首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Reactive oxygen species (ROS), chemically reactive molecules containing oxygen, can form as a natural byproduct of the normal metabolism of oxygen and also have their crucial roles in cell homeostasis. Of note, the major intracellular sources including mitochondria, endoplasmic reticulum (ER), peroxisomes and the NADPH oxidase (NOX) complex have been identified in cell membranes to produce ROS. Interestingly, autophagy, an evolutionarily conserved lysosomal degradation process in which a cell degrades long-lived proteins and damaged organelles, has recently been well-characterized to be regulated by different types of ROS. Accumulating evidence has demonstrated that ROS-modulated autophagy has numerous links to a number of pathological processes, including cancer, ageing, neurodegenerative diseases, type-II diabetes, cardiovascular diseases, muscular disorders, hepatic encephalopathy and immunity diseases. In this review, we focus on summarizing the molecular mechanisms of ROS-regulated autophagy and their relevance to diverse diseases, which would shed new light on more ROS modulators as potential therapeutic drugs for fighting human diseases.  相似文献   

2.
Parkinson’s disease (PD) is the second most common neurodegenerative disease with gradual loss of dopaminergic neurons. Despite extensive research in the past decades, the etiology of PD remains elusive. Nevertheless, multiple lines of evidence suggest that oxidative stress is one of the common causes in the pathogenesis of PD. It has also been suggested that heavy metal-associated oxidative stress may be implicated in the etiology and pathogenesis of PD. Here we review the roles of redox metals, including iron, copper and cobalt, in PD. Iron is a highly reactive element and deregulation of iron homeostasis is accompanied by concomitant oxidation processes in PD. Copper is a key metal in cell division process, and it has been shown to have an important role in neurodegenerative diseases such as PD. Cobalt induces the generation of reactive oxygen species (ROS) and DNA damage in brain tissues.  相似文献   

3.
The human genome is continuously exposed to such potentially deleterious agents as the highly reactive molecules known as reactive oxygen species (ROS). ROS include superoxide anions (O(2)(-)) and hydrogen peroxide (H(2)O(2)). Over the last decade, the ROS-generating NADPH oxidases (NOXs) have been recognized as one of the main sources of ROS production in numerous human cell types. In addition to regulating normal physiological redox-dependent processes, the NOXs are involved in cellular oxidative stress. In contrast to the other NOXs, the NADPH oxidase NOX4 exists in the immediate environment of the nucleus. There is accumulating evidence for the involvement of NOX4-derived ROS in genomic instability as well as in cancer and other inflammation-related diseases. We recently showed that NOX4 plays a critical role in oncogenic Ras-induced DNA damage. Here we reflect upon the growing awareness of NOX4, review its role in inducing genomic instability, and call attention to its possible role in nuclear redox-sensitive mechanisms underlying DNA-damage signaling and repair.  相似文献   

4.
Oxidative stress is a major common hallmark of many neurodegenerative disease such as Alzheimer’s disease (AD), Parkinson’s disease (PD), amyotrophic lateral sclerosis (ALS), and stroke. Novel concepts in our understanding of oxidative stress indicate that a perturbed redox circuitry could be strongly linked with the onset of such diseases. In this respect, glutathione and thioredoxin dependent antioxidant enzymes play a central role as key regulators due to the fact that a slight dysfunction of any of these enzymes leads to sustained reactive oxygen species (ROS) production. Apart from their classical role as ROS scavengers, some of these enzymes are also able to control post-translational modifications. Therefore, efficient control of ROS production and reversibility of post-translational modifications are critical as improper control of such events may lead to the activation of pathological redox circuits that eventually culminate in neuronal cell death. To dissect the apparently opposing functions of ROS in cell physiology and pathophysiology, a proper working toolkit is mandatory. In vivo modeling is an absolute requirement due to the complexity of redox signaling systems that often contradict data obtained from in vitro approaches. Hence, inducible/conditional knockout mouse models for key redox enzymes are emerging as powerful tools to perturb redox circuitries in a temporal and spatial manner. In this review we address the basics of ROS generation, chemistry and detoxification as well as examples in where applications of mouse models of important enzymes have been successfully applied in the study of neurodegenerative processes. We also highlight the importance of new models to overcome present technical limitations in order to advance in the study of redox processes in the role of neurodegeneration.  相似文献   

5.
Experimental evidence suggests that reactive oxygen species (ROS) could participate in the regulation of some physiological conditions. In the nervous system, ROS have been suggested to act as signaling molecules involved in several developmental processes including cell differentiation, proliferation and programmed of cell death. Although ROS can be generated by several sources, it has been suggested that NADPH oxidase (NOX) could be critical in the production of ROS acting as a signal in some of these events. It has been reported that ROS production by NOX enzymes participate in neuronal maturation and differentiation during brain development. In the present study, we found that during rat cerebellar development there was a differential ROS generation at different ages and areas of the cerebellum. We also found a differential expression of NOX homologues during rat cerebellar development. When we treated developing rats with an antioxidant or with apocynin, an inhibitor of NOX, we found a marked decrease of the ROS levels in all the cerebellar layers at all the ages tested. Both treatments also induced a significant change in the cerebellar foliation as well as an alteration in motor behavior. These results suggest that both ROS and NOX have a critical role during cerebellar development.  相似文献   

6.
Increasing evidence suggests that proteins exhibiting “prion-like” behavior cause distinct neurodegenerative diseases, including inherited, sporadic and acquired types. The conversion of cellular prion protein (PrPC) to its infectious protease resistant counterpart (PrPRes) is the essential feature of prion diseases. However, PrPC also performs important functions in transmembrane signaling, especially in neurodegenerative processes. Beta-amyloid (Aβ) synaptotoxicity and cognitive dysfunction in mouse models of Alzheimer disease are mediated by a PrPC-dependent pathway. Here we review how this pathway converges with proinflammatory cytokine signaling to activate membrane NADPH oxidase (NOX) and generate reactive oxygen species (ROS) leading to dynamic remodeling of the actin cytoskeleton. The NOX signaling pathway may also be integrated with those of other transmembrane receptors clustered in PrPC-enriched membrane domains. Such a signal convergence along the PrPC-NOX axis could explain the relevance of PrPC in a broad spectrum of neurodegenerative disorders, including neuroinflammatory-mediated alterations in synaptic function following traumatic brain injury. PrPC overexpression alone activates NOX and generates a local increase in ROS that initiates cofilin activation and formation of cofilin-saturated actin bundles (rods). Rods sequester cofilin from synaptic regions where it is required for plasticity associated with learning and memory. Rods can also interrupt vesicular transport by occluding the neurite within which they form. Through either or both mechanisms, rods may directly mediate the synaptic dysfunction that accompanies various neurodegenerative disorders.  相似文献   

7.
Neurodegenerative diseases share various pathological features, such as accumulation of aberrant protein aggregates, microglial activation, and mitochondrial dysfunction. These pathological processes are associated with generation of reactive oxygen species (ROS), which cause oxidative stress and subsequent damage to essential molecules, such as lipids, proteins, and DNA. Hence, enhanced ROS production and oxidative injury play a cardinal role in the onset and progression of neurodegenerative disorders. To maintain a proper redox balance, the central nervous system is endowed with an antioxidant defense mechanism consisting of endogenous antioxidant enzymes. Expression of most antioxidant enzymes is tightly controlled by the antioxidant response element (ARE) and is activated by nuclear factor E2-related factor 2 (Nrf2). In past years reports have highlighted the protective effects of Nrf2 activation in reducing oxidative stress in both in vitro and in vivo models of neurodegenerative disorders. Here we provide an overview of the involvement of ROS-induced oxidative damage in Alzheimer's disease, Parkinson's disease, and Huntington's disease and we discuss the potential therapeutic effects of antioxidant enzymes and compounds that activate the Nrf2-ARE pathway.  相似文献   

8.
Fibrosis describes a dysregulated tissue remodelling response to persistent cellular injury and is the final pathological consequence of many chronic diseases that affect the liver, kidney and lung. Nicotinamide adenine dinucleotide phosphate (NADPH)-oxidase (NOX) enzymes produce reactive oxygen species (ROS) as their primary function. ROS derived from NOX1 and NOX4 are key mediators of liver, kidney and lung fibrosis. Setanaxib (GKT137831) is a first-in-class, dual inhibitor of NOX1/4 and is the first NOX inhibitor to progress to clinical trial investigation. The anti-fibrotic effects of setanaxib in liver, kidney and lung fibrosis are supported by multiple lines of pre-clinical evidence. However, despite advances in our understanding, the precise roles of NOX1/4 in fibrosis require further investigation. Additionally, there is a translational gap between the pre-clinical observations of setanaxib to date and the applicability of these to human patients within a clinical setting. This narrative review critically examines the role of NOX1/4 in liver, kidney and lung fibrosis, alongside the available evidence investigating setanaxib as a therapeutic agent in pre-clinical models of disease. We discuss the potential clinical translatability of this pre-clinical evidence, which provides rationale to explore NOX1/4 inhibition by setanaxib across various fibrotic pathologies in clinical trials involving human patients.  相似文献   

9.
Summary. The pathogenesis of several neurodegenerative diseases, including Alzheimer’s disease, has been linked to a condition of oxidative and nitrosative stress, arising from the imbalance between increased reactive oxygen species (ROS) and reactive nitrogen species (RNS) production and antioxidant defences or efficiency of repair or removal systems. The effects of free radicals are expressed by the accumulation of oxidative damage to biomolecules: nucleic acids, lipids and proteins. In this review we focused our attention on the large body of evidence of oxidative damage to protein in Alzheimer’s disease brain and peripheral cells as well as in their role in signalling pathways. The progress in the understanding of the molecular alterations underlying Alzheimer’s disease will be useful in developing successful preventive and therapeutic strategies, since available drugs can only temporarily stabilize the disease, but are not able to block the neurodegenerative process.  相似文献   

10.
NADPH oxidases have been identified as sources of reactive oxygen species (ROS) in vascular cells. In addition to the initially described enzyme containing gp91phox (NOX2), several homologues to NOX2 have been identified. Whereas NOX1, NOX2, and NOX4 are expressed in endothelial cells, a functional role of NOX5 containing additional N-terminal calcium-binding domains of varying sequences has not been reported in these cells. NOX5 protein was found in the endoplasmic reticulum of human microvascular endothelial cells (HMEC-1) and in the vascular wall. HMEC-1 cells expressed NOX5beta and NOX5delta as well as a variant lacking calcium-binding domains (NOX5S). NOX5beta and NOX5S increased basal ROS levels. Ionomycin exclusively enhanced NOX5beta-mediated ROS production. Although p22phox, when overexpressed, interacted with both NOX5 proteins, it was not essential for NOX5-mediated ROS production. NOX5 proteins stimulated endothelial cell proliferation and the formation of capillary-like structures whereas depletion of NOX5 by siRNA prevented these responses to thrombin. These data show that endothelial cells express different NOX5 variants including NOX5S lacking calcium-binding domains. NOX5 proteins are functional, promoting endothelial ROS production, proliferation, and the formation of capillary-like structures and contribute to the endothelial response to thrombin. These findings suggest that NOX5 variants play a novel role in controlling ROS-dependent processes in the vasculature.  相似文献   

11.
Reactive oxygen species (ROS) have been regarded as inevitable harmful by-products of aerobic metabolism. Growing evidence, however, suggests that ROS play important physiological roles. This raises questions about the pathways that different groups of organisms use to produce and sense ROS. In microbial eukaryotes, recent data show (i) increased ROS levels during cell differentiation, (ii) the existence of ROS-producing enzymes, such as NADPH oxidases (NOX), (iii) the involvement of NOX in developmental processes, and (iv) a conservation in the signal-transduction mechanisms used to detect ROS. This shows that manipulation of reactive species, as strategy to regulate cell differentiation, is ubiquitous in eukaryotes and suggests that such strategy was selected early in evolution.  相似文献   

12.
Dysfunctional mitochondria are thought to play a cardinal role in the pathogenesis of various neurological disorders, such as multiple sclerosis, Alzheimer’s disease, Parkinson’s disease and stroke. In addition, neuroinflammation is a common denominator of these diseases. Both mitochondrial dysfunction and neuroinflammatory processes lead to increased production of reactive oxygen species (ROS) which are detrimental to neurons. Therefore, neuroinflammation is increasingly recognized to contribute to processes underlying neurodegeneration. Here we describe the involvement of mitochondrial (dys)function in various neurological disorders and discuss the putative link between mitochondrial function and neuroinflammation.  相似文献   

13.
Clinical evidence suggests that type 2 diabetes therapy can greatly benefit from the suppression of reactive oxygen species generation and the activation or restoration of cellular antioxidant mechanisms. In human, NADPH oxidase (NOX) is the main producer of reactive oxygen species (ROS) that supress the activity of endogenous antioxidant enzymes. In the present study, the antioxidant potential of Gedunin was studied. In silico findings reveal its strong binding affinity with NOX5 C terminal HSP90 binding site that disrupts NOX5 stability and its ability to generate ROS, leading to restoration antioxidant enzymes activities. It was found that Gedunin suppressed hyperglycaemia induced oxidative stress in an in vitro RBC model and markedly reversed glucose induced changes including haemoglobin glycosylation and lipid peroxidation. A significant restoration of activities of cellular antioxidant enzymes; superoxide dismutase, catalase and glutathione peroxidase in the presence of Gedunin revealed its ability to reduce oxidative stress. These results substantiated Gedunin as a bona fide inhibitor of human NOX5 and a ROS scavenging antioxidant with promising therapeutic attributes including its natural origin and inhibition of multiple diabetic targets.  相似文献   

14.
NOX5 in human spermatozoa: expression, function, and regulation   总被引:1,自引:0,他引:1  
Physiological and pathological processes in spermatozoa involve the production of reactive oxygen species (ROS), but the identity of the ROS-producing enzyme system(s) remains a matter of speculation. We provide the first evidence that NOX5 NADPH oxidase is expressed and functions in human spermatozoa. Immunofluorescence microscopy detected NOX5 protein in both the flagella/neck region and the acrosome. Functionally, spermatozoa exposed to calcium ionophore, phorbol ester, or H(2)O(2) exhibited superoxide anion production, which was blocked by addition of superoxide dismutase, a Ca(2+) chelator, or inhibitors of either flavoprotein oxidases (diphenylene iododonium) or NOX enzymes (GKT136901). Consistent with our previous overexpression studies, we found that H(2)O(2)-induced superoxide production by primary sperm cells was mediated by the non-receptor tyrosine kinase c-Abl. Moreover, the H(V)1 proton channel, which was recently implicated in spermatozoa motility, was required for optimal superoxide production by spermatozoa. Immunoprecipitation experiments suggested an interaction among NOX5, c-Abl, and H(V)1. H(2)O(2) treatment increased the proportion of motile sperm in a NOX5-dependent manner. Statistical analyses showed a pH-dependent correlation between superoxide production and enhanced sperm motility. Collectively, our findings show that NOX5 is a major source of ROS in human spermatozoa and indicate a role for NOX5-dependent ROS generation in human spermatozoa motility.  相似文献   

15.
Reactive oxygen species (ROS) produced upon collagen stimulation are implicated in propagating various platelet-activating pathways. Among ROS-producing enzymes, NADPH oxidase (NOX) is largely responsible for collagen receptor-dependent ROS production. Therefore, NOX has been proposed as a novel target for the development of antiplatelet agent. We here investigate whether resveratrol inhibits collagen-induced NOX activation and further examine the effects of resveratrol on ROS-dependent signaling pathways in collagen-stimulated platelets. Collagen-induced superoxide anion production in platelets was inhibited by resveratrol. Resveratrol suppressed collagen-induced phosphorylation of p47phox, a major regulatory subunit of NOX. Correlated with the inhibitory effects on NOX, resveratrol protected SH2 domain-containing protein tyrosine phosphatase-2 (SHP-2) from ROS-mediated inactivation and subsequently attenuated the specific tyrosine phosphorylation of key components (spleen tyrosine kinase, Vav1, Bruton’s tyrosine kinase, and phospholipase Cγ2) for collagen receptor signaling cascades. Resveratrol also inhibited downstream responses such as cytosolic calcium elevation, P-selectin surface exposure, and integrin-αIIbβ3 activation. Furthermore, resveratrol inhibited platelet aggregation and adhesion in response to collagen. The antiplatelet effects of resveratrol through the inhibition of NOX-derived ROS production and subsequent oxidative inactivation of SHP-2 suggest that resveratrol is a potential compound for prevention and treatment of thrombovascular diseases.  相似文献   

16.
γ-Glutamyltransferase (GGT) plays a significant role in antioxidant defence and participates in the metabolism of glutathione (GSH). The enzyme is up-regulated after acute oxidative stress and during pro-oxidant periods, but the underlying regulatory mechanisms are not well known. The present investigation studied whether the endogenous reactive oxygen species (ROS) level was a determinant for GGT expression. A substantial amount of ROS is produced through the NADPH oxidase (NOX) system and knockdown of p22phox, a sub-unit of NOX1-4, resulted not only in reduced ROS levels but also in reduced GGT expression in human endometrial carcinoma cells. Phorbol-12-myristate-13-acetate (PMA) is an activator of NOX and it was found that PMA treatment of human colon carcinoma cells both increased cellular ROS levels and subsequently up-regulated GGT expression. On the other hand, the NOX inhibitor apocynin reduced ROS levels as well as GGT expression. The GGT mRNA sub-type A was increased after PMA-induced NOX activation. These results demonstrate that ROS generated from NOX enzymes are a significant determinant for GGT expression and activity.  相似文献   

17.
《Free radical research》2013,47(5):600-610
Abstract

γ-Glutamyltransferase (GGT) plays a significant role in antioxidant defence and participates in the metabolism of glutathione (GSH). The enzyme is up-regulated after acute oxidative stress and during pro-oxidant periods, but the underlying regulatory mechanisms are not well known. The present investigation studied whether the endogenous reactive oxygen species (ROS) level was a determinant for GGT expression. A substantial amount of ROS is produced through the NADPH oxidase (NOX) system and knockdown of p22phox, a sub-unit of NOX1-4, resulted not only in reduced ROS levels but also in reduced GGT expression in human endometrial carcinoma cells. Phorbol-12-myristate-13-acetate (PMA) is an activator of NOX and it was found that PMA treatment of human colon carcinoma cells both increased cellular ROS levels and subsequently up-regulated GGT expression. On the other hand, the NOX inhibitor apocynin reduced ROS levels as well as GGT expression. The GGT mRNA sub-type A was increased after PMA-induced NOX activation. These results demonstrate that ROS generated from NOX enzymes are a significant determinant for GGT expression and activity.  相似文献   

18.
Chronic airway diseases such as asthma are linked to oxidative environmental factors and are associated with increased production of reactive oxygen species (ROS). Therefore, it is commonly assumed that oxidative stress is an important contributing factor to asthma disease pathogenesis and that antioxidant strategies may be useful in the treatment of asthma. A primary source of ROS production in biological systems is NADPH oxidase (NOX), originally associated primarily with inflammatory cells but currently widely appreciated as an important enzyme system in many cell types, with a wide array of functional properties ranging from antimicrobial host defense to immune regulation and cell proliferation, differentiation and apoptosis. Given the complex nature of asthma disease pathology, involving many lung cell types that all express NOX homologs, it is not surprising that the contributions of NOX-derived ROS to various aspects of asthma development and progression are highly diverse and multifactorial. It is the purpose of the present review to summarize the current knowledge with respect to the functional aspects of NOX enzymes in various pulmonary cell types, and to discuss their potential importance in asthma pathogenesis. This article is part of a Special Issue entitled: Biochemistry of Asthma.  相似文献   

19.
Reactive oxygen species (ROS) are important mediators of cell growth, adhesion, differentiation, migration, senescence, and apoptosis. ROS play an important physiological role in regulating vascular tone and can also contribute to pathological mechanisms related to endothelial dysfunction, vascular reactivity, arterial remodeling, and vascular inflammation. The major source of ROS generated in the cardiovascular system is the NADPH oxidase (NOX) family of enzymes, of which seven members have been characterized. Although each NOX family member is typified by six transmembrane domains along with a cytoplasmic domain that binds NADPH and FAD, each isoform is distinguished by the specific catalytic subunit, interacting proteins, and subcellular localization. We review the current understanding of NOX signaling and regulatory mechanisms related to vascular health and disease.  相似文献   

20.
Cell cycle regulation is performed by cyclins and cyclin dependent kinases (CDKs). Recently, it has become clear that reactive oxygen species (ROS) influence the presence and activity of these enzymes and thereby control cell cycle progression. In this review, we first describe the discovery of enzymes specialized in ROS production: the NADPH oxidase (NOX) complexes. This discovery led to the recognition of ROS as essential players in many cellular processes, including cell cycle progression. ROS influence cell cycle progression in a context-dependent manner via phosphorylation and ubiquitination of CDKs and cell cycle regulatory molecules. We show that ROS often regulate ubiquitination via intermediate phosphorylation and that phosphorylation is thus the major regulatory mechanism influenced by ROS. In addition, ROS have recently been shown to be able to activate growth factor receptors. We will illustrate the diverse roles of ROS as mediators in cell cycle regulation by incorporating phosphorylation, ubiquitination and receptor activation in a model of cell cycle regulation involving EGF-receptor activation. We conclude that ROS can no longer be ignored when studying cell cycle progression.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号