首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Objective: The objective was to study the relationships between ultrasound estimated visceral fat and metabolic risk factors during early pregnancy. Research Methods and Procedures: Thirty consecutive healthy pregnant women at 11 to 14 weeks of gestation were studied. Maximum subcutaneous fat thickness (SFT) and visceral fat thickness (VFT) were successfully measured by ultrasound. Fasting plasma glucose, insulin, triglycerides, total cholesterol, high‐density lipoprotein cholesterol (HDL‐C), and blood pressure were measured. Insulin resistance was calculated by using the homeostasis model assessment (HOMA). Results: VFT significantly correlated with diastolic blood pressure (r = 0.37, p = 0.04), glycemia (r = 0.37, p = 0.04), insulinemia (r = 0.59, p = 0.001) insulin sensitivity (HOMA; r = 0.59, p = 0.001), triglycerides (r = 0.58, p = 0.03), HDL‐C (r = ?0.39, p = 0.03), and total cholesterol/HDL‐C ratio (p = 0.002), whereas SFT was significantly correlated with only diastolic blood pressure (p = 0.03). VFT better significantly correlated with the metabolic risk factors than pre‐gestational BMI [r = 0.39, p = 0.03 for insulinemia, r = 0.42, p = 0.02 for insulin sensitivity (HOMA), and r = 0.49, p = 0.01 for triglycerides and not significant for the rest]. Discussion: Visceral fat thickness can be easily measured by ultrasound at early pregnancy and correlates better than BMI with metabolic risk factors.  相似文献   

2.
Ames dwarf (Prop1df, df/df) mice are characterized by growth hormone (GH), prolactin, and thyrotropin deficiency, remarkable extension of longevity and increased insulin sensitivity with low levels of fasting insulin and glucose. Plasma levels of anti‐inflammatory adiponectin are increased in df/df mice, while pro‐inflammatory IL‐6 is decreased in plasma and epididymal fat. This represents an important shift in the balance between pro‐ and anti‐inflammatory adipokines in adipose tissue, which was not exposed to GH signals during development or adult life. To determine the role of adipose tissue in the control of insulin signaling in these long‐living mutants, we examined the effects of surgical removal of visceral (epididymal and perinephric) adipose tissue. Comparison of the results obtained in df/df mice and their normal (N) siblings indicated different effects of visceral fat removal (VFR) on insulin sensitivity and glucose tolerance. The analysis of the expression of genes related to insulin signaling indicated that VFR improved insulin action in skeletal muscle in N mice. Interestingly, this surgical intervention did not improve insulin signaling in df/df mice skeletal muscle but caused suppression of the signal in subcutaneous fat. We conclude that altered profile of adipokines secreted by visceral fat of Ames dwarf mice may act as a key contributor to increased insulin sensitivity and extended longevity of these animals.  相似文献   

3.
It is well established that the metabolic risk factors of obesity and its comorbidities are more attributed to adipose tissue distribution rather than total adipose mass. Since emerging evidence suggests that epigenetic regulation plays an important role in the aetiology of obesity, we conducted a genome-wide methylation analysis on eight different adipose depots of three pig breeds living within comparable environments but displaying distinct fat level using methylated DNA immunoprecipitation sequencing. We aimed to investigate the systematic association between anatomical location-specific DNA methylation status of different adipose depots and obesity-related phenotypes. We show here that compared to subcutaneous adipose tissues which primarily modulate metabolic indicators, visceral adipose tissues and intermuscular adipose tissue, which are the metabolic risk factors of obesity, are primarily associated with impaired inflammatory and immune responses. This study presents epigenetic evidence for functionally relevant methylation differences between different adipose depots.  相似文献   

4.
Epicardial adipose tissue (EAT) has been implicated in the development of heart disease. Nonetheless, the crosstalk between factors secreted from EAT and cardiomyocytes has not been studied. Here, we examined the effect of factors secreted from EAT on contractile function and insulin signalling in primary rat cardiomocytes. EAT and subcutaneous adipose tissue (SAT) were isolated from guinea pigs fed a high-fat (HFD) or standard diet. HFD feeding for 6 months induced glucose intolerance, and decreased fractional shortening and ejection fraction (all P < 0.05). Conditioned media (CM) generated from EAT and SAT explants were subjected to cytokine profiling using antibody arrays, or incubated with cardiomyocytes to assess the effects on insulin action and contractile function. Eleven factors were differentially secreted by EAT when compared to SAT. Furthermore, secretion of 30 factors by EAT was affected by HFD feeding. Most prominently, activin A-immunoreactivity was 6.4-fold higher in CM from HFD versus standard diet-fed animals and, 2-fold higher in EAT versus SAT. In cardiomyocytes, CM from EAT of HFD-fed animals increased SMAD2-phosphorylation, a marker for activin A-signalling, decreased sarcoplasmic-endoplasmic reticulum calcium ATPase 2a expression, and reduced insulin-mediated phosphorylation of Akt-Ser473 versus CM from SAT and standard diet-fed animals. Finally, CM from EAT of HFD-fed animals as compared to CM from the other groups markedly reduced sarcomere shortening and cytosolic Ca(2+) fluxes in cardiomyocytes. These data provide evidence for an interaction between factors secreted from EAT and cardiomyocyte function.  相似文献   

5.
SIDNEY, STEPHEN, CORA E. LEWIS, JAMES O. HILL, CHARLES P. QUESENBERRY, JR, ELIZABETH R. STAMM, ANN SCHERZINGER, KIMBERLY TOLAN, AND BRUCE ETTINGER. Association of total and central adiposity measures with fasting insulin in a biracial population of young adults with normal glucose tolerance: the CARDIA study. Obes Res. Objective: To determine the association of computed tomography (CT)-measured visceral adipose tissue (AT) and other measures of adiposity with fasting insulin in a biracial (African American and Caucasian) study population of young adults. Research Methods and Procedures: The study population consisted of 251 young adults with normal glucose tolerance (NGT), ages 28–40 years, who were volunteers from the Birmingham, Alabama, and Oakland, California centers of the Coronary Artery Risk Development in Young Adults (CARDIA) study. Results: In regression models with total adiposity measures (body mass index or dual-energy X-ray absorptiometry-measured percent fat), visceral AT (measured as a cross-sectional area in cm2) was generally a stronger predictor of insulin than overall adiposity in all race/gender groups (partial correlation coefficients ranging from 0. 31 to 0. 47) except for black men, in whom the associations were nonsignificant. Partial correlation coefficients between waist circumference and insulin, controlling for percent fat, were nearly identical to those between visceral AT and insulin in women and in white men. Analyses performed on 2060 NGT CARDIA subjects who were not in this study of visceral AT showed significant correlations of waist circumference with insulin in all racelgender groups, including black men, and that black men in the visceral AT study group were significantly leaner than other black male CARDIA subjects. Discussion: We conclude that visceral AT was associated with fasting insulin in NGT participants in three of the four race/gender groups (black men excepted) and that waist circumference was a good surrogate for visceral AT in examining associations of central adiposity with fasting insulin.  相似文献   

6.
Obesity is accompanied by adipocyte death and accumulation of macrophages and mast cells in expanding adipose tissues. Considering the differences in biological behavior of fat found in different anatomical locations, we explored the distribution of mast cells, solitary macrophages, and crown-like structures (CLS), the surrogates for dead adipocytes, in subcutaneous and abdominal visceral fat of lean and diet-induced obese C57BL/6 mice. In fat depots of lean mice, mast cells were far less prevalent than solitary macrophages. Subcutaneous fat contained more mast cells, but fewer solitary macrophages and CLS, than visceral fat. Whereas no significant change in mast cell density of subcutaneous fat was observed, obesity was accompanied by a substantial increase in mast cells in visceral fat. CLS became prevalent in visceral fat of obese mice, and the distribution paralleled mast cells. Adipose tissue mast cells contained and released preformed TNF-α, the cytokine implicated in the pathogenesis of obesity-linked insulin resistance. In summary, subcutaneous fat differed from visceral fat by immune cell composition and a lower prevalence of CLS both in lean and obese mice. The increase in mast cells in visceral fat of obese mice suggests their role in the pathogenesis of obesity and insulin resistance.  相似文献   

7.
《Cell metabolism》2022,34(9):1264-1279.e8
  1. Download : Download high-res image (174KB)
  2. Download : Download full-size image
  相似文献   

8.
Brown adipose tissue (BAT) consists of highly metabolically active adipocytes that catabolize nutrients to produce heat. Playing an active role in triacylglycerol (TAG) clearance, research has shown that dietary fatty acids can modulate the TAG chemistry deposition in BAT after weeks-long dietary intervention, similar to what has been shown in white adipose tissue (WAT). Our objective was to compare the influence of sustained, nonchronic dietary intervention (a 1-week interval) on WAT and interscapular BAT lipid metabolism and deposition in situ. We use quantitative, label-free chemical microscopy to show that 1 week of high fat diet (HFD) intervention results in dramatically larger lipid droplet (LD) growth in BAT (and liver) compared to LD growth in inguinal WAT (IWAT). Moreover, BAT showed lipid remodeling as increased unsaturated TAGs in LDs, resembling the dietary lipid composition, while WAT (and liver) did not show lipid remodeling on this time scale. Concurrently, expression of genes involved in lipid metabolism, particularly desaturases, was reduced in BAT and liver from HFD-fed mice after 1 week. Our data show that BAT lipid chemistry remodels exceptionally fast to dietary lipid intervention compared WAT, which further points towards a role in TAG clearance.  相似文献   

9.
目的:筛查在正常人、单纯性肥胖患者及肥胖伴2型糖尿病患者内脏脂肪组织中差异表达的基因。方法:利用自制的高密度cDNA芯片,比较正常人、单纯性肥胖患者及肥胖伴2型糖尿病患者内脏脂肪组织中差异表达的基因,以寻找脂肪组织特异的与肥胖及糖尿病发生有关的基因。结果:和正常人相比,在肥胖患者及肥胖伴2型糖尿病患者中上调的基因分别有119个和257个,下调的基因分别有46和58个。这些基因中有77个在两组中均上调,其中包括与代谢有关的基因,如丙酮酸脱氢酶激酶4(PDK4)以及窖蛋白、金属硫因蛋白等;8个基因在两组中均下调,其中包括脂肪合成途径中的关键酶,如3-羟基-3-甲基戊二酸单酰辅酶A(MGA)合成酶、脂肪酸合成酶及硬脂酰辅酶A脱氢酶。另外,酪氨酸-3单加氧酶-色氨酸-5单加氧酶活化蛋白θ(YWHAZ)仅在肥胖伴2型糖尿病患者中上调,而在单纯性肥胖患者中不变,该基因所编码的蛋白在胰岛素信号转导途径中起着负调控的作用。结论:脂肪组织中脂肪生成下降、脂肪酸氧化增加可能是肥胖及2型糖尿病中胰岛素抵抗发生的共同原因,其它基因功能的改变也可能参与了肥胖及2型糖尿病的发生,而胰岛素信号转导受阻可能是肥胖向糖尿病转化的促进因素。对这些基因的进一步研究将有助于更好地了解肥胖及糖尿病的发生机制。  相似文献   

10.
11.
Reduced dietary methionine intake (0.17% methionine, MR) and calorie restriction (CR) prolong lifespan in male Fischer 344 rats. Although the mechanisms are unclear, both regimens feature lower body weight and reductions in adiposity. Reduced fat deposition in CR is linked to preservation of insulin responsiveness in older animals. These studies examine the relationship between insulin responsiveness and visceral fat in MR and test whether, despite lower food intake observed in MR animals, decreased visceral fat accretion and preservation of insulin sensitivity is not secondary to CR. Accordingly, rats pair fed (pf) control diet (0.86% methinone, CF) to match the food intake of MR for 80 weeks exhibit insulin, glucose, and leptin levels similar to control-fed animals and comparable amounts of visceral fat. Conversely, MR rats show significantly reduced visceral fat compared to CF and PF with concomitant decreases in basal insulin, glucose, and leptin, and increased adiponectin and triiodothyronine. Daily energy expenditure in MR animals significantly exceeds that of both PF and CF. In a separate cohort, insulin responses of older MR animals as measured by oral glucose challenge are similar to young animals. Longitudinal assessments of MR and CF through 112 weeks of age reveal that MR prevents age-associated increases in serum lipids. By 16 weeks, MR animals show a 40% reduction in insulin-like growth factor-1 (IGF-1) that is sustained throughout life; CF IGF-1 levels decline much later, beginning at 112 weeks. Collectively, the results indicate that MR reduces visceral fat and preserves insulin activity in aging rats independent of energy restriction.  相似文献   

12.
Type 2 diabetes mellitus is the most common type of diabetes, and insulin resistance (IR) is its core pathological mechanism. Proteomics is an ingenious and promising Omics technology that can comprehensively describe the global protein expression profiling of body or specific tissue, and is widely applied to the study of molecular mechanisms of diseases. In this paper, we focused on insulin target organs: adipose tissue, liver, and skeletal muscle, and analyzed the different pathological processes of IR in these three tissues based on proteomics research. By literature studies, we proposed that the main pathological processes of IR among target organs were diverse, which showed unique characteristics and focuses. We further summarized the differential proteins in target organs which were verified to be related to IR, and discussed the proteins that may play key roles in the emphasized pathological processes, aiming at discovering potentially specific differential proteins of IR, and providing new ideas for pathological mechanism research of IR.  相似文献   

13.
14.
Caseinolytic peptidase P (ClpP) is a mammalian quality control protease that is proposed to play an important role in the initiation of the mitochondrial unfolded protein response (UPRmt), a retrograde signaling response that helps to maintain mitochondrial protein homeostasis. Mitochondrial dysfunction is associated with the development of metabolic disorders, and to understand the effect of a defective UPRmt on metabolism, ClpP knockout (ClpP?/?) mice were analyzed. ClpP?/? mice fed ad libitum have reduced adiposity and paradoxically improved insulin sensitivity. Absence of ClpP increased whole‐body energy expenditure and markers of mitochondrial biogenesis are selectively up‐regulated in the white adipose tissue (WAT) of ClpP?/? mice. When challenged with a metabolic stress such as high‐fat diet, despite similar caloric intake, ClpP?/? mice are protected from diet‐induced obesity, glucose intolerance, insulin resistance, and hepatic steatosis. Our results show that absence of ClpP triggers compensatory responses in mice and suggest that ClpP might be dispensable for mammalian UPRmt initiation. Thus, we made an unexpected finding that deficiency of ClpP in mice is metabolically beneficial.  相似文献   

15.
Objective: To investigate the effects of rosiglitazone (RSG) on insulin sensitivity and regional adiposity (including intrahepatic fat) in patients with type 2 diabetes. Research Methods and Procedures: We examined the effect of RSG (8 mg/day, 2 divided doses) compared with placebo on insulin sensitivity and body composition in 33 type 2 diabetic patients. Measurements of insulin sensitivity (euglycemic hyperinsulinemic clamp), body fat (abdominal magnetic resonance imaging and DXA), and liver fat (magnetic resonance spectroscopy) were taken at baseline and repeated after 16 weeks of treatment. Results: There was a significant improvement in glycemic control (glycosylated hemoglobin −0.7 ± 0.7%, p ≤ 0.05) and an 86% increase in insulin sensitivity in the RSG group (glucose-disposal rate change from baseline: 17.5 ± 14.5 μmol glucose/min/kg free fat mass, p < 0.05), but no significant change in the placebo group compared with baseline. Total body weight and fat mass increased (p ≤ 0.05) with RSG (2.1 ± 2.0 kg and 1.4 ± 1.6 kg, respectively) with 95% of the increase in adiposity occurring in nonabdominal regions. In the abdominal region, RSG increased subcutaneous fat area by 8% (25.0 ± 28.7 cm2, p = 0.02), did not alter intra-abdominal fat area, and reduced intrahepatic fat levels by 45% (−6.7 ± 9.7%, concentration relative to water). Discussion: Our data indicate that RSG greatly improves insulin sensitivity in patients with type 2 diabetes and is associated with an increase in adiposity in subcutaneous but not visceral body regions.  相似文献   

16.
Objective: To determine whether serum adiponectin is decreased in obesity and is restored toward normal level after treatment in children. Research Methods and Procedures: Subjects were 53 Japanese obese children, 33 boys and 20 girls (6 to 14 years old), and 30 age‐matched nonobese controls for measuring adiponectin (16 boys and 14 girls). Blood was drawn after an overnight fast, and the obese children were subjected to anthropometric measurements including waist and hip circumferences and skinfold thicknesses. Paired samples were obtained from 21 obese children who underwent psychoeducational therapy. Visceral adipose tissue area was measured by computed tomography. Adiponectin was assayed by an enzyme‐linked immunosorbent assay. Results: The serum levels of alanine aminotransferase, uric acid, triglyceride, total cholesterol, low‐density lipoprotein‐cholesterol, total cholesterol/high‐density lipoprotein‐cholesterol, apo B, apo B/apo A1, and insulin in obese children were higher than the reference values. Serum adiponectin level was lower in the obese children than in the controls (6.4 ± 0.6 vs. 10.2 ± 0.8 mg/L, means ± SEM, p < 0.001). In 21 obese children whose percent overweight declined during therapy, the adiponectin level increased (p = 0.002). The adiponectin level was correlated inversely with visceral adipose tissue area in obese children (r = ?0.531, p < 0.001). The inverse correlations of adiponectin with alanine aminotransferase, uric acid, and insulin were significant after being adjusted for percentage overweight, percentage body fat, or sex. Discussion: Serum adiponectin level is decreased in obese children depending on the accumulation of visceral fat and is restored toward normal level by slimming.  相似文献   

17.
Objective: Our goal was to test any association between human plasma circulating levels of monocyte chemoattractant protein‐1 (cMCP‐1) and insulin resistance and to compare monocyte chemoattractant protein‐1 (MCP‐1) adipose tissue gene expression and cMCP‐1 in relation with inflammatory markers. Research Methods and Procedures: cMCP‐1 was measured in n = 116 consecutive control male subjects to whom an insulin sensitivity (Si) test was performed. Circulating levels of soluble CD14, soluble tumor necrosis factor receptor type 2 (sTNFR2), soluble interleukin‐6 (sIL‐6), and adiponectin also were measured. Subcutaneous adipose tissue samples were obtained from n = 107 non‐diabetic and type 2 diabetic subjects with different degrees of obesity. Real‐time polymerase chain reaction was used to measure gene expression of MCP‐1, CD68, tumor necrosis factor‐α (TNF‐α), and its receptor TNFR2. Results: In the Si study, no independent effect of cMCP‐1 levels on insulin sensitivity was observed. In the expression study, in non‐diabetic subjects, MCP‐1 mRNA had a positive correlation with BMI (r = 0.407, p = 0.003), TNF‐α mRNA (r = 0.419, p = 0.002), and TNFR2 mRNA (r = 0.410, p = 0.003). In these subjects, cMCP‐1 was found to correlate with waist‐to‐hip ratio (r = 0.322, p = 0.048). In patients with type 2 diabetes, MCP‐1 mRNA was up‐regulated compared with non‐diabetic subjects. TNF‐α mRNA was found to independently contribute to MCP‐1 mRNA expression. In this group, CD68 mRNA was found to correlate with BMI (r = 0.455, p = 0.001). Discussion: cMCP‐1 is not associated with insulin sensitivity in apparently healthy men. TNF‐α is the inflammatory cytokine associated with MCP‐1 expression in subcutaneous adipose tissue.  相似文献   

18.
Excessive abdominal fat might be associated with more severe metabolic disorders in Holstein cows. Our hypothesis was that there are genetic differences between cows with low and high abdominal fat deposition and a normal cover of subcutaneous adipose tissue. The objective of this study was to assess the genetic basis for variation in visceral adiposity in US Holstein cows. The study included adult Holstein cows sampled from a slaughterhouse (Green Bay, WI, USA) during September 2016. Only animals with a body condition score between 2.75 and 3.25 were considered. The extent of omental fat at the level of the insertion of the lesser omentum over the pylorus area was assessed. A group of 100 Holstein cows with an omental fold <5 mm in thickness and minimum fat deposition throughout the entire omentum, and the second group of 100 cows with an omental fold ⩾20 mm in thickness and with a marked fat deposition observed throughout the entire omentum were sampled. A small piece of muscle from the neck was collected from each cow into a sterile container for DNA extraction. Samples were submitted to a commercial laboratory for interrogation of genome-wide genomic variation using the Illumina BovineHD Beadchip. Genome-Wide association analysis was performed to test potential associations between fat deposition and genomic variation. A univariate mixed linear model analysis was performed using genome-wide efficient mixed model association to identify single nucleotide polymorphisms (SNPs) significantly associated with variation in a visceral fat deposition. The chip heritability was 0.686 and the estimated additive genetic and residual variance components were 0.427 and 0.074, respectively. In total, 11 SNPs defining four quantitative trait locus (QTL) regions were found to be significantly associated with visceral fat deposition (P<0.00001). Among them, two of the QTL were detected with four and five significantly associated SNPs, respectively; whereas, the QTLs detected on BTA12 and BTA19 were each detected with only one significantly associated SNP. No enriched gene ontology terms were found within the gene networks harboring these genes when supplied to DAVID using either theBos taurus or human gene ontology databases. We conclude that excessive omental fat in Holstein cows with similar body condition scores is not caused by a single Mendelian locus and that the trait appears to be at least moderately heritable; consequently, selection to reduce excessive omental fat is potentially possible, but would require the generation of predicted transmitting abilities from larger and random samples of Holstein cattle.  相似文献   

19.
The effects of a high fat diet on the development of diabetes mellitus, insulin resistance and secretion have been widely investigated. We investigated the effects of a high fat diet on the pancreas and skeletal muscle of normal rats to explore diet-induced insulin resistance mechanisms. Forty-four male Wistar rats were divided into six groups: a control group fed standard chow, a group fed a 45% fat diet and a group fed a 60% fat diet for 3 weeks to measure acute effects; an additional three groups were fed the same diet regimens for 8 weeks to measure chronic effects. The morphological effects of the two high fat diets were examined by light microscopy. Insulin in pancreatic islets was detected using immunohistochemistry. The homeostasis model assessment of insulin resistance index and insulin staining intensity in islets increased significantly with acute administration of high fat diets, whereas staining intensity decreased with chronic administration of the 45% fat diet. Islet areas increased significantly with chronic administration. High fat diet administration led to islet degeneration, interlobular adipocyte accumulation and vacuolization in the pancreatic tissue, as well as degeneration and lipid droplet accumulation in the skeletal muscle tissue. Vacuolization in the pancreas and lipid droplets in skeletal muscle tissue increased significantly with chronic high fat diet administration. We suggest that the glucolipotoxic effects of high fat diet administration depend on the ratio of saturated to unsaturated fatty acid content in the diet and to the total fat content of the diet.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号