首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
ARGRI, ARGRII, and ARGRIII regulatory proteins control the expression of arginine anabolic and catabolic genes in Saccharomyces cerevisiae. We show here that they are also required in vitro to observe a protein-DNA complex with the promoter of the ARG5,6 gene. The specific binding of ARGR proteins in vitro is stimulated by arginine. Antibodies raised against a synthetic MCM1 polypeptide retard the migration of ARGR-DNA complex on gel mobility shift assays. This result suggests that MCM1 could be an additional regulatory element of arginine metabolism.  相似文献   

4.
5.
6.
7.
Nitrogen metabolism is a highly regulated process in Neurospora crassa . The structural genes that encode nitrogen catabolic enzymes are subject to nitrogen metabolite repression, mediated by the positive-acting NIT2 protein and by the negative-acting NMR protein. NIT2, a globally acting factor, is a member of the GATA family of regulatory proteins and has a single Cys2/Cys2 zinc finger DNA-binding domain. The negative-acting NMR protein interacts via specific protein–protein binding with two distinct regions of the NIT2 protein, a short alpha-helical motif within the NIT2 DNA-binding domain and a second motif at its carboxy terminus. Deletions of segments of NIT2 throughout most of its length result in truncated proteins, which are still functional for activating gene expression; most of these mutant NIT2 proteins still allow proper nitrogen repression of nitrate reductase synthesis. In contrast, deletions or certain amino acid substitutions within the zinc finger and the carboxy-terminal tail result in a loss of nitrogen metabolite repression. Those mutated forms of NIT2 that are insensitive to nitrogen repression have also lost one of the NIT2–NMR protein–protein interactions. These results provide compelling evidence that the specific NIT2–NMR interactions have a regulatory function and play a central role in establishing nitrogen metabolite repression.  相似文献   

8.
Drosophila melanogaster Pumilio is an RNA-binding protein that potently represses specific mRNAs. In developing embryos, Pumilio regulates a key morphogen, Hunchback, in collaboration with the cofactor Nanos. To investigate repression by Pumilio and Nanos, we created cell-based assays and found that Pumilio inhibits translation and enhances mRNA decay independent of Nanos. Nanos robustly stimulates repression through interactions with the Pumilio RNA-binding domain. We programmed Pumilio to recognize a new binding site, which garners repression of new target mRNAs. We show that cofactors Brain Tumor and eIF4E Homologous Protein are not obligatory for Pumilio and Nanos activity. The conserved RNA-binding domain of Pumilio was thought to be sufficient for its function. Instead, we demonstrate that three unique domains in the N terminus of Pumilio possess the major repressive activity and can function autonomously. The N termini of insect and vertebrate Pumilio and Fem-3 binding factors (PUFs) are related, and we show that corresponding regions of human PUM1 and PUM2 have repressive activity. Other PUF proteins lack these repression domains. Our findings suggest that PUF proteins have evolved new regulatory functions through protein sequences appended to their conserved PUF repeat RNA-binding domains.  相似文献   

9.
10.
Cyclic adenosine 5′-phosphate (cAMP) is a global regulator of gene expression in Escherichia coli. Despite decades of intensive study, the quantitative effect and regulatory function of cAMP remain the subjects of considerable debate. Here, we analyse the data in the literature to show that: (a) In carbon-limited cultures (including cultures limited by glucose), cAMP is at near-saturation levels with respect to expression of several catabolic promoters (including lac, ara and gal). It follows that cAMP receptor protein (CRP) cAMP-mediated regulation cannot account for the strong repression of these operons in the presence of glucose. (b) The cAMP levels in carbon-excess cultures are substantially lower than those observed in carbon-limited cultures under these conditions, the expression of catabolic promoters is very sensitive to variation of cAMP levels. (c) =CRPcAMP invariably activates the expression of catabolic promoters, but it appears to inhibit the expression of anabolic promoters. (d) These results suggest that the physiological function of cAMP is to maintain homeostatic energy levels. In carbon-limited cultures, growth is limited by the supply of energy; the cAMP levels therefore increase to enhance energy accumulation by activating the catabolic promoters and inhibiting the anabolic promoters. Conversely, in carbonexcess cultures, characterized by the availability of excess energy, the cAMP levels decrease in order to depress energy accumulation by inhibiting the catabolic promoters and activating the anabolic promoters.  相似文献   

11.
12.
13.
14.
We report here the DNA sequence of the ARGRII gene, one of the three regulatory genes involved in controlling the anabolism and catabolism of arginine in yeast. This gene encodes a protein of 880 amino acids with a deduced molecular mass of about 100 kDa. The ARGRII protein shows significant homology with two other regulatory proteins of yeast, PPRI and GAL4.  相似文献   

15.
16.
孤儿核受体hB1F(NR5A2 ,也称之为LRH 1、CPF或FTF)在胆汁酸合成代谢、乙肝病毒基因和部分肝特异性基因表达的调控中起着重要的作用。为理解hB1F激活转录的分子机制 ,对其铰链区潜在的功能结构域进行了分析。利用GAL4 DBD融合的hB1F缺失片段所进行的报告基因分析 ,发现了一个位于铰链区的强烈抑制hB1F反式激活能力的结构域。该结构域核心残基的定点突变导致了hB1F反式激活能力的显著上升 ,而且明显地增强hB1F对乙肝病毒增强子II 核心启动子的转录激活能力。生物信息学分析显示该结构域不存在明显的二级结构 ,但有意思的是 ,其氨基酸序列在核受体FTZ F1亚家族的成员中高度保守 ,且不见于其他蛋白质中。转染分析发现 ,该结构域的抑制活性存在于测试的五个不同细胞株中 ,但抑制的强度表现出明显差异。半定量RT PCR分析表明 ,与SF 1不同 ,该结构域抑制转录活性的强度与潜在的结合因子DP10 3的表达水平之间没有相关性。共转染实验还表明 ,参与hB1F转录活性调控的辅激活子SRC 1和辅抑制子SMRT与该抑制作用不直接相关。实验结果提示 ,孤儿核受体hB1F转录活性可能存在一种新的调控机制。  相似文献   

17.
18.
19.
Conserved properties of the Drosophila homeodomain protein, Ind   总被引:1,自引:0,他引:1  
  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号