首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
3-Hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase from rat liver microsomes has been purified to apparent homogeneity with recoveries of approximately 50%. The enzyme obtained from rats fed a diet supplemented with cholestyramine had specific activities of approximately 21,500 nmol of NADPH oxidized/min/mg of protein. After amino acid analysis a specific activity of 31,000 nmol of NADPH oxidized/min/mg of amino acyl mass was obtained. The s20,w for HMG-CoA reductase was 6.14 S and the Stokes radius was .39 nm. The molecular weight of the enzyme was 104,000 and the enzyme subunit after sodium dodecyl sulfate-polyacrylamide gel electrophoresis was 52,000. Antibodies prepared against the homogeneous enzyme specifically precipitated HMG-CoA reductase from crude and pure fractions of the enzyme. Incubation of rat hepatocytes for 3 h in the presence of lecithin dispersions, compactin, or rat serum resulted in significant increases in the specific activity of the microsomal bound reductase. Immunotitrations indicated that in all cases these increases were associated with an activated form of the reductase. However activation of the enzyme accounted for only a small percentage of the total increase in enzyme activity; the vast majority of the increase was apparently due to an increase in the number of enzyme molecules. In contrast, when hepatocytes were incubated with mevalonolactone the lower enzyme activity which resulted was primarily due to inactivation of the enzyme with little change in the number of enzyme molecules. Immunotitrations of microsomes obtained from rats killed at the nadir or peak of the diurnal rhythm of 3-hydroxy-3-methylglutaryl-CoA reductase indicated that the rhythm results both from enzyme activation and an increased number of reductase molecules.  相似文献   

2.
Microsomal 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase kinase has been purified to apparent homogeneity by a process involving the following steps: solubilization from microsomes and chromatography on Affi-Gel Blue, phosphocellulose, Bio-Gel A 1.5m, and agarose-hexane-ATP. The apparent Mr of the purified enzyme as judged by gel-filtration chromatography is 205,000 and by sodium dodecyl sulfate-gel electrophoresis is 105,000. Immunoprecipitation of homogeneous reductase phosphorylated by reductase kinase and [γ-32P]ATP produces a unique band containing 32P bound to protein which migrates at the same Rf as the reductase subunit. Incubation of 32P-labeled HMG-CoA reductase with reductase phosphatase results in a time-dependent loss of protein-bound 32P radioactivity, as well as an increase in enzymic activity. Reductase kinase, when incubated with ATP, undergoes autophosphorylation, and a simultaneous increase in its enzymatic activity is observed. Tryptic treatment of immunoprecipitated, 32P-labeled HMG-CoA reductase phosphorylated with reductase kinase produces only one 32P-labeled phosphopeptide with the same Rf as one of the two tryptic phosphopeptides that have been reported in a previous paper. The possible existence of a second microsomal reductase kinase is discussed.  相似文献   

3.
Rat hepatic 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase was purified to homogeneity using agarose-HMG-CoA affinity chromatography. Additional protein was isolated from the affinity column with 0.5 M KCl that demonstrated no HMG-CoA reductase activity, yet comigrated with purified HMG-CoA reductase on sodium dodecyl sulfate-polyacrylamide gels. This protein was determined to be an inactive form of HMG-CoA reductase by tryptic peptide mapping, reaction with anti-HMG-CoA reductase antibody, and coelution with purified HMG-CoA reductase from a molecular-sieving high-performance liquid chromatography column. This inactive protein was present in at least fourfold greater concentration than active HMG-CoA reductase, and could not be activated by rat liver cytosolic phosphoprotein phosphatases. Immunotitration studies with microsomal and solubilized HMG-CoA reductase isolated in the presence and absence of proteinase inhibitors suggested that the inactive protein was not generated from active enzyme during isolation of microsomes or freeze-thaw solubilization of HMG CoA reductase.  相似文献   

4.
This paper describes an effective method for the solubilization of microsomal HMG-CoA reductase from rat liver. Exposing the microsomes to a freeze-thaw treatment solubilized 80% of the microsomal reductase activity. Subsequently, a 25-fold purification has led to an enzyme preparation with a specific activity of 10–14 nmoles MVA per min per mg of protein and an increased stability.  相似文献   

5.
6.
7.
8.
Molecular and Cellular Biochemistry - Within the last few years considerable evidence has accumulated which indicates that changes in HMG-CoA reductase are due primarily, if not solely, to changes...  相似文献   

9.
A procedure for the purification of 3-hydroxy-3-methylglutaryl coenzyme A reductase [mevalonate:NADP+ oxidoreductase (CoA-acylating); EC 1.1.1.34] from rat liver microsomes has been developed. The enzyme preparations obtained by this procedure have specific activities of 16 to 23 μmol of mevalonate formed per minute per milligram of protein. These enzyme preparations were judged to be homogeneous on the basis of comigration of enzyme activity and protein on polyacrylamide gels.  相似文献   

10.
3-Hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase in the ileum of rats was inactivated by Mg2+-ATP and reversibly reactivated by cytoplasmic activator from the liver. The mevalonate kinase reaction was presumably not involved in this inactivation. Studies of nucleotide specificity for the inactivation revealed that ATP was most effective in the reaction among the nucleotides tested. In contrast to the hepatic microsomal HMG-CoA reductase, more than one-half of intestinal reductase existed in an active form. These observations indicated the presence of phosphorylation-dephosphorylation mechanism for modulation of intestinal HMG-CoA reductase.  相似文献   

11.
S Azhar  Y D Chen  G M Reaven 《Biochemistry》1984,23(20):4533-4538
These studies were done to examine the effect of gonadotropin on rat luteal 3-hydroxy-3-methylglutaryl coenzyme A (HMG CoA) reductase activity (the rate-limiting step in cholesterol biosynthesis) in ovaries of pregnant mare's serum gonadotropin (PMSG)-human chorionic gonadotropin (hCG) primed rats. Administration of hCG stimulated HMG CoA reductase activity in a time- and dose-dependent manner: significant increases were noted within 4 h, with maximum effects (30-40-fold increases) seen 24 h after hCG (25 IU) administration. This effect was specific in that only LH, of several hormones tested, was as effective as hCG in stimulating HMG CoA reductase activity, and no change in the activity of either liver microsomal HMG CoA reductase or luteal microsomal NADPH-cytochrome c reductase was seen after hCG. The gonadotropin-induced increase in HMG CoA reductase activity seemed to be due to a net increase in enzyme activity, not to a change in the phosphorylated/dephosphorylated state of the enzyme. Pretreatment of animals with aminoglutethimide, an inhibitor of the conversion of cholesterol to steroid (pregnenolone), prevented the hCG-induced rise in HMG CoA reductase activity, whereas treatment with 4-aminopyrazolo[3,4-d]pyrimidine (4-APP), which depletes cellular cholesterol content, led to striking increases in enzyme activity. However, the combined effects of 4-APP and hCG were additive, suggesting that the stimulating effect of hCG on HMG CoA reductase activity is not entirely due to a depletion of cellular sterol content of luteinized ovaries. Similarly, cholesteryl ester and cholesterol syntheses as measured by [14C]acetate conversion were also increased by hCG and 4-APP treatment.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

12.
The functional molecular weight of rat liver 3-hydroxy-3-methylglutaryl-CoA reductase was determined by radiation inactivation. Both isolated hepatic microsomes and primary hepatocytes were irradiated with high energy electrons at -135 degrees C, and the residual microsomal enzyme activity was subsequently determined. The loss of enzyme activity in both irradiated microsomes and microsomes isolated from irradiated hepatocytes followed a single exponential decay which corresponded to a molecular mass of 200 kDa. This minimal molecular size of the functional enzyme was unaffected by either addition of cholestyramine to the rat diet or addition of 25-hydroxycholesterol plus mevalonate to the isolated rat hepatocytes. In addition, surviving enzyme protein was determined by immunoprecipitation of radiolabeled enzyme from hepatocytes that had been incubated with [35S]methionine before irradiation. The target size for loss of the monomer subunits was 98 kDa. The simplest interpretation of these results is that rat liver 3-hydroxy-3-methylglutaryl-CoA reductase in situ is a noncovalently linked dimer of the Mr = 97,200 enzyme subunit.  相似文献   

13.
The activity, protein concentration and catalytic efficiency of hepatic 3-hydroxy-3-methylglutaryl coenzyme A reductase was determined in rats aged 1 to 199 days. Microsomal enzyme total activity peaked on day 24, during weaning, and again on day 63, during the onset of puberty. Increased enzyme activity during weaning resulted primarily from an increase in the catalytic efficiency of the enzyme with a slight reduction in enzyme protein content. The rise in enzyme activity during the onset of puberty, however, was primarily the result of an increase in enzyme protein concentration. Thus, the activity of reductase in mammalian livers reflects, at different stages in development, the modulating influence of both the total number of reductase molecules and the catalytic efficiency of the enzyme.  相似文献   

14.
The activity of the enzyme 3-hydroxy-3-methlglutaryl-coenzyme A reductase (HMGR, EC 1.1.1.34) is highly expressed in 4-day-old etiolated seedlings of normal (cv. DeKalb XL72AA), dwarf ( d 5) and albino ( lw 3) maize ( Zea mays L.). HMGR activity of maize seedlings appeared to be exclusively associated with the microsomal rather than the plastidic fraction of maize cells. Maize tissues with high meristematic activity such as germinating seeds, leaf bases, root tips and the site of origin of lateral roots contained high levels of microsomal HMGR activity. The activity of HMGR extracted from leaf tips of normal, dwarf and albino maize seedlings is regulated by light. Microsomal HMGR activity from leaf tips of 4-day-old maize seedlings was inhibited significantly following exposure to strong light (600 μmol m−2 s−1) for more than 10 h. By comparison, microsomal HMGR activity from leaf bases and root tips of maize was not inhibited by exposure to strong light. These results suggest that the microsomal HMGR which is highly expressed in maize may be related to sterol biosynthesis and membrane biogenesis rather than plastidic-associated isoprenoid synthesis and that light may regulate HMGR activity indirectly by increasing cell differentiation.  相似文献   

15.
Improved assay of 3-hydroxy-3-methylglutaryl coenzyme A reductase   总被引:10,自引:0,他引:10  
Two improvements are described for the assay of HMG CoA reductase. These are a simple synthesis of the substrate precursor HMG-3-(14)C anhydride and a double-label ((14)C and (3)H) method for determining the amount of mevalonate-3-(14)C that is formed from the substrate.  相似文献   

16.
This paper describes a rapid purification procedure for 3-hydroxy-3-methylglutaryl coenzyme A reductase, the major regulatory enzyme in hepatic cholesterol biosynthesis. A freeze-thaw technique is used for solubilizing the enzyme from rat liver microsomal membranes. No detergents or other stringent conditions are required. The purification procedure employs Blue Dextran-Sepharose-4B affinity chromatography, and purification can be carried out from microsomal membranes to purified enzyme in 8 to 10 hours. The purified enzyme has a specific activity of 517 nmoles/min/mg protein, and it is 975-fold purified with respect to the original microsomal membrane suspension. SDS polyacrylamide gel electrophoresis of the purified enzyme shows only trace impurities; the subunit molecular weight for the enzyme measured by this technique is 47,000.  相似文献   

17.
3-Hydroxy-3-methylglutaryl coenzyme A reductase has been purified from rat liver microsomes with a recovery of approx. 25%. The enzyme was homogeneous on gel electrophoresis and enzyme activity comigrated with the single protein band. The molecular weight of the reductase determined by gel filtration on Sephadex G-200 was 200,000. SDS-polyacrylamide gel electrophoresis gave a subunit molecular weight of 52,000 +/- 2000, suggesting that the enzyme was a tetramer. The specific activities of the purified enzyme obtained from rats fed diets containing 0% or 5% cholestyramine were 11,303 and 19,584 nmol NADPH oxidized/min per mg protein, respectively. The reductase showed unique binding properties to Cibacron Blue Sepharose; the enzyme was bound to the Cibacron Blue via the binding sites for both substrates, NADPH and (S)-3-hydroxy-3-methylglutaryl coenzyme A. Antibodies prepared against purified reductase inactivated 100% of the soluble and at least 91% of the microsomal enzyme activity. Immunotitrations of solubilized enzyme obtained from normal and cholestyramine-fed rats indicated that cholestyramine feeding both increased the amount of enzyme protein and resulted in enzyme activation. Administration of increasing amounts of mevalonolactone to rats decreased the equivalence point obtained from immunotitration studies with solubilized enzyme. These data indicate that the antibody cross-reacts with the inactive enzyme formed after mevalonolactone treatment.  相似文献   

18.
Using radiation inactivation and immunoblotting techniques, evidence for functionally active forms of rat liver 3-hydroxy-3-methylglutaryl coenzyme A reductase with molecular weights of about 100,000 and 200,000 was obtained. In liver microsomes isolated from rats fed both mevinolin and colestipol, the Mr 100,000 form was the predominant species, whereas in microsomes from animals fed only colestipol, the Mr 200,000 species was the major form. This Mr 200,000 form could be converted to the Mr 100,000 form by addition of dithiothreitol or beta-mercaptoethanol. Although both forms appear to possess catalytic activity, the Mr 200,000 species displays sigmoidal kinetics with respect to the concentration of NADPH, whereas the Mr 100,000 form exhibits typical hyperbolic kinetics.  相似文献   

19.
Recent studies have suggested that estradiol or androgen precursor may stimulate steroidogenesis in the luteal cell by modulating intracellular sterol availability and metabolism. This investigation was performed to examine the effect of estradiol on de novo synthesis of cholesterol. Pregnant rats hypophysectomized and hysterectomized on Day 12 were treated for 72 h with either estradiol or testosterone. De novo cholesterol synthesis was determined by measurement of the specific activity of the enzyme 3-hydroxy-3-methylglutaryl coenzyme A (HMG CoA) reductase, the rate limiting enzyme in cholesterol biosynthesis, in microsome-enriched preparations of luteal tissue and incorporation of [14C] acetate into cholesterol by corpora lutea incubated in vitro. Estradiol or testosterone treatment caused a 4- to 5-fold stimulation of luteal cholesterol biosynthesis, as measured by these techniques. NaF, an inhibitor of phosphatase which blocks the conversion of the inactive enzyme to the active form, reduced the HMG CoA reductase activity to 30% in corpora lutea obtained from either steroid or vehicle-treated rats. However, an increase in enzyme activity of comparable magnitude by steroids was observed whether microsomes were isolated with or without NaF. The effect of estradiol appears to be enzyme-specific, since it failed to affect the microsomal marker, NADPH-cytochrome c reductase. Since the cholesteryl ester content of corpora lutea falls in response to steroid treatment, rats were treated with 4-aminopyrazolo-[3,4d]pyrimidine (4-APP) to deplete cellular cholesterol content.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

20.
Incubation of rat hepatocytes with glucagon results in a time- and dose-dependent decrease in the activity of 3-hydroxy-3-methylglutaryl coenzyme A reductase. We demonstrate, using immunoprecipitation of radiolabeled enzyme, that 10 nM glucagon inhibits the synthesis of the enzyme by approximately 50%, but that the apparent rate of degradation of the enzyme is not affected by the hormone. We also demonstrate that the intact reductase polypeptide contained phosphoserine. We conclude that glucagon inhibits the activity of the reductase by inhibition of enzyme synthesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号