首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
The enzyme 3-phosphoglycerate mutase was purified 192-fold from Streptomyces coelicolor, and its N-terminal sequence was determined. The enzyme is tetrameric with a subunit Mr of 29,000. It is 2,3-bisphosphoglycerate dependent and inhibited by vanadate. The gene encoding the enzyme was cloned by using a synthetic oligonucleotide probe designed from the N-terminal peptide sequence, and the complete coding sequence was determined. The deduced amino acid sequence is 64% identical to that of the phosphoglycerate mutase of Saccharomyces cerevisiae and has substantial identity to those of other phosphoglycerate mutases.  相似文献   

2.
Phosphoglycerate mutases catalyze the interconversion of 2- and 3-phosphoglycerate in the glycolytic and gluconeogenic pathways. They exist in two unrelated forms that are either cofactor (2,3-diphosphoglycerate)-dependent or cofactor-independent. The two enzymes have no similarity in amino acid sequence, tertiary structure, or catalytic mechanism. Certain organisms including vertebrates have only the cofactor-dependent form, whereas other organisms can possess the independent form or both. Caenorhabditis elegans has been predicted to have only independent phosphoglycerate mutase. In this study, we have cloned and produced recombinant, independent phosphoglycerate mutases from C. elegans and the human-parasitic nematode Brugia malayi. They are 70% identical to each other and related to known bacterial, fungal, and protozoan enzymes. The nematode enzymes possess the catalytic serine, and other key amino acids proposed for catalysis and recombinant enzymes showed typical phosphoglycerate mutase activities in both the glycolytic and gluconeogenic directions. The gene is essential in C. elegans, because the reduction of its activity by RNA interference led to embryonic lethality, larval lethality, and abnormal body morphology. Promoter reporter analysis indicated widespread expression in larval and adult C. elegans with the highest levels apparent in the nerve ring, intestine, and body wall muscles. The enzyme was found in a diverse group of nematodes representing the major clades, indicating that it is conserved throughout this phylum. Our results demonstrate that nematodes, unlike vertebrates, utilize independent phosphoglycerate mutase in glycolytic and gluconeogenic pathways and that the enzyme is probably essential for all nematodes.  相似文献   

3.
Pyruvate decarboxylase (EC 4.1.1.1) from Zymomonas mobilis purified to homogeneity by using dye-ligand and ion-exchange chromatography. Antibodies produced against the enzyme and the amino-terminal sequence obtained for the pure enzyme were used to select and confirm the identity of a genomic clone encoding the enzyme selected from a genomic library of Z. mobilis DNA cloned into pUC9. The genomic fragment encoding the enzyme expressed high levels of pyruvate decarboxylase in Escherichia coli. Possible RNA polymerase and ribosome-binding sites have been identified in the 5'-untranslated region of the pyruvate decarboxylase gene.  相似文献   

4.
The Zymomonas mobilis gene encoding phosphoglycerate kinase (EC 2.7.3.2), pgk, has been cloned into Escherichia coli and sequenced. It consists of 336 amino acids, including the N-terminal methionine, with a molecular weight of 41,384. This promoterless gene is located 225 base pairs downstream from the gap gene and is part of the gap operon. Previous studies have shown that the specific activities of glyceraldehyde-3-phosphate dehydrogenase and phosphoglycerate kinase do not change coordinately in Z. mobilis, although the two enzymes appear to be under the control of a common promoter. The translated amino acid sequence for the Z. mobilis phosphoglycerate kinase is less conserved than those of eucaryotic genes. A comparison of known sequences for phosphoglycerate kinase revealed a high degree of conservation of structure with 102 amino acid positions being retained by all. In general, the amino acid positions at the boundaries of beta-sheet and alpha-helical regions and those connecting these regions were more highly conserved than the amino acid positions within regions of secondary structure.  相似文献   

5.
The Saccharomyces cerevisiae ARO7 gene product chorismate mutase, a single-branch-point enzyme in the aromatic amino acid biosynthetic pathway, is activated by tryptophan and subject to feedback inhibition by tyrosine. The ARO7 gene was cloned on a 2.05-kilobase EcoRI fragment. Northern (RNA) analysis revealed a 0.95-kilobase poly(A)+ RNA, and DNA sequencing determined a 771-base-pair open reading frame capable of encoding a protein 256 amino acids. In addition, three mutant alleles of ARO7 were cloned and sequenced. These encoded chorismate mutases which were unresponsive to tyrosine and tryptophan and were locked in the on state, exhibiting a 10-fold-increased basal enzyme activity. A single base pair exchange resulting in a threonine-to-isoleucine amino acid substitution in the C-terminal part of the chorismate mutase was found in all mutant strains. In contrast to other enzymes in this pathway, no significant homology between the monofunctional yeast chorismate mutase and the corresponding domains of the two bifunctional Escherichia coli enzymes was found.  相似文献   

6.
Cloning and sequencing of a murine cDNA with the entire coding region of 2,3-bisphosphoglycerate mutase is reported, as a prerequisite for further expression studies of this erythroid specific enzyme in Friend mouse erythroleukemia cells. A comparison between species of the deduced amino acid sequences of these proteins shows 20 substitutions between mouse and human and 21 between mouse and rabbit: none of these substitutions are in positions assumed to be in the active site. Amino acid alignment with the other related enzymes, the phosphoglycerate mutases, in combination with crystallographic data from yeast phosphoglycerate mutase, gives some insight into the structure/function correlation for this protein family. Amino acid residues which are most likely critical for either 2,3-bisphosphoglycerate mutase or phosphoglycerate mutase function are pointed out. Concerning the phylogenetic analysis, phosphoglycerate mutases B and M from mammalians appear to have diverged with the yeast enzyme from a common ancestor, before the emergence of the 2,3-bisphosphoglycerate mutases.  相似文献   

7.
8.
2,3-Bisphosphoglycerate-independent phosphoglycerate mutase (EC 5.4.2.1) was purified and characterized from maize. SDS electrophoresis showed only one band with a molecular mass of 64 kDa, similar to that determined for the native enzyme by gel-filtration chromatography. The kinetic constants were similar to those reported for wheat germ phosphoglycerate mutase. Rabbit antiserum against maize phosphoglycerate mutase possesses a high degree of specificity. It also reacts with the wheat germ enzyme but fails to react with other cofactor-independent or cofactor-dependent phosphoglycerate mutases. Cell-free synthesis experiments indicate that phosphoglycerate mutase from maize is not post-translationally modified.  相似文献   

9.
Phosphoglycerate mutase catalyzes the interconversion between 2-phosphoglycerate and 3-phosphoglycerate in the glycolytic and gluconeogenic pathways. They exist in two unrelated forms, that is either cofactor (2,3-diphosphoglycerate) dependent or cofactor-independent. These two enzymes have no similarity in amino acid sequence, tertiary structure, and in catalytic mechanism. Wuchereria bancrofti (WB) contains the cofactor-independent form, whereas other organisms can possess the dependent form or both. Since, independent phosphoglycerate mutase (iPGM) is an essential gene for the survival of nematodes, and it has no sequence or structural similarity to the cofactor-dependent phosphoglycerate mutase found in mammals, it represents an attractive drug target for the filarial nematodes. In this current study, a putative cofactor-iPGM gene was identified in the protein sequence of the WB. In the absence of crystal structure, a three-dimensional structure was determined using the homology modeling approximation, and the most stable protein conformation was identified through the molecular dynamics simulation studies, using GROMACS 4.5. Further, the functional or characteristic residues were identified through the sequence analysis, potential inhibitors were short-listed and validated, and potential inhibitors were ranked using the cheminformatics and molecular dynamics simulations studies, Prime MM-GBSA approach, respectively.  相似文献   

10.
11.
The Bacillus subtilis genes tpi, pgm, and eno, encoding triose phosphate isomerase, phosphoglycerate mutase (PGM), and enolase, respectively, have been cloned and sequenced. These genes are the last three in a large putative operon coding for glycolytic enzymes; the operon includes pgk (coding for phosphoglycerate kinase) followed by tpi, pgm, and eno. The triose phosphate isomerase and enolase from B. subtilis are extremely similar to those from all other species, both eukaryotic and prokaryotic. However, B. subtilis PGM bears no resemblance to mammalian, fungal, or gram-negative bacterial PGMs, which are dependent on 2,3-diphosphoglycerate (DPG) for activity. Instead, B. subtilis PGM, which is DPG independent, is very similar to a DPG-independent PGM from a plant species but differs from the latter in the absolute requirement of B. subtilis PGM for Mn2+. The cloned pgm gene has been used to direct up to 25-fold overexpression of PGM in Escherichia coli; this should facilitate purification of large amounts of this novel Mn(2+)-dependent enzyme. Inactivation of pgm plus eno in B. subtilis resulted in extremely slow growth either on plates or in liquid, but growth of these mutants was enhanced by supplementation of media with malate. However, these mutants were asporogenous with or without malate supplementation.  相似文献   

12.
The primary sequence of maize 2,3-bisphosphoglycerate-independent phosphoglycerate mutase was deduced from cDNAs isolated from maize cDNA libraries by screening with specific antibodies to the cofactor-independent enzyme and from a maize genomic clone. The genomic clone provided the 5'-nucleotide sequence encoding the N-terminal amino acids which could not be obtained from the cDNA. Confirmation that the nucleotide sequence was for the cofactor-independent phosphoglycerate mutase was obtained by sequencing the peptides generated from cyanogen bromide cleavage of the purified protein. This is the first report of the amino acid sequence of a 2,3-bisphosphoglycerate cofactor-independent phosphoglycerate mutase, which consists of 559 amino acids and is twice the molecular size of the mammalian cofactor-dependent enzyme subunit. Analysis of the cofactor-independent phosphoglycerate mutase amino acid sequence revealed no identity with the cofactor-dependent mutase types. Northern blot analysis confirmed this difference since the maize cofactor-independent phosphoglycerate mutase cDNA did not hybridize with mRNA of the cofactor-dependent mutase. The lack of amino acid identity between cofactor-dependent and -independent enzymes is consistent with their different catalytic mechanisms and suggests that both enzymes are unrelated evolutionarily and arose from two independent ancestral genes. However, a constellation of residues which are involved in metal ion binding in various alkaline phosphatases is conserved in the maize cofactor-independent phosphoglycerate mutase, which suggests that the enzyme is a member of the alkaline phosphatase family of enzymes.  相似文献   

13.
14.
The five glycolytic enzymes glyceraldehyde-3-phosphate dehydrogenase, phosphoglycerate kinase, phosphoglycerate mutase, enolase and pyruvate kinase were each purified from extracts of Zymomonas mobilis cells, by using dye-ligand chromatography as the principal step. Two procedures, producing three and two of the enzymes respectively, are described in detail. Z. mobilis glyceraldehyde-phosphate dehydrogenase was found to be similar in most respects to the enzyme from other sources, except for having a slightly larger subunit size. Phosphoglycerate kinase has properties typical for this enzyme; however, it did not show the sulphate activation effects characteristic of this enzyme from most other sources. Phosphoglycerate mutase is a dimer, partially independent of 2,3-bisphosphoglycerate, and has a high specific activity. Enolase was found to be octameric; otherwise its properties were very similar to those of the yeast enzyme. Pyruvate kinase is unusual in being dimeric, and not requiring K+ for activity. It is not allosterically activated by sugar phosphates, having a high activity in the absence of any effectors. Some quantitative differences in the relative amounts of these enzymes, compared with eukaryotic species, are ascribed to the fact that Z. mobilis utilizes the Entner-Doudoroff pathway rather than the more common Embden-Meyerhoff glycolytic route.  相似文献   

15.
16.
The Zymomonas mobilis gene encoding acid phosphatase, phoC, has been cloned and sequenced. The gene spans 792 base pairs and encodes an Mr 28,988 polypeptide. This protein was identified as the principal acid phosphatase activity in Z. mobilis by using zymograms and was more active with magnesium ions than with zinc ions. Its promoter region was similar to the -35 "pho box" region of the Escherichia coli pho genes as well as the regulatory sequences for Saccharomyces cerevisiae acid phosphatase (PHO5). A comparison of the gene structure of phoC with that of highly expressed Z. mobilis genes revealed that promoters for all genes were similar in degree of conservation of spacing and identity with the proposed Z. mobilis consensus sequence in the -10 region. The phoC gene contained a 5' transcribed terminus which was AT rich, a weak ribosome-binding site, and less biased codon usage than the highly expressed Z. mobilis genes.  相似文献   

17.
18.
19.
The crystal structure of Bacillus stearothermophilus PhoE (originally termed YhfR), a broad specificity monomeric phosphatase with a molecular mass of approximately 24 kDa, has been solved at 2.3 A resolution in order to investigate its structure and function. PhoE, already identified as a homolog of a cofactor-dependent phosphoglycerate mutase, shares with the latter an alpha/beta/alpha sandwich structure spanning, as a structural excursion, a smaller subdomain composed of two alpha-helices and one short beta-strand. The active site contains residues from both the alpha/beta/alpha sandwich and the sub-domain. With the exception of the hydrophilic catalytic machinery conserved throughout the cofactor-dependent phosphoglycerate mutase family, the active-site cleft is strikingly hydrophobic. Docking studies with two diverse, favored substrates show that 3-phosphoglycerate may bind to the catalytic core, while alpha-napthylphosphate binding also involves the hydrophobic portion of the active-site cleft. Combining a highly favorable phospho group binding site common to these substrate binding modes and data from related enzymes, a catalytic mechanism can be proposed that involves formation of a phosphohistidine intermediate on His10 and likely acid-base behavior of Glu83. Other structural factors contributing to the broad substrate specificity of PhoE can be identified. The dynamic independence of the subdomain may enable the active-site cleft to accommodate substrates of different sizes, although similar motions are present in simulations of cofactor-dependent phosphoglycerate mutases, perhaps favoring a more general functional role. A significant number of entries in protein sequence databases, particularly from unfinished microbial genomes, are more similar to PhoE than to cofactor-dependent phosphoglycerate mutases or to fructose-2,6-bisphosphatases. This PhoE structure will therefore serve as a valuable basis for inference of structural and functional characteristics of these proteins.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号