-reactions with heterologous cells and cells boiled for 2 h were found. Up to 40 serotype-specific bands at regular positions with molecular weights between 12000 and 100000 were demonstrated. Since these bands were also observed when purified lipopolysaccharide and unabsorbed homologous O-typing sera were used, it was concluded that these bands represented lipopolysaccharide molecules with increasing molecular weight, all of which contained O-antigen specific immunodeterminants. The band patterns were not influenced by the growth conditions of the cells or the various isolation procedures for the cell envelopes. Comparison of various strains serotyped as O18 revealed strain differences with respect to their lipopolysaccharide band patterns. In the case of O21- and O83-serotyped strains lipopolysaccharide cross-reactions, which were detected by agglutination, were analysed in detail using the gel immunoradioassay method. These cross-reactions appeared to be caused by the presence of common determinants on their lipopolysaccharides and polysaccharide-like material. The cross-reacting antibodies could be removed by cross-absorption. It is concluded that the immunological detection of lipopolysaccharides and other components of E. coli in gels is an important tool in (1) the control of the specificity of typing antisera, (2) the study of the nature of cross-reacting antigens and (3) the study of the nature and uniformity of the various O- and K-serotypes.  相似文献   

17.
A recombinant cosmid containing genes involved in Klebsiella pneumoniae C3 core lipopolysaccharide biosynthesis was identified by its ability to confer bacteriocin 28b resistance to Escherichia coli K-12. The recombinant cosmid contains 12 genes, the whole waa gene cluster, flanked by kbl and coaD genes, as was found in E. coli K-12. PCR amplification analysis showed that this cluster is conserved in representative K. pneumoniae strains. Partial nucleotide sequence determination showed that the same genes and gene order are found in K. pneumoniae subsp. ozaenae, for which the core chemical structure is known. Complementation analysis of known waa mutants from E. coli K-12 and/or Salmonella enterica led to the identification of genes involved in biosynthesis of the inner core backbone that are shared by these three members of the Enterobacteriaceae. K. pneumoniae orf10 mutants showed a two-log-fold reduction in a mice virulence assay and a strong decrease in capsule amount. Analysis of a constructed K. pneumoniae waaE deletion mutant suggests that the WaaE protein is involved in the transfer of the branch beta-D-Glc to the O-4 position of L-glycero-D-manno-heptose I, a feature shared by K. pneumoniae, Proteus mirabilis, and Yersinia enterocolitica.  相似文献   

18.
The introduction of the F1 incompatibility group plasmid pR386 Tc into several common laboratory strains of Escherichia coli rendered them restrictive to the growth of bacteriophage T4 unf mutants, which are defective in unfolding the host genome. The growth inhibition was temperature dependent. The single mutant unf39 x 5 exhibited an efficiency of plating of less than 10(-8) at 27 degrees C. However, at 37 degrees C, complete growth inhibition occurred only when host DNA degradation was also absent.  相似文献   

19.
rfaP mutants of Salmonella typhimurium   总被引:13,自引:0,他引:13  
Salmonella typhimurium rfaP mutants were isolated and characterised with respect to their sensitivity towards hydrophobic antibiotics and detergents, and their lipopolysaccharides were chemically analysed. The rfaP mutants were selected after diethylsulfate mutagenesis or as spontaneous mutants. The mutation in two independent mutants SH7770 (line LT2) and SH8551 (line TML) was mapped by cotransduction with cysE to the rfa locus. The mutants were sensitive to hydrophobic antibiotics (clindamycin, erythromycin and novobiocin) and detergents (benzalkoniumchloride and sodium dodecyl sulfate). Analysis of their lipopolysaccharides by chemical methods and by sodium dodecyl sulfate/polyacrylamide gel electrophoresis revealed that their saccharide portion was, to a large extent, of chemotype Rc with small proportions of material containing a more complete core oligosaccharide and O-specific chains. Only 2.5 mol phosphate/mol lipopolysaccharide was found whereas the phosphate content of the lipopolysaccharide of a galE mutant strain was 4.8 mol. Thus the rfaP mutant lipopolysaccharides lacked more than two phosphate residues. Assessment of the location of phosphate groups in rfaP lipopolysaccharides revealed the presence of at least 2 mol phosphate in lipid A, indicating that the core oligosaccharide was almost devoid of phosphate. The chemical, physiological and genetic data obtained for these mutants are in full agreement with those reported earlier for rfaP mutants of Salmonella minnesota.  相似文献   

20.
Lipopolysaccharides, the major amphiphilic components of the outer leaflet of the outer membrane of Gram-negative bacteria, may assume various three-dimensional supramolecular structures depending on molecular properties (e.g. chemical structure) and on ambient conditions (e.g. temperature, concentration of divalent cations). We applied synchrotron small-angle X-ray diffraction to investigate the supramolecular structures of natural and synthetic Escherichia-coli-type lipid A, of lipid A from Salmonella minnesota, and of rough mutant lipopolysaccharides of E. coli and S. minnesota under physiological water content (greater than 90%) at different temperatures (20, 37, and 55 degrees C) and at different lipid/divalent cation molar ratios (20:1 to 1:1). We found that in the absence of divalent cations rough mutant lipopolysaccharide and free lipid A form unilamellar structures with the main reflections centered around 4.50 nm for free lipid A, 4.80 nm for Re lipopolysaccharide, and 5.90 nm for Rd1 lipopolysaccharide at 20 degrees C, i.e. below the beta----alpha acyl-chain-melting transition temperature. Above this temperature, the reflections are shifted to 4.30 nm for free lipid A (at 55 degrees C), 4.60 nm for Re lipopolysaccharide (at 37 degrees C), and to 5.50 nm for Rd1 lipopolysaccharide (at 37 degrees C). The addition of divalent cations leads (at lower concentrations, i.e. lipid/cation molar ratios 20:1 to 5:1) to sharper reflections expressing a higher state of order and to a shift of the center of the main reflections lying now at 5.10 nm for free lipid A, 6.40 nm for Re and 7.20 nm for Rd1 lipopolysaccharide at 20 degrees C. At higher concentrations of divalent cations (e.g. lipid/cation molar ratio 1:1), an increasing tendency to form nonlamellar, inverted cubic structures is observed which is indicated by the occurrence of another main periodicity and/or of reflections with spacing ratios 1: square root of 2, 1: square root of 3 of the main periodicity. The tendency to assume inverted cubic structures is only weakly pronounced for rough mutant lipopolysaccharides but dominant for free lipid A even at physiological temperature and divalent cation concentration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号