首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Ribosomal proteins from three mutant strains of Chlamydomonas reinhardi were analysed and compared by one-dimensional and two-dimensional gel electrophoresis. One mutant was streptomycin-sensitive the other two were streptomycin-resistant, one with a Mendelian the other with a non-Mendelian pattern of inheritance. In the 30-S subunits of chloroplast ribosomes approximately 25 proteins are found and in the 50-S subunits 34 proteins. The 40-S subunits of cytoplasmic ribosomes contain about 31 proteins and the 60-S subunits 44 proteins. The molecular weights of most proteins in all subunits are in the range of 10 000 to 35 000. However, the 60-S subunits contain in addition a protein of molecular weight 50 000 and the 30-S subunits show 6-7 bands of molecular weights from 50 000 to 83 000. The proteins of the cytoplasmic 80-S ribosomes or of their subunits from all three mutants are electrophoretically identical. The proteins of the 70-S organellar ribosomes and both of their subunits show distinct differences between the three strains. Our results indicate that organellar ribosomal proteins are in part controlled by nuclear DNA and in part by organellar DNA.  相似文献   

2.
Structural proteins of active 60-S and 40-S subunits of rat liver ribosomes were analysed by two-dimensional polyacrylamide gel electrophoresis. 35 and 29 spots were shown on two-dimensional gel electrophoresis of proteins from large and small subunits, respectively. It was noted that the migration distances of stained proteins with Amido black 10B remained unchanged in the following sodium dodecyl sulfate-acrylamide gel electrophoresis, although some minor degradation and/or aggregation products were observed in the case of several ribosomal proteins, especially of those with high molecular weights. This finding made it possible to measure the molecular weight of each ribosomal protein in the spot on two-dimensional gel electrophoresis by following sodium dodecyl sulfate-acrylamide gel electrophoresis. The molecular weights of the protein components of two liver ribosomal subunits were determined by this 'three-dimensional' polyacrylamide gel electrophoresis. The molecular weights of proteins of 40-S subunits ranged from 10 000 to 38 000 and the number average molecular weight was 23 000. The molecular weights of proteins of 60-S subunits ranged from 10 000 to 60 000 and the number average molecular weight was 23 900.  相似文献   

3.
The ribosomal proteins from 40 S and 60 S subunits of rabbit reticulocytes were separated by two-dimensional polyacrylamide gel electrophoresis. The protein spots stained with Coomassie brilliant blue were cut out and the proteins were extracted. The material extracted from each spot was mixed with proteins of known molecular weight and then analyzed by electrophoresis in polyacrylamide gels containing sodium dodecyl sulfate. Both the total number and the molecular weights of each of the proteins were determined by these procedures. Thirty-two proteins were identified in the 40 S subunits; their molecular weights ranged from 8000 to 39,000 (average mol. wt = 25,000). Thirty-nine proteins were identified in the 60 S subunit; their molecular weights ranged from 9000 to 58,000 (average mol. wt = 31,000). The sum of the molecular weights of the individual proteins from each subunit is in agreement with previous estimations, derived from physico-chemical measurements of the total protein in mammalian ribosomal subunits. The molecular weight distribution obtained for the isolated proteins was nearly identical to that derived from spectrophotometric analysis of polyacrylamide-sodium dodecyl sulfate gels of the total protein mixtures from each subunit stained with Coomassie brilliant blue. The results are consistent with the hypothesis that reticulocyte ribosomes contain one copy of most of their protein constituents.  相似文献   

4.
The ribosomes from four temperature-sensitive mutants of Escherichia coli have been examined for defects in cell-free protein synthesis. The mutants examined had alterations in ribosomal proteins S10, S15, or L22 (two strains). Ribosomes from each mutant showed a reduced activity in the translation of phage MS2 RNA at 44 degrees C and were more rapidly inactivated by heating at this temperature compared to control ribosomes. Ribosomal subunits from three of the mutants demonstrated a partial or complete inability to reassociate at 44 degrees C. 70-S ribosomes from two strains showed a reducton in messenger RNA binding. tRNA binding to the 30 S subunit was reduced in the strains with altered 30-S proteins and binding to the 50 S subunit was affected in the mutants with a change in 50 S protein L22. The relation between ribosomal protein structure and function in protein synthesis in these mutants is discussed.  相似文献   

5.
The molecular weight distribution of the total protein of ribosomes and ribosomal subunits isolated from dry pea seeds was studied by electrophoresis in polyacrylamide gel, containing sodium dodecyl sulfate. It was demonstrated that overall protein of 80 S ribosomes is separated into a number of fractions with molecular weights of 10000-64000. Treatment of ribosomes with 0.5 per cent tritone, 0.5 per cent and 1 per cent deoxycholate does not change the general pattern of the molecular weight distribution of ribosomal proteins. The large subunit reveals 19 protein zones (14 major and 5 minor zones), their molecular weights are varying from 10000 to 54000. The majority of proteins of the large subunit have molecular weights of 14000--32000. The molecular weights of 17 protein zones of the small subunit (7 major and 10 minor zones) vary from 10000 to 64000. The majority of proteins of both large and small subunits have molecular weights of 14000--32000. Electrophoretic separation of proteins in the split gel confirmed the fact that the proteins of large subunit differ in molecular weights from those of the small subunit. Thus, ribosomal proteins of pea seeds are shown to produce a typical (for 80S ribosomes) pattern of molecular weight distribution under polyacrylamide gel electrophoresis in the presence of sodium dodecul sulphate.  相似文献   

6.
Ribosomal subunits are isolated from potato tuber mitochondria devoid of contaminating organelles. The sedimentation constants of the two mitochondrial ribosomal subunits are 33S and 50S respectively. The apparent sizes of the high molecular weight RNAs are 19S and 25S.The proteins of these ribosomes have been analyzed by two-dimensional electrophoresis in SDS polyacrylamide gels to determine their number and molecular weights. The small subunit contains 35 protein species ranging from 8 to 60 kDa. The 50S large subunit contains 33 protein species ranging from 12 to 46 kDa. These preliminary results are the first analysis made on mitochondrial ribosomes from a higher plant.  相似文献   

7.
Eucaryotic L7/L12-type proteins are present in ethanol/salt extracts (P1 protein) of ribosomes from Artemia salina and rat liver. These proteins are partially phosphorylated and occur in two forms of closely related structure: a major form eL12 having methionine at the N-terminal position and a minor form of eL12 (eL12') which seems slightly elongated and contains a blocked N terminus. Purification of the four different forms of this protein, eL12, eL12-P, eL12' and eL12'-P, was performed by ion-exchange chromatography on carboxymethyl-cellulose and DEAE-cellulose. Using a radioimmuno assay, 1.8 copies of eL12 and 0.9 of eL12' were found on the 80-S A. salina ribosome. In ribosomes of both rat liver and A. salina, eL12 is present in a larger quantity than eL12'. 40-S and 60-S ribosomal subunits extracted with ethanol/salt were essentially free of eL12 proteins. A large pool of eL12 was found in the cytosol after removal of the ribosomes by centrifugation or molecular sieving. The proteins of rat liver and A. salina are similar with regard to their isoelectric points and molecular weights. Sedimentation equilibrium studies indicated that the isolated protein eL12 occurs as a dimer.  相似文献   

8.
70S ribosomes and 30S ribosomal subunits from Escherichia coli MRE 600 were exposed to gamma irradiation at -80szC. Exponential decline of activity with dose was observed when the ability of ribosomes to support the synthesis of polyphenylalanine was assayed. Irradiated ribosomes showed also an increased thermal lability. D37 values of 2.2 MR and 4.8 MR, corresponding to radiation-sensitive molecular weights of 3.1 × 105 and 1.4 × 105, were determined for inactivation of 70S ribosomes and 30S subunits, respectively. Zone sedimentation analysis of RNA isolated from irradiated bacteria or 30S ribosomal subunits showed that at average, one chain scission occurs per four hits into ribosomal RNA. From these results it was concluded that the integrity of only a part of ribosomal proteins (the sum of their molecular weights not exceeding 1.4 × 105) could be essential for the function of the 30S subunit in the polymerization of phenylalanine. This amount is smaller if the breaks in the RNA chain inactivate the ribosome.  相似文献   

9.
Proteins were extracted from ribosomes and (for the first time) from ribosomal subunits of Drosophila melanogaster embryos. The ribosomal proteins were analyzed by two-dimensional polyacrylamide gel electrophoresis. The electrophoretograms displayed 78 spots for the 80S monomers, 35 spots for the 60S subunits, and 31 spots for the 40S subunits. On the basis of present information, we propose what we believe to be a reliable and convenient nomenclature for the proteins of the ribosomes and each of the subunits. A pair of acidic proteins from D. melanogaster appears to be very similar in electrophoretic mobility to the acidic proteins L7/L12 from Escherichia coli and L40/L41 from rat liver. The electrophoretogram of proteins from embryonic ribosomes shows both qualitative and quantitative differences from those of larvae, pupae, and adults previously reported by others. The proteins of the 40S subunit range in molecular weight from approximately 10,000 to 50,000, and those from the 60S subunit range from approximately 11,000 to 50,000.  相似文献   

10.
Bacillus stearothermophilus 30S and 50S ribosomal subunits were isolated and crosslinked with diepoxybutane. The crosslinked proteins were extracted with LiCl or with 67% acetic acid and purified by a combination of different high performance liquid chromatography techniques. The protein fractions were analysed by two-dimensional and diagonal polyacrylamide gel electrophoresis and by immunological methods. Two crosslinked protein pairs, one from the large and one from the small subunit, consisting of proteins L23-L29 and S13-S19 respectively, were isolated in milligram amounts for determination of the crosslinked amino acids.  相似文献   

11.
The involvement of mitochondrial protein synthesis in the assembly of the mitochondrial ribosomes was investigated by studying the extent to which the assembly process can proceed in petite mutants of Saccharomyces cerevisiae which lack mitochondrial protein synthetic activity due to the deletion of some tRNA genes and/or one of the rRNA genes on the mtDNA. Petite strains which retain the 15-S rRNA gene can synthesize this rRNA species, but do not contain any detectable amounts of the small mitochondrial ribosomal subunit. Instead, a ribonucleoparticle with a sedimentation coefficient of 30 S (instead of 37 S) was observed. This ribonucleoparticle contained all the small ribosomal subunit proteins with the exception of the var1 and three to five other proteins, which indicates that the 30-S ribonucleoparticle is related to the small mitochondrial ribosomal subunit (37 S). Reconstitution experiments using the 30-S particle and the large mitochondrial ribosomal subunit from a wild-type yeast strain indicate that the 30-S particle is not active in translating the artificial message poly(U). The large mitochondrial ribosomal subunit was present in petite strains retaining the 21-S rRNA gene. The petite 54-S subunit is biologically active in the translation of poly(U) when reconstituted with the small subunit (37 S) from a wild-type strain. The above results indicate that mitochondrial protein synthetic activity is essential for the assembly of the mature small ribosomal subunit, but not for the large subunit. Since the var1 protein is the only mitochondrial translation product known to date to be associated with the mitochondrial ribosomes, the results suggest that this protein is essential for the assembly of the mature small subunit.  相似文献   

12.
Membrane ribosomes from Staphylococcus aureus which were detached from the membrane by extraction with the nonionic detergent Triton X-100 retained a protein (MBRP) with a molecular weight of 60 000, which was absent from cytoplasmic ribosomes. MBRP was detected and quantified by immunological methods. When membrane ribosomes were dissociated into 50S and 30S subunits, MBRP remained associated with the 50S particle. MBRP was found both on membrane ribosomes and in the cytoplasm in roughly equal amounts. When added to Triton X-100-solubilized protoplasts, antibodies to MBRP produced immunoprecipitates which contained a complex of MBRP and three other proteins with molecular weights of 71 000, 46 000 and 41 000. Four proteins with the same molecular weights as those of the MBRP complex were found associated with membrane ribosomes. The proteins of molecular weight 71 000, 60 000, 46 000 and 41 000 seemed to be present in stoichiometrically equivalent amounts in the complex.  相似文献   

13.
The proteins of Xenopus ovary ribosomes   总被引:3,自引:1,他引:2  
1. The preparation of ribosomes and ribosomal subunits from Xenopus ovary is described. 2. The yield of once-washed ribosomes (buoyant density in caesium chloride 1.601g.cm(-3); 44% RNA, 56% protein by chemical methods) was 10.1mg/g wet wt. of tissue. 3. Buoyant density in caesium chloride and RNA/protein ratios by chemical methods have been determined for ribosome subunits produced by 1.0mm-EDTA or 0.5m-potassium chloride treatment and also for EDTA subunits extracted with 0.5m-, 1.0m- or 1.5m-potassium chloride, 4. Analysis of ribosomal protein on acrylamide gels at pH4.5 in 6m-urea reveals 24 and 26 bands from small and large EDTA subunits respectively. The actual numbers of proteins are greater than this, as many bands are obviously doublets. 5. Analysis of the proteins in the potassium chloride extract and particle fractions showed that some bands are completely and some partially extracted. Taking partial extraction as an indication of possible doublet bands it was found that there were 12 and 20 such bands in the small and large subunits respectively, making totals of 36 and 46 proteins. 6. From the measured protein contents and assuming weight-average molecular weights for the proteins of large and small subunits close to those observed for eukaryote ribosomal proteins it is possible to compute the total numbers of protein molecules per particle. It appears that too few protein bands have been identified on acrylamide gels to account for all the protein in the large subunit, but probably enough for the small subunit.  相似文献   

14.
Three groups of proteins can be clearly discriminated in the total protein of L cell polysomes by selective labelling in the presence of low doses of actinomycin D and two-dimensional polyacrylamide/dodecylsulfate gel electrophoresis followed by autoradiography: (a) structural ribosomal proteins which are not labelled in the presence of actinomycin D and form stained non-radioactive spot in gels; (b) exchangeable ribosomal proteins which are labelled in the presence of actinomycin D and stained radioactive spots; (c) non-ribosomal proteins which are detectable only by autoradiography of gels. The large and small subunits of L cell ribosomes contain respectively 45 and 34 ribosomal proteins with molecular weights less than or equal to 50 000; seven of the large subunit proteins and nine of the small subunit proteins are exchangeable. Most of the non-ribosomal proteins migrate in the region of the related to the separation of the ribosomal proteins of mammalian cells and the possible significance of the presence of non-ribosomal proteins in polysomes are discussed.  相似文献   

15.
1. It has been shown by Datema et al. (Datema, R., Agsteribbe, E. and Kroon, A.M. (1974) Biochim. Biophys. Acta 335, 386--395) that Neurospora mitochondria isolated in a Mg2+-containing medium (or after homogenization of the mycelium in this medium and subsequent washing of the mitochondria in EDTA-containing medium) possess 80-S ribosomes; mitochondria homogenized and isolated in EDTA medium yield 73-S ribosomes. The ribosomal proteins of the subunits of 80-S and 73-S ribosomes were compared by two-dimensional electrophoresis. The protein patterns of the large, as well as of the small subunits are very similar but not completely identical; the most conspicuous difference is that the large subunit of 80 S contains about eight more proteins than the large subunit of 73 S. 2. The contamination by Neurospora cytoplasmic 77-S ribosomes in the 80-S preparations, if present, is only minor. 3. Neurospora cytoplasmic ribosomes contain 31 proteins in the large, and 21 proteins in the small subunit. 4. Neurospora 80- mitochondrial ribosomes contain 39 proteins in the large, and 30 proteins in the small subunit 30 proteins. 5. Rat liver mitochondrial ribosomes contain 40 proteins in the large and at least 30 proteins in the small subunit. About 50% of these proteins has an isoelectric point below pH 8.6. 6. The pattern of Paracoccus denitrificans is very similar to that of other bacterial ribosomes, the large subunit contains 29, the small subunit 18 proteins.  相似文献   

16.
A new technique of atomic tritium bombardment has been used to study the surface topography of Escherichia coli ribosomes and ribosomal subunits. The technique provides for the labeling of proteins exposed on the surface of ribosomal particles, the extent of protein labeling being proportional to the degree of exposure. The following proteins were considerably tritiated in the 70S ribosomes: S1, S4, S7, S9 and/or S11, S12 and/or L20, S13, S18, S20, S21, L1, L5, L6, L7/L12, L10, L11, L16, L17, L24, L26 and L27. A conclusion is drawn that these proteins are exposed on the ribosome surface to an essentially greater extent than the others. Dissociation of 70S ribosomes into the ribosomal subunits by decreasing Mg2+ concentration does not lead to the exposure of additional ribosomal proteins. This implies that there are no proteins on the contacting surfaces of the subunits. However, if a mixture of subunits has been subjected to centrifugation in a low Mg2+ concentration at high concentrations of a monovalent cation, proteins S3, S5, S7, S14, S18 and L16 are more exposed on the surface of the isolated 30S and 50S subunits than in the subunit mixture or in the 70S ribosomes. The exposure of additional proteins is explained by distortion of the native quaternary structure of ribosomal subunits as a result of the separation procedure. Reassociation of isolated subunits at high Mg2+ concentration results in shielding of proteins S3, S5, S7 and S18 and can be explained by reconstitution of the intact 30S subunit structure.  相似文献   

17.
Summary The surface topography of the intact 70S ribosome and free 30S and 50S subunits from Bacillus stearothermophilus strain 2184 was investigated by lactoperoxidase-catalyzed iodination. Two-dimensional polyacrylamide gel electrophoresis was employed to separate ribosomal proteins for analysis of their reactivity. Free 50S subunits incorporated about 18% more 125I than did 50S subunits derived from 70S ribosomes, whereas free 30S subunits and 30S subunits derived from 70S ribosomes incorporated similar amounts of 125I. Iodinated 70S ribosomes and subunits retained 62–78% of the protein synthesis activity of untreated particles and sedimentation profiles showed no gross conformational changes due to iodination. The proteins most reactive to enzymatic iodination were S4, S7, S10 and Sa of the small subunit and L2, L4, L5/9, L6 and L36 of the large subunit. Proteins S2, S3, S7, S13, Sa, L5/9, L10, L11 and L24/25 were labeled substantially more in the free subunits than in the 70S ribosome. Other proteins, including S5, S9, S12, S15/16, S18 and L36 were more extensively iodinated in the 70S ribosome than in the free subunits. The locations of tyrosine residues in some homologus ribosomal proteins from B. stearothermophilus and E. coli are compared.  相似文献   

18.
Zinc finger-like motifs in rat ribosomal proteins S27 and S29.   总被引:5,自引:1,他引:4       下载免费PDF全文
The primary structures of the rat 40S ribosomal subunit proteins S27 and S29 were deduced from the sequences of nucleotides in recombinant cDNAs and confirmed by determination of amino acid sequences in the proteins. Ribosomal protein S27 has 83 amino acids and the molecular weight is 9,339. Hybridization of cDNA to digests of nuclear DNA suggests that there are 4-6 copies of the S27 gene; the mRNA for the protein is about 620 nucleotides in length. Ribosomal protein S29 has 55 amino acids and the molecular weight is 6,541. There are 14-17 copies of the S29 gene and its mRNA is about 500 nucleotides in length. Rat ribosomal protein S29 is related to several members of the archaebacterial and eubacterial S14 family of ribosomal proteins. S27 and S29 have zinc finger-like motifs as do other proteins from eukaryotic, archaebacterial, eubacterial, and mitochondrial ribosomes. Moreover, ribosomes and ribosomal subunits appear to contain zinc and iron as well.  相似文献   

19.
Purified 50 S ribosomal subunits were found to contain significant amounts of protein coincident with the 30 S proteins S9 and/or S11 on two-dimensional polyacrylamide/urea electropherographs. Peptide mapping established that the protein was largely S9 with smaller amounts of S11. Proteins S5 and L6 were nearly coincident on the two-dimensional polyacrylamide/urea electropherographs. Peptide maps of material from the L6 spot obtained from purified 50 S subunits showed the presence of significant amounts of the peptides corresponding to S5. Experiments in which 35S-labelled 30 S subunits and non-radioactive 50 S subunits were reassociated to form 70 S ribosomes showed that some radioactive 30 S protein was transferred to the 50 S subunit. Most of the transferred radioactivity was associated with two proteins, S9 and S5. Sulfhydryl groups were added to the 50 S subunit by amidination with 2-iminothiolane (methyl 4-mercaptobutyrimidate). These were oxidized to form disulfide linkages, some of which crosslinked different proteins of the intact 50 S ribosomal subunit. Protein dimers were partially fractionated by sequential salt extraction and then by electrophoresis of each fraction in polyacrylamide gels containing urea. Slices of the gel were analysed by two-dimensional polyacrylamide/sodium dodecyl sulfate diagonal gel electrophoresis. Final identification of the constituent proteins in each dimer by two-dimensional polyacrylamide/urea gel electrophoresis showed that 50 S proteins L5 and L27 were crosslinked to S9. The evidence suggests that proteins S5, S9, S11, L5 and L27 are located at the interface region of the 70 S ribosome.  相似文献   

20.
(1) Poly(A)-containing mRNAs from total polysomal RNA of regenerating rat liver were incubated with [3H]leucine in a wheat germ cell-free system. Ribosomal proteins were purified as described previously [1], and with two-dimensional gel electrophoresis. The proteins on the gel except for less basic protein had appreciable radioactivity, whereas the surrounding areas had very low radioactivity. Acetic acid-soluble proteins labeled in this system were subjected to three-dimensional gel electrophoresis [2]. Except for L1 and L2 proteins, each of the ribosomal proteins, including less basic ones, showed a major radioactive peak coinciding with the protein band on SDS gel. Thus, the wheat germ cell-free system completely translates almost all mRNAs for individual ribosomal proteins. Equimolar amounts of almost all ribosomal proteins were synthesized in the presence of the saturating concentration of mRNAs. (2) Free polysomes from regenerating rat liver were fractionated into three sizes. Each class of polysomes was incubated with [3H]leucine. Ribosomal proteins with molecular weights of 40 000 to 21 000 were mainly synthesized by Fraction B (5-14 monomeric ribosomes), L1 and L2 [2] with 60 000 and 54 000, by Fraction C (greater than 15 monomeric ribosomes) and B, and ribosomal proteins smaller than 20 000 by Fractions A (less than pentamer) and B. (3) mRNAs from rat liver total polysomes were fractionated into seven classes by size and each was translated in the wheat germ extract. Ribosomal proteins with molecular weights of 54 000 to 30 000 were mainly synthesized by mRNAs of 12 to 14.5 S, ribosomal proteins of 35 000 to 22 000 by those of 9.5 to 12 S, ribosomal proteins of 22 000 to 13 000 by those of 7 to 9.5 S, and smaller ribosomal proteins by those smaller than 7 S. These results indicate that individual ribosomal proteins are synthesized by monocistronic mRNAs, the lengths of which are proportional to the molecular weights of the corresponding ribosomal proteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号