首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Activation of liver pyruvate kinase by fructose 1,6-diphosphate.   总被引:2,自引:0,他引:2  
  相似文献   

2.
The ability for various ligands to modulate the binding of fructose 1,6-bisphosphate (Fru-1,6-P2) with purified rat liver pyruvate kinase was examined. Binding of Fru-1,6-P2 with pyruvate kinase exhibits positive cooperativity, with maximum binding of 4 mol Fru-1,6-P2 per enzyme tetramer. The Hill coefficient (nH), and the concentration of Fru-1,6-P2 giving half-maximal binding [FBP]1/2, are influenced by several factors. In 150 mM Tris-HCl, 70 mM KCl, 11 mM MgSO4 at pH 7.4, [FBP]1/2 is 2.6 microM and nH is 2.7. Phosphoenolpyruvate and pyruvate enhance the binding of Fru-1,6-P2 by decreasing [FBP]1/2. ADP and ATP alone had little influence on Fru-1,6-P2 binding. However, the nucleotides antagonize the response elicited by pyruvate or phosphoenolpyruvate, suggesting that the competent enzyme substrate complex does not favor Fru-1,6-P2 binding. Phosphorylation of pyruvate kinase or the inclusion of alanine in the medium, two actions which inhibit the enzyme activity, result in diminished binding of low concentrations of Fru-1,6-P2 with the enzyme. These effectors do not alter the maximum binding capacity of the enzyme but rather they raise the concentrations of Fru-1,6-P2 needed for maximum binding. Phosphorylation also decreased the nH for Fru-1,6-P2 binding from 2.7 to 1.7. Pyruvate kinase activity is dependent on a divalent metal ion. Substituting Mn2+ for Mg2+ results in a 60% decrease in the maximum catalytic activity for the enzyme and decreases the concentration of phosphoenolpyruvate needed for half-maximal activity from 1 to 0.1 mM. As a consequence, Mn2+ stimulates activity at subsaturating concentrations of phosphoenolpyruvate, but inhibits at saturating concentrations of the substrate or in the presence of Fru-1,6-P2. Both Mg2+ and Mn2+ diminish binding of low concentrations of Fru-1,6-P2; however, the concentrations of the metal ions needed to influence Fru-1,6-P2 binding exceed those needed to support catalytic activity.  相似文献   

3.
1. Fructose 1,6-bisphosphatase was assayed in crude extracts of physiologically important organs and tissues in the ostrich. 2. Highest activity was found in liver and lowest in brain tissue. 3. No activity was detected in the heart, gizzard or adrenals. 4. The enzyme was purified in homogeneous, apparently undegraded form from liver utilizing Blue dextran-Sepharose affinity chromatography. 5. The enzyme is similar to mammalian fructose 1,6-bisphosphatase in many respects including its indispensability of Mg2+ for catalytic activity. 6. Relative molecular weight of the native enzyme and its subunit is about 150,000 and 35,000 respectively. 7. The amino acid composition of ostrich liver fructose 1,6-bisphosphatase is distinctly different from that of the chicken muscle enzyme, but compares favourably with the composition of the rabbit liver enzyme. 8. The purified enzyme is devoid of tryptophan.  相似文献   

4.
Fructose-1,6-bisphosphatase from rat liver was phosphorylated with cyclic AMP-dependent protein kinase and [gamma-32P]ATP. Brief exposure of the 32P-labeled enzyme to trypsin removed all radioactivity from the enzyme core and produced a single-labeled peptide. The partial sequence of the 17-amino acid peptide was found to be Ser-Arg-Pro-Ser(P)-Leu-Pro-Leu-Pro-(Ser2, Glx2, Pro2, Leu, Arg2). The kinetics of cyclic AMP-dependent protein kinase-catalyzed phosphorylation of native fructose bisphosphatase were compared with those of rat liver type L pyruvate kinase where the sequence around the phosphoserine is known (Arg-Arg-Ala-Ser(P)-Val; Hjelmquist, G., Anderson, J., Edlund, B., and Engstrom, L. (1974) Biochem. Biophys. Res. Commun. 61, 559-563). The Km for pyruvate kinase (17 microM) was less than that for fructose bisphosphatase (58 microM); the Vmax was about 3-fold greater with pyruvate kinase as substrate. The relationship between the rates of phosphorylation of these native substrates and the amino acid sequences surrounding the phosphorylated sites is discussed.  相似文献   

5.
A simple procedure has been developed for the purification of mouse liver and kidney fructose-1,6-bisphosphatase. In addition to the conventional method, including substrate elution from phosphocellulose, Blue Sepharose column chromatography made the purification procedure highly reproducible. The enzyme from rabbit liver was also purified by this method with a small modification. The isolated preparation was electrophoretically homogeneous. The mouse liver enzyme was identical with the kidney enzyme, and different from the rabbit liver enzyme electrophoretically. The structural properties and the amino acid composition were similar to those of this enzyme from other mammalian livers; the molecular weight was 143,000, subunit size was 37,500, S20, w was 7.0, and partial specific volume was 0.74. Cysteine and methionine residues amounted to 5-6 mol per subunit. Tryptophan was not detected. The Km value for fructose-1,6-bisphosphate was 1.3 microM. The Ki value for AMP was 19 microM. EDTA strongly activated the activity of the mouse liver enzyme at neutral pH. A partial proteolytic digestion of the mouse liver enzyme decreased the activity at neutral pH, and increased it at alkaline pH.  相似文献   

6.
Human ceruloplasmin, which is usually cleaved by limited proteolysis into three major fragments during preparation (Mr ? 18,650, 50,000, and 70,000) was isolated in good yield as an undegraded single-chain protein (Mr ? 135,00). The cryosupernatant from fresh frozen plasma (100 liters) was fractionated with polyethylene glycol (PEG 4000) at + 5°C yielding a ceruloplasmin-enriched fraction in the 20% PEG supernatant. Three steps of chromatography on DEAE-Sephacel, hydroxyapatite, and Sephadex G-200 produced a homogeneous protein with maximal enzymatic activity and the A610A280 ratio of 0.046 corresponding to 98–100% purity. Two forms of ceruloplasmin having this absorbance ratio were obtained; Form I was predominant and was studied further. The procedure separated both forms from apoceruloplasmin and degraded ceruloplasmin. The single-chain ceruloplasmin (Form I) had an NH2-terminal sequence of Lys-Glu-Lys-His-Tyr-Tyr-Ile-, the same as for the 70,000 fragment, and is suitable for structural study by sequence analysis and physicochemical methods.  相似文献   

7.
8.
Treatment of rat liver-type pyruvate kinase with rabbit liver cathepsin B at pH 7.0 caused loss of activity in the standard assay with 0.6 mM of phosphoenolpyruvate. The modified enzyme exhibited about 10% of the original activity when assayed with 2.0 mM of the substrate. No detectable change in the subunit molecular weight of the enzyme occurred during inactivation. On addition of 4 microM fructose 1,6-bisphosphate the activity of the treated enzyme was restored to that of the original enzyme. Limited proteolysis of the enzyme by cathepsin B appears to enhance the requirement for the positive effector, fructose 1,6-bisphosphate.  相似文献   

9.
Increased alanine aminotransferase (ALT) activity is associated with insulin resistance and the development of type 2 diabetes. The aim of this study was to characterize the modulation of cytosolic ALT expression in liver of gilthead sea bream (Sparus aurata) under conditions associated with increased gluconeogenesis and in streptozotocin (STZ)-treated fish. RT- and RACE-PCR assays allowed us to isolate a novel ALT isozyme (cALT2) generated from alternative splicing of cALT gene in S. aurata. HEK293 cells transfected with constructs expressing cALT2 as a C-terminal fusion with the enhanced green fluorescent protein allowed us to demonstrate that cALT2 is cytosolic. To unravel the molecular functions of cALT1 and cALT2 in liver of S. aurata, we examined tissue distribution, kinetic characterization of piscine cALT isozymes expressed in Saccharomyces cerevisiae, and regulation of hepatic cALT1 and cALT2 expression in various metabolic conditions. Kinetic analysis indicates that cALT2 is more efficient in catalysing the conversion of l-alanine to pyruvate than cALT1. Starvation increased cALT2 expression and decreased cALT1 mRNA in liver. Opposite effects were found in regularly fed fish at postprandial time 4–8 h, and 6 h after treatment with glucose or insulin. From these results we conclude that increased cALT2 expression occurred in liver under gluconeogenic conditions, while cALT1 was predominant during postprandial utilization of dietary nutrients. Since up-regulation of hepatic cALT2 expression occurred in STZ-induced diabetic S. aurata, increased hepatic cALT2 expression may be a promising marker in the prognosis of diabetes.  相似文献   

10.
11.
Purified liver fructose 1,6-bisphosphatase exhibits different forms upon isoelectric focusing. The enzyme focused at pH 5.75, 5.60, and 5.44. Treatment of the enzyme preparation with the catalytic subunit of cAMP-dependent protein kinase and ATP altered the isoelectric focusing profile such that the bands at 5.75 and 5.60 were diminished, the band at 5.44 increased, and two new bands appeared at 5.30, and 5.18. Fructose 1,6-bisphosphatase may be present in rat liver in different forms, one of which is phosphorylated as the enzyme is isolated.  相似文献   

12.
Fructose 1,6-bisphosphatase (EC 3.1.3.11) has been purified 360-fold from turkey liver. The purified enzyme appears to be homogeneous by disc gel electrophoresis and has a pH profile indistinguishable from that of the enzyme in crude extracts. Mn2+ is significantly more effective than Mg2+ as the essential metal cofactor of this enzyme. The maximal effect of histidine is equivalent to that of EDTA except that EDTA is more efficient at lower concentrations. The histidine effect is decreased with an increase in pH or if substrate is first bound to the enzyme. The enzyme activity is activated equally by d- and l-forms of histidine. Enzyme affinity for the substrate decreases with an increase in pH. The inhibition by high substrate concentrations observed at pH 7.5 is markedly reduced in the absence of chelating activator or when Mg2 is replaced by Mn2+ as the metal cofactor. Turkeys liver fructose 1,6-bisphosphatase resembles the enzyme from mammalian sources in that the sensitivity to AMP inhibition is decreased with the increase in pH, temperature, and Mg2 concentration.  相似文献   

13.
1. Dietary excess histidine caused an increase in the total activity of fructose 1,6-bisphosphatase, and a decrease in 6-phosphofructokinase in the liver. 2. The hepatic concentrations of free histidine and lysine were higher in rats fed a histidine-excess diet. 3. The addition of histidine, lysine or arginine to the assay mixture for fructose 1,6-bisphosphatase resulted in a significant increase in its activity. The 6-phosphofructokinase activity in the liver was not enhanced by the addition of histidine to the assay mixture.  相似文献   

14.
Fructose 1,6-bisphosphatase activity in liver of rats fed a zinc deficient diet was decreased to 60% of that in zinc adequate controls. Activity in the zinc deprived rats was not restored to control values by in vitro addition of EDTA. When a physiological dose of zinc was tube fed to the depleted rats, activity increased approximately 150% within 0.5 hr of the dose, and by 1 hr plateaued to a level seen in zinc adequate controls. A significant transient decrease in activity occurred following an intraperitoneal zinc load. This is reversible by in vitro addition of EDTA. These results suggest that rat liver fructose 1,6-bisphosphatase activity is highly sensitive to zinc in vivo as has been demonstrated in vitro.  相似文献   

15.
A large number of nucleoside analogs have been found to inactivate S-adenosylhomocysteine (AdoHcy) hydrolase in a time-dependent irreversible manner. There are two classes of these irreversible inhibitors: (A) analogs that inactivate the enzyme in a pseudofirst-order process and are devoid of any side chain at the 5′-OH group; (B) analogs that inactivate the enzyme in a time-dependent but curvilinear process, and generally have a side chain at the 5′ position. Among the more potent irreversible inhibitors are 2-chloroadenosine, 9-β-d-arabinofuranosyladenine (Ara-A), and (±)aristeromycin. Release of adenine base from adenosine or Ara-A in the presence of AdoHcy hydrolase was observed, thus supporting the proposed catalytic mechanism of AdoHcy hydrolase, that entails the transient formation of 3′-ketoadenosine during enzymatic catalysis of either the formation or hydrolysis of AdoHcy. Both Ara-A and adenosine may exert their irreversible inactivation by a suicide mechanism, but nucleosides such as 5′-iodo-5′-deoxyadenosine and 3′-deoxyadenosine are probably strictly irreversible inhibitors per se in view of the catalytic mechanism proposed for AdoHcy hydrolase. Labeling of AdoHcy hydrolase, perhaps covalent in nature, by radioactive Ara-A and adenosine was demonstrated by gel electrophoresis.  相似文献   

16.
17.
An improved procedure is described for the purification of fructose 1,6-bisphosphatase (FbPase) from chicken liver. The purified enzyme shows a single band in gel electrophoresis either in the presence or absence of sodium dodecyl sulfate. From 200 g of frozen liver, we have obtained about 29 mg of homogeneous enzyme, with the pH profile indistinguishable from that of the enzyme in crude extracts. The overall recovery of enzyme activity is about 71%. The FbPase protein was estimated to represent approximately 0.36% of the total soluble protein of crude liver extract. Treatment of purified enzyme with papain or subtilisin results in a rapid increase in activity at pH 9.2 and a gradual decrease at pH 7.5, while digestion with trypsin or chymotrypsin results in a concomitant decrease in activities at both pH 9.2 and 7.5. The rates of hydrolysis by these four proteases are all markedly decreased in the presence of AMP. Both AMP and fructose 1,6-bisphosphate increase the thermal stability of the enzyme, and their effects are additive. Attempts were made to investigate the structural requirements for histidine activation. The results suggest that activation by this amino acid involves not only the imidazole ring but also the α-amino and α-carboxyl groups.  相似文献   

18.
A peptide derived from the COOH-terminus of rabbit liver fructose 1,6-bisphosphatase (Fru-P2ase, EC 3.1.3.11) has been isolated and its amino acid sequence determined. The COOH-terminus is lysine, but some preparations contain COOH-terminal alanine or lysyl lysine. This region of the protein appears to be susceptible to modification by the action of an endogenous peptidyldipeptidase.  相似文献   

19.
Preparation of the L form of rabbit liver pyruvate kinase (EC 2.7.1.40) in the presence of fructose 1,6-diphosphate yielded an enzyme which was kinetically identical with the M or muscle-type form of pyruvate kinase found in liver. Chromatographic and dialysis studies of this complex showed that most of the fructose 1,6-diphosphate molecules were loosely bound to the enzyme, but dilution-dissociation studies and binding experiments established that there was a high initial affinity between the enzyme and fructose 1,6-diphosphate (K(assoc.)=2.3x10(9)), and that binding of the loosely bound fructose 1,6-diphosphate was concentration-dependent and a necessary condition to overcome the co-operative interaction observed with the homotropic effector phosphoenolpyruvate. Preparation of the liver enzyme in the absence of EDTA did not yield a predominantly M form of the enzyme, and incubation of the M form in the presence of EDTA did not convert it into the L form, but resulted in inhibition of enzyme activity. Immunological studies confirmed that the L and M forms in liver were distinct, and that preparation of the L form in the presence of fructose 1,6-diphosphate did not produce an enzyme antigenically different from the L form prepared in the absence of this heterotropic effector.  相似文献   

20.
Using a streptozotocin-induced type 1 diabetic rat model, we analyzed and separated the effects of hyperglycemia and hyperinsulinemia over the in vivo expression and subcellular localization of hepatic fructose 1,6-bisphosphatase (FBPase) in the multicellular context of the liver. Our data showed that FBPase subcellular localization was modulated by the nutritional state in normal but not in diabetic rats. By contrast, the liver zonation was not affected in any condition. In healthy starved rats, FBPase was localized in the cytoplasm of hepatocytes, whereas in healthy re-fed rats it was concentrated in the nucleus and the cell periphery. Interestingly, despite the hyperglycemia, FBPase was unable to accumulate in the nucleus in hepatocytes from streptozotocin-induced diabetic rats, suggesting that insulin is a critical in vivo modulator. This idea was confirmed by exogenous insulin supplementation to diabetic rats, where insulin was able to induce the rapid accumulation of FBPase within the hepatocyte nucleus. Besides, hepatic FBPase was found phosphorylated only in the cytoplasm, suggesting that the phosphorylation state is involved in the nuclear translocation. In conclusion, insulin and not hyperglycemia plays a crucial role in the nuclear accumulation of FBPase in vivo and may be an important regulatory mechanism that could account for the increased endogenous glucose production of liver of diabetic rodents.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号