首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Several five coordinate complexes of [(TPP)FeIII(L)] in which TPP is the dianion of tetraphenylporphyrin and L is the monoanion of phenylcyanamide (pcyd) (1), 2,5-dichlorophenylcyanamide (2,5-Cl2pcyd) (2), 2,6-dichlorophenylcyanamide (2,6-Cl2pcyd) (3), and 2,3,4,6-tetrachlorophenylcyanamide (2,3,4,6-Cl4pcyd) (4) have been prepared by the reaction of [(TPP)FeIIICl] with appropriate thallium salt of phenylcyanamide. Each of the complexes has been characterized by IR, UV-Vis and 1H NMR spectroscopic data. Dark red-brown needles of [(TPP)FeIII(2,6-Cl2pcyd)] (C51H31Cl2FeN6 · CHCl3) crystallize in the triclinic system. The crystal structure of Fe(III) compound shows a slight distortion from square pyramidal coordination with the 2,6-dichlorophenylcyanamide anion in the axial position through nitrile nitrogen atom. Iron atom is 0.47(1) Å out of plane of the porphyrin toward phenylcyanamide ligand. In non-coordinating solvents, such as benzene or chloroform, these complexes exhibit 1H NMR spectra that are characteristic of high-spin (S = 5/2) species. The X-ray crystal structure parameters are also consistent with high-spin iron(III) complexes. The iron(III) phenylcyanamide complexes are not reactive toward molecular oxygen; however, these complexes react with HCl and produce TPPFeIIICl.  相似文献   

2.
The suitability of a liposomal form of hydrophobic nonsulfonated meso-tetraphenyl porphyrin (TPP) for the photodynamic therapy of tumors was investigated. TPP was solubilized in small unilamellar lipid vesicles prepared by extrusion on a LIPOSOFAST apparatus. These samples were studied by laser-excited time resolved luminescence and triplet-triplet absorption spectroscopy. In this lipid environment TPP was still an efficient singlet oxygen producer, as indicated by the characteristic singlet oxygen phosphorescence at 1270 nm in D2O, when excited with a 28 ns laser pulse at 412 nm. Moreover, unlike with sulfonated TPP (TPPS4), liposomal TPP showed the reduced decay rates of TPP triplet-states with the increasing time of pre-illumination by a Xenon lamp. This was shown in an indirect way, based upon the appearance of a second component of the luminescence decay at 1270 nm in D2O; and by direct TPP triplet state monitoring, detecting triplet-triplet absorption at 440 nm in H2O. The deactivation of higher triplet states was delayed upon pre-illumination. This reflects an irreversible interaction of singlet oxygen with membrane lipids, thus demonstrating the potential of the liposomal form of TPP to efficiently disintegrate tumor cell membranes and to be a suitable preparation for the photodynamic therapy.  相似文献   

3.
The dissociation rates of axially coordinated imidazole in bis-ligated low spin ferric complexes of synthetic porphyrins such as tetraphenylporphyrin (TPP) and tetramesitylporphyrin (TMP) were measured by NMR method. In both TPP and TMP complexes, the axial lability of imidazoles increased in the order 1-methylimidazole < 2-methylirnidazole < 2-ethylimidazole ∼ 1,2-dimethylimidazole. The results were explained in terms of the steric repulsion between the 2-alkyl group of imidazole and the porphyrin ring. The dissociation rates of TPP complexes were then compared with those of TMP complexes carrying the same axial ligands. In every case examined, imidazole dissociated faster from the TPP complex than from the TMP complex. The results were ascribed to the stability of the bis-ligated TMP complex relative to the corresponding TPP complex; the formation constant of the TMP complex having 2-Melm as axial ligand was larger than that of the corresponding TPP complex by a factor of c. 600. A hypothesis has been proposed to explain the stability of the sterically hindered porphyrin complex relative to the less hindered complex.  相似文献   

4.
Two different porphyrin derivatives (H2TPP(m-OPh)4 and Rh(III)TPP(m-OPh)4) were investigated with respect to their capability to help resolution of five model aromatic peptides in capillary electrophoresis/open tubular capillary electrochromatography. Though the main separation mechanism was preferentially based on the ionic properties of the separated analytes, involvement of particularly H2TTPP(m-OPh)4-peptide interactions at alkaline pH (8.0) was clearly demonstrated. In combination with Tris-phosphate buffer, a speed up of the separation was observed at pH 2.25 (particularly if Rh(III)TPP(m-OPh)4 was used as capillary coating); in spite of the speed up of the separation the selectivity of the system was sufficient and resulted in a complete separation of the five model peptides. It can be expected that Rh(III)TPP(m-OPh)4 capillary coating in combination with Tris-phosphate buffer can be generally used for a considerable speeding up of lengthy separations of peptides in acidic media with some decrease in the separation power of the system.  相似文献   

5.
A biphasic system containing an iron porphyrin, Fe (TPP) (C1)1 or [Fe(TPP)]2O, efficiently catalyzes the cumyl-or tertiobutyl-hydroperoxide-supported dealkylation of p-nitroanisole and 7-ethoxycoumarin to the corresponding phenol and formaldehyde. Stoichiometric amounts of iron porphyrin and hydroperoxide give a quantitative reaction. Catalytic amounts of iron porphyrin give reaction rates and yields which are proportional to substrate concentration. With increasing hydroperoxide concentrations, the rates level offto limit values and the yield rapidly decreases. The maximum rates obtained approach those of the reactions mediated by cytochrome P 450-dependent monooxygenases.  相似文献   

6.
For the purpose of the basic study of photodynamic therapy, the activity of the water-soluble P(V)porphyrin, dimethoxyP(V)tetraphenylporphyrin chloride (DMP(V)TPP), on photosensitized protein damage was examined. The quantum yield of singlet oxygen generation by DMP(V)TPP (0.64) was comparable with that of typical porphyrin photosensitizers. Absorption spectrum measurement demonstrated the binding interaction between DMP(V)TPP and human serum albumin, a water-soluble protein. Photo-irradiated DMP(V)TPP damaged the amino acid residue of human serum albumin, resulting in the decrease of the fluorescence intensity from the tryptophan residue of human serum albumin. A singlet oxygen quencher, sodium azide, could not completely inhibit the damage of human serum albumin, suggesting that the electron transfer mechanism contributes to protein damage as does singlet oxygen generation. The decrease of the fluorescence lifetime of DMP(V)TPP by human serum albumin supported the electron transfer mechanism. The estimated contribution of the electron transfer mechanism is 0.64. These results suggest that the activity of DMP(V)TPP can be preserved under lower oxygen concentration condition such as tumor.  相似文献   

7.
西宁大黄小碎片加到20%硫酸溶液和氯仿的混合液中,在水浴中回流以水解,提取,氯仿提取液相继以5%碳酸氢钾溶液,5%氢氧化钾溶液振荡提取,提取液分别以盐酸酸化,即分离得大黄酸,大黄素,芦荟大黄素及大黄酚和大黄素甲醚混合物等黄色沉淀物,后者再以硅胶柱层析分离,可得大黄酚和大黄素甲醚单体,上述五种蒽醌衍生物再经结晶即得纯品。  相似文献   

8.
Heme a was not detected either in mitochondria isolated from copper-deficient yeast or in the intact cells. Nevertheless, the intracellular concentration of free porphyrins indicated that the pathway of porphyrin and heme synthesis was not impaired in copper-deficient cells. The immunoprecipitated apo-oxidase from copper-deficient cells revealed an absorption spectrum with maxima at 645, 592, 559, 519 and 423 nm, similar to that of purified porphyrin a. When solubilized mitochondria from [3H]leucine and δ-amino[14C]levulinic acid-labeled copper-deficient yeast cells were incubated with rabbit antiserum against cytochrome c oxidase, a precipitate was obtained. Sodium dodecyl sulfate (SDS)-polyacrylamide gel electrophoresis of this immunoprecipitate showed [3H]leucine associated with six bands and δ-amino[14C]levulinic acid resolved in a single band. HCl fractionation of copper-deficient mitochondria labeled with δ-amino[14C]levulinic acid showed a high specific radioactivity in the fraction extracted by 20% HCl, a solvent which extracts porphyrin a. Thinlayer chromatography of the radioactivity found in 20% HCl showed an RF value identical to that of purified porphyrin a. When δ-amino[3H]levulinic acid-labeled, copper-deficient yeast cells are grown in copper-supplemented medium, the porphyrin a accumulated in copper-deficient cells wa converted into heme a, and this conversion was prevented by cycloheximidine.These observations suggest that porphyrin a is present in the apo-oxidase of copper-deficient cells, but that the conversion to heme a does not occur. This conversion reaction appears to be a point in the biosynthetic pathway of cytochrome c oxidase which is blocked by copper deficieny.  相似文献   

9.
The spectrophotometric properties of porphyrins are altered upon interaction with chlorophenols and other organochlorine pollutants. Meso-tetra(4-sulfonatophenyl)porphyrin (TPPS), zinc meso-tetra(4-sulfonato phenyl)porphyrin (Zn-TPPS), monosulfonate-tetraphenylporphyrin (TPPS1), meso-tri(4-sulfonatophenyl)mono(4-carboxyphenyl)porphyrin (C1TPP), meso-tetra(4-carboxyphenyl)porphyrin (C4TPP), and copper meso-tetra(4-carboxyphenyl)porphyrin (Cu-C4TPP) in solution exhibit a broad absorbance in the range 400-450 nm Soret region. The interaction of the above mentioned porphyrins in solution with pentachlorophenol (PCP) induces a red shift in the Soret spectrum with absorbance losses at 413, 418, 403, 405, 407, and 404 nm, respectively, and the appearance of new peaks at 421, 427, 431, 416, 417, and 416 nm, respectively. The intensity of the Soret spectral change is proportional to the pentachlorophenol concentration with a detection limit of 1, 0.5, 1.16, 1, 0.5, and 0.5 ppb, respectively. The interaction of (C4TPP) and (Cu-C4TPP) in solution with PCP shows to concentration dependent for concentrations less than 4 ppb the dependence was log-linear. However, for concentrations greater than 4 ppb the relation was linear. Monosulfonate-tetraphenylporphyrin immobilized as a monolayer on a Kimwipe tissue exhibits an absorbance peak in the Soret region at 422 nm. The interaction of the porphyrin with PCP induces a red shift in the Soret spectrum with absorbance loss at 419 nm and the appearance of new peaks at 446 nm. The intensity of the Soret spectral change is proportional to the log of PCP concentration. The detection limit with immobilized TPPS1 for PCP is 0.5 ppb. These results suggest the potential for development of spectrophotometric chemosensor for PCP residues in water with detection limits less than US EPA maximum contaminate level (MCL) of 1 ppb. The immobilized TPPS1 on the Kimwipe will make it possible to develop a wiping sensors to monitor the PCP or other pesticides residues on the vegetables or wood products.  相似文献   

10.
GeCl4 and meso-tetraarylporphyrins (H2TAPP) react in chloroform solvent for formation sandwich intermediate sitting-atop (i-SAT) complexes, [GeCl4(H2TAP)2]. The various spectral data (1H NMR, 13C NMR, UV-Vis, FT-IR and elemental analysis) were used for characterization of the i-SAT complexes. In the sandwich complexes, the pyrrole rings of two porphyrin macrocycles are tilted up and down and act as electron donors by lone pairs of pyrrolic nitrogens to germanium center of GeCl4. The spectral results of 1H NMR and FT-IR showed that in the i-SAT complexes, the hydrogen atoms of two pyrrolic nitrogens remained still on the porphyrin macrocycles.  相似文献   

11.
The electrochemical and spectroscopic properties of the complex formed by the addition of thiosulfate to ferric porphyrins were examined. The NMR spectrum of the thiosulfate-ferric porphyrin complex was consistent with a high-spin ferric complex, while the EPR spectrum at liquid nitrogen temperatures indicated that the complex under these conditions was low-spin. Such behavior has been previously observed for other ferric porphyrin complexes. The visible spectra were characterized by a shift in the Soret band to higher energies, with smaller changes in the longer wavelength region. The complex was reasonably stable in DMF, but slowly reduced over several hours to FeII(TPP) and S4O6 2−. The voltammetric behavior of the thiosulfate complex in DMF consists of two waves, the first of which was irreversible. The ferric/ferrous reduction in the presence of thiosulfate was shifted negatively about 400 mV, compared to the Fe(TPP)(Cl) reduction. The visible, NMR and EPR spectra were most consistent with a Fe-S bonded ferric porphyrin-thiosulfate complex, Fe(P)(SSO3). The kinetics of the reduction of ferric porphyrin by thiosulfate in DMSO indicated an autocatalytic mechanism, where the first step is the formation of the catalyst. The identity of the catalyst could not be determined because it must be present at low concentrations, but it is formed from the reaction of the ferric complex with thiosulfate. Coordination of thiosulfate to the porphyrin was not necessary for the reduction to occur, and the reduction of Fe(TPP)(Cl) by thiosulfate was accelerated by the addition of sulfate. Under these conditions, sulfate had replaced thiosulfate as the axial ligand for the ferric porphyrin. In the presence of sulfate, the reduction occurred in a single kinetic pseudo-first order step.  相似文献   

12.
Bimolecular reactions of the antimony(V) porphyrin complexes SbO(tpp)OH, 1 and SbO(oep)OH, 2 with tetra-n-butylammonium hydroxide were investigated at 298 K in acetonitrile solution (tpp, dianion of 5,10,15,20-tetraphenylporphyrin and oep, dianion of 2,3,7,8,12,13,17,18-octaethylporphyrin). Spontaneous nucleophilic addition of hydroxide ions to the non-oxidized porphyrin macrocycle leads to novel hydroxyphlorin derivatives, which contain a saturated meso-carbon bridge. While this process is a reversible equilibrium reaction for the TPP derivative, the OEP complex undergoes subsequent demetallation and oxidative ring cleavage in the presence of dioxygen. Possible implications for the competitive inhibition of heme-oxygenase by high-valent metalloporphyrin therapeutics are discussed.  相似文献   

13.
Electron spin echo envelope modulation (ESEEM) spectroscopy has been used to study electron-nuclear interactions in the following isoelectronic S = 1/2 complexes: NO-FeII(TPP) (TPP = tetraphenylporphyrin) with and without axial nitrogenous base, nitrosylhemoglobin in R and T states, and O2-CoII(TPP) with and without axial base. Only the porphyrin pyrrole nitrogens contribute to the ESEEM of the 6-coordinate nitrosyl FeII(TPP) complexes, nitrosylhemoglobin (R-state), and the nitrosyl complexes of alpha and beta chains. Pyrrole nitrogens in the 5-coordinate complex NO-FeII(TPP) are coupled too weakly to unpaired spin and therefore do not contribute to the ESEEM. A partially saturated T-state nitrosylhemoglobin does not exhibit echo envelope modulations characteristic of 6-coordinate nitrosyl species, which confirms that the proximal imidazole bond to heme iron is disrupted. Study of 6-coordinate O2-CoII(TPP)(L) complexes (L = nitrogenous base) using 14N- and 15N-labeled ligands and porphyrins enabled a detailed analysis of coupling parameters for both pyrrole and axial nitrogens. The pyrrole 14N coupling frequencies are similar to those in NO-FeII(TPP)(L). The Fermi contact couplings for axially bound nitrogen, calculated from simulation of ESEEM spectra for a series of O2-CoII(TPP)(L) complexes (L = pyridine, 4-picoline, 4-cyanopyridine, 4-carboxypyridine, and 1-, 2-, and 4-methylimidazole) illustrate a trend toward stronger hyperfine interactions with weaker bases.  相似文献   

14.
We have developed a sensor surface for optical detection of organophosphates based on reversible inhibition of organophosphorus hydrolase (OPH) by copper complexed meso-tri(4-sulfonato phenyl) mono(4-carboxy phenyl) porphyrin (CuC1TPP). OPH immobilized onto glass microscope slides retains catalytic activity for more than 232 days. CuC1TPP is a reversible, competitive inhibitor of OPH, binding at the active site of the immobilized enzyme. The absorbance spectrum of the porphyrin-enzyme complex is measured via planar waveguide evanescent wave absorbance spectroscopy using a blue LED as a light source and an Ocean Optics USB2000 as the spectrophotometer. The characteristics of the absorbance spectrum of CuC1TPP are specific and different when the porphyrin is bound to the enzyme or is bound non-specifically to the surface of the slide. Addition of a substrate of OPH such as one of the organophosphates paraoxon, coumaphos, diazinon, or malathion displaces the porphyrin from the enzyme resulting in reduced absorbance intensity at 412 nm. Absorbance changes at 412 nm show log-linear dependence on substrate concentration. Paraoxon concentrations between 7 parts per trillion (ppt) and 14 parts per million (ppm) were investigated and a 3:1 S/N detection limit of 7 ppt was determined. Concentrations of 700 ppt to 40 ppm were investigated for diazinon, malathion, and coumaphos with detection limits of 800 ppt, 1 part per billion, and 250 ppt, respectively. This optical technique does not require the addition of reagents or solutions other than the sample and absorbance spectra can be collected in less than 6 s.  相似文献   

15.
In order to investigate the influence of ligand distortion on metal centers of porphyrin complexes, distorted vanadyl porphyrin complexes, VO(OPP) (OPP = 2,3,5,10,12,13,15,20-octaphenylporphinato) and VO(DPP) (DPP = 2,3,5,7,8,10,12,13,15,17,18,20-dodecaphenylporphinato), have been prepared. In the crystal structures, VO(OPP) and VO(DPP) had a ruffled structure and a saddle-shaped structure, respectively. In addition, these complexes exhibited red shift and broadening of the absorption bands in the UV-Vis spectra and significant negative shifts of oxidation potentials of the porphyrin ligands in the cyclic voltammograms compared with those of the planar VO(TPP) (TPP = tetraphenylporphinato). These results indicate that the OPP and DPP complexes have the distorted structures both in solids and in solutions. The VO bond characters of VO(TPP), VO(OPP), and VO(DPP) do not show the significant difference in their crystal structures and resonance Raman spectra. This suggests that the distortion of porphyrin ligand little affects the Lewis acidity of the metal center. The non-planar porphyrin distortion gives the change of HOMO-LUMO gap.  相似文献   

16.
We have molecularly cloned TPP36, a novel 36 kDa protein with 281 amino acids that was identified as a protein phosphorylated in B progenitor cells following stimulation with pervanadate/H(2)O(2). Analysis with anti-TPP36 antiserum revealed that TPP36 was expressed ubiquitously and had an isoform with 236 amino acids, designated TPP32. TPP36/32 were localized mainly in cytoplasm despite the presence of a typical nuclear localization signal sequence. These proteins were phosphorylated preferentially by Abl among a panel of tyrosine kinases examined. Phosphorylation of tyrosine 120 in TPP36/32 led to an apparent mobility shift in sodium dodecyl sulfate-polyacrylamide gel electrophoresis, suggesting conformational change in the phosphorylated protein. Thus, TPP36/32 appear to be novel substrates of Abl tyrosine kinase.  相似文献   

17.
Human tripeptidyl-peptidase I (TPP I, CLN2 protein) is a lysosomal serine protease that removes tripeptides from the free N termini of small polypeptides and also shows a minor endoprotease activity. Due to various naturally occurring mutations, an inherited deficiency of TPP I activity causes a fatal lysosomal storage disorder, classic late infantile neuronal ceroid lipofuscinosis (CLN2). In the present study, we analyzed biosynthesis, glycosylation, transport, and proteolytic processing of this enzyme in stably transfected Chinese hamster ovary cells as well as maturation of the endocytosed proenzyme in CLN2 lymphoblasts, fibroblasts, and N2a cells. Human TPP I was initially identified as a single precursor polypeptide of approximately 68 kDa, which, within a few hours, was converted to the mature enzyme of approximately 48 kDa. Compounds affecting the pH of intracellular acidic compartments, those interfering with the intracellular vesicular transport as well as inhibition of the fusion between late endosomes and lysosomes by temperature block or 3-methyladenine, hampered the conversion of TPP I proenzyme into the mature form, suggesting that this process takes place in lysosomal compartments. Digestion of immunoprecipitated TPP I proenzyme with both N-glycosidase F and endoglycosidase H as well as treatment of the cells with tunicamycin reduced the molecular mass of TPP I proenzyme by approximately 10 kDa, which indicates that all five potential N-glycosylation sites in TPP I are utilized. Mature TPP I was found to be partially resistant to endo H treatment; thus, some of its N-linked oligosaccharides are of the complex/hybrid type. Analysis of the effect of various classes of protease inhibitors and mutation of the active site Ser(475) on human TPP I maturation in cultured cells demonstrated that although TPP I zymogen is capable of autoactivation in vitro, a serine protease that is sensitive to AEBSF participates in processing of the proenzyme to the mature, active form in vivo.  相似文献   

18.
OXI mutants in Saccharomyces cerevisiae lack a functional cytochrome c oxidase. Wild type and OXI mutants were grown in the presence of radioactive delta-amino[14C]levulinic acid, a precursor of porphyrin and heme, and [3H]mevalonic acid, a precursor of the alkyl side-chain of heme a. SDS polyacrylamide gel electrophoresis of the delipidated mitochondria showed that delta-amino[14C]levulinic acid was distributed into three bands migrating in the regions of Mr 28 000, 13 500, and 10 000, while [3H]mevalonic acid was found in a single band with apparent Mr of 10 000. The immunoprecipitates obtained by incubating the solubilized mitochondria of any OXI mutant with antibodies against cytochrome c oxidase, showed, after delipidation, a high specific radioactivity due to delta-amino[14C]levulinic acid and [3H]mevalonic acid. This suggested that a prophyrin a was present in all these OXI mutants. HCl fractionation confirmed the presence of porphyrin a in the apooxidase of these mutants. Atomic absorption spectra of the immunoprecipitate of cytochrome c oxidase showed that copper was not detectable in the mutant OXI IIIa which lacked subunit 1, but was present in the mutant OXI IIIb, which exhibited a minor alteration in the electrophoretic mobility of subunit 1. In OXI I and II mutants there was a 50% reduction in the amount of copper in the immunoprecipitated cytochrome c oxidase. These observations may be interpretable as follows: (1) alterations in polypeptide biosynthesis due to the OXI mutations lead to an improper configuration of cytochrome c oxidase, so that ferrochelatase cannot transfer iron into porphyrin a; (2) subunit I is the binding site for copper, but the mutations in subunits II and III alter the binding site of one of the two copper atoms in subunit I.  相似文献   

19.
The π-cation radicals of the metalloporphyrins magnesium octaethylporphyrin (MgOEP), magnesium tetraphenylporphyrin (MgTPP), and zinc tetraphenylporphyrin (ZnTPP), as well as the free base porphyrins of tetratolylporphyrin (H2TTP) and tetraphenylporphyrin (H2TPP) have been formed at liquid nitrogen temperatures in a rigid matrix of alkyl chloride glasses containing CCl4 or 1,1,2,2-tetrachloroethane (TCE), following photolysis of the porphyrins with visible light. The reaction proceeds via electron transfer from the photoexcited porphyrin to the solvent molecules; the efficiency of thie electron transfer may be qualitatively evaluated in terms of electron tunneling in the solid matrices. This is the first report of the photochemical formation of a free base porphyrin π-cation radical species.  相似文献   

20.
Two novel cationic porphyrins bearing five-membered rings at the meso-positions, meso-tetrakis(1,3-dimethylimidazolium-2-yl)porphyrin (H2TDMImP) and meso-tetrakis(1,2-dimethylpyrazolium-4-yl)porphyrin (H2TDMPzP), have been synthesized. These two compounds interact with calf thymus DNA (CTDNA) in different binding modes from that of mesotetrakis(N-methylpyridinium-4-yl)porphyrin (H2TMPyP). H2TDMImP outside binds to the minor groove of CTDNA while H2TDMPzP intercalates into CTDNA. These two novel cationic porphyrins strongly bind to CTDNA even at high ionic strength and the binding constant of H2TDMPzP to CTDNA is comparable to that of H2TMPyP. The binding of H2TDMImP to CTDNA is enthalpically driven. The favorable free energy changes in binding of H2TDMPzP to CTDNA come from the large negative enthalpy changes accompanied by small positive entropy changes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号