首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Independence of the domains of metallothionein in metal binding   总被引:2,自引:0,他引:2  
Mammalian metallothionein is a low molecular weight protein with two metal-binding domains. To determine if metal binding in one domain affects binding in the other, we prepared peptides corresponding to the regions that enfold the two metal-thiolate clusters. Metal reconstitution studies of these peptides revealed stoichiometries of metal binding similar to those observed within the intact molecule. Thus, the alpha domain coordinates 4 Cd(II), 6 Cu(I), or 6 Ag(I) ions regardless of whether the domain is part of the total protein or is studied as a separate peptide. Likewise, the beta domain binds 3 Cd(II), 6 Cu(I), or 6 Ag(I) ions in both the intact protein and as a separate peptide. If cluster B in intact metallothionein is preformed with Cu(I) or Ag(I), cluster A saturates with either 4 mol eq of Cd(II) or 6 mol eq of Ag(I). Similarly, preformation of the A cluster with Cd(II) does not affect the binding of 6 Cu(I) ions in the B cluster. Therefore, the metal-dependent folding of the protein to create one cluster occurs independent of constraints or influences from the other domain. Formation of the protein with a tetrahedrally coordinated metal in one cluster and a trigonally coordinated metal in the other center is possible.  相似文献   

2.
Yeast metallothionein. Sequence and metal-binding properties   总被引:31,自引:0,他引:31  
The protein product of the CUP1 locus in Cu-resistant Saccharomyces cerevisiae has been purified and characterized. The protein was found to lack the first 8 amino acids predicted by the nucleotide sequence of the gene. The residues removed from the amino-terminal region include 5 hydrophobic residues, two of which are aromatic. The unique amino terminus starting at Gln9 of the putative DNA translation product was observed for metallothionein purified in the presence of various protease inhibitors or from a pep4 mutant yeast strain deficient in vacuolar proteases. The remainder of the primary structure of the protein is equivalent to the decoded DNA sequence, so yeast metallothionein is a 53-residue polypeptide of molecular weight 5655. The isolated protein contained 8 copper ions ligated by 12 cysteines/molecule. Reconstitution studies of the apo-molecule revealed that 8 mol eq of Cu(I) conferred maximal stability against proteolysis and depleted the zinc content of zinc-saturated metallothionein. These assays suggested that the protein has 8 binding sites for Cu(I). Ag(I) ions bound to the protein with the same stoichiometry. Yeast metallothionein was also observed to coordinate Cd(II) and Zn(II) ions in vitro. In studies of direct binding, protection against proteolysis, and metal ion exchange, these divalent ions were found to associate with the protein with a maximal stoichiometry of 4 ions/molecule. Yeast metallothionein thus exhibits two distinct binding configurations for Cu(I) and Cd(II) as does the mammalian protein.  相似文献   

3.
Distinct metal-binding configurations in metallothionein   总被引:9,自引:0,他引:9  
In a study of the binding stoichiometry of various metals to rat liver metallothionein, the protein appears to coordinate metals in 2 distinct configurations. Ions of at least 18 different metals were shown to associate with the protein suggesting that there is little specificity in binding. Most metals exhibited saturation binding at 7 mol eq forming M7-metallothionein. These included Bi(III), Cd(II), Co(II), Hg(II), In(III), Ni(II), Pb(II), Sb(III), and Zn(II). Others metals including Os(III), Pd(II), Pt(IV), Re(V), Rh(III), and Tl(III) give a positive indication of binding, but stoichiometries were unclear. Ag(I) and Cu(I) bound in clusters as M12-metallothionein. This binding stoichiometry was determined in 3 ways: (a) by determining the equivalence point in Cu- and Ag-titrated samples where resistance to proteolysis is maximal; (b) by determining the point where Zn ions are completely displaced from Zn7-metallothionein; and (c) by direct binding studies. Ag-reconstituted protein, recovered from gel filtration, had an average Ag content of 11.5 g atoms/mol of protein. A similar stoichiometry for the Cu-protein resulted from displacement of Zn from Zn7-metallothionein by Cu(I). The M12-protein was converted to the M7-protein by displacement of Ag(I) or Cu(I) with 7 mol eq of Hg(II). Whereas the distribution of metals in the 2 domains of M7-metallothionein is M4 alpha and M3 beta, the arrangement in the M12-molecule is probably M6 alpha and M6 beta. We propose that metallothionein ligates Ag(I) and Cu(I) in a trigonal geometry by bridging thiolates. This is in contradistinction to a tetrahedral binding geometry in the M7-protein. Distinct binding configurations may result in different tertiary structures for M7- and M12-proteins which may relate to metabolic specificity of Zn-metallothionein and Cu-metallothionein, respectively.  相似文献   

4.
Order of metal binding in metallothionein   总被引:5,自引:0,他引:5  
Purified isoforms of rat liver apometallothionein were reconstituted in vitro with Cd and Zn ions to study the order of binding of the 7 metal sites in the two separate metal clusters, one containing four metal ions (cluster A) and the other containing three (cluster B). Reconstitution with 7 Cd ions resulted in a metalloprotein similar to induced Cd,Zn-metallothionein by the criteria of electrophoretic mobility, insensitivity to proteolysis by subtilisin, and the pH-dependent release of Cd. Proteolytic digestion of metallothionein reconstituted with suboptimal quantities of Cd followed by separation of Cd-containing polypeptide fragments by electrophoresis and chromatography revealed metal ion binding initially occurs in the 4-metal center, cluster A. Upon saturation of the 4 sites in cluster A, binding occurs in the 3-metal center, cluster B. Samples reconstituted with 1 to 4 Cd ions per protein molecule, followed by digestion with subtilisin, yielded increasing amounts of a proteolytically stable polypeptide fragment identical with the alpha fragment domain that is known to encompass the 4-metal center. Samples renatured with 5 to 7 Cd ions per metallothionein molecule showed decreasing quantities of alpha fragment and increasing amounts of native-like metallothionein. Similar results were obtained in reconstitution studies with Zn ions. Samples reconstituted with 7 Cd eq followed by incubation with EDTA revealed that cluster B Cd ions were removed initially. The binding process in each domain is cooperative. Reconstitution of apometallothionein with 2 Cd ions followed by proteolysis yields a 50% recovery of saturated Cd4 alpha cluster. Likewise, when Cd5-renatured metallothionein was digested with subtilisin, 30% of the molecules were identified as Cd7 metallothionein with the remainder as Cd4 alpha fragment.  相似文献   

5.
Liu T  Chen X  Ma Z  Shokes J  Hemmingsen L  Scott RA  Giedroc DP 《Biochemistry》2008,47(40):10564-10575
ArsR (or ArsR/SmtB) family metalloregulatory homodimeric repressors collectively respond to a wide range of metal ion inducers in regulating homeostasis and resistance of essential and nonessential metal ions in bacteria. BxmR from the cyanobacterium Osciliatoria brevis is the first characterized ArsR protein that senses both Cu (I)/Ag (I) and divalent metals Zn (II)/Cd (II) in cells by regulating the expression of a P-type ATPase efflux pump (Bxa1) and an intracellular metallothionein (BmtA). We show here that both pairs of predicted alpha3N and alpha5 sites bind metal ions, but with distinct physicochemical and functional metal specificities. Inactivation of the thiophilic alpha3N site via mutation (C77S) abolishes regulation by both Cd (II) and Cu (I), while Zn (II) remains a potent allosteric negative effector of operator/promoter binding (Delta G c >or= +3.2 kcal mol (-1)). In contrast, alpha5 site mutant retains regulation by all four metal ions, albeit with a smaller coupling free energy (Delta G c approximately +1.7 (+/-0.1) kcal mol (-1)). Unlike the other metals ions, the BxmR dimer binds 4 mol equiv of Cu (I) to form an alpha3N binuclear Cu (I) 2S 4 cluster by X-ray absorption spectroscopy. BxmR is thus distinguishable from other closely related ArsR family sensors, in having evolved a metalloregulatory alpha3N site that can adopt an expanded range of coordination chemistries while maintaining redundancy in the response to Zn (II). The evolutionary implications of these findings for the ArsR metal sensor family are discussed.  相似文献   

6.
Rat liver metallothionein contains two domains, each of which enfolds a separate metal-thiolate cluster. The binding stoichiometry of these clusters depends on the particular metal ion bound. In the aminoterminal beta domain the cluster can accommodate either three Cd(II) ions or six Cu(I) ions. The Cd ions are known to be coordinated in a tetrahedral geometry. In order to better understand the binding of Cu ions in this domain, the Cu-beta domain fragment of metallothionein was prepared and investigated by x-ray absorption spectroscopy. Quantitative analysis of the EXAFS data indicates copper-sulfur distances of 2.25 +/- 0.03 A. The EXAFS amplitudes and distance results are most consistent with trigonal coordination. A trigonal biprism is proposed for the Cu6Cys9 complex in which Cu occupies each vertex and cysteinyl sulfur bridges at each of the nine edges.  相似文献   

7.
The formation of two metal-thiolate clusters in rabbit liver metallothionein 2 (MT) has been examined by 113Cd NMR spectroscopy at pH 7.2 and 8.6. The chemical shifts of the 113Cd resonances developing in the course of apoMT titration with 113Cd(II) ions have been compared with those of fully metal occupied 113Cd7-MT. At pH 7.2 and at low metal occupancy (less than 4), a cooperative formation of the four-metal cluster (cluster A) occurs. Further addition of 113Cd(II) ions generates all the resonances of the three-metal cluster (cluster B) in succession, suggesting cooperative metal binding to this cluster also. In contrast, similar studies at pH 8.6, at low metal occupancy (less than 4), reveal a broad NMR signal centered at 688 ppm. This observation indicates that an entirely different protein structure exists. When exactly 4 equiv of 113Cd(II) are bound to apoMT, the 113Cd NMR spectrum changes to the characteristic spectrum of cluster A. Further addition of 113Cd(II) ions again leads to the cooperative formation of cluster B. These results stress the determining role of the cluster A domain on the overall protein fold. The observed pH dependence of the cluster formation in MT can be rationalized by the different degree of deprotonation of the cysteine residues (pKa approximately 8.9), i.e., by the difference in the Gibbs free energy required to bind Cd(II) ions to the thiolate ligands at both pH values.  相似文献   

8.
Metal substitution of Neurospora copper metallothionein   总被引:1,自引:0,他引:1  
M Beltramini  K Lerch  M Vasák 《Biochemistry》1984,23(15):3422-3427
The binding of diamagnetic Zn(II), Cd(II), and Hg(II) and paramagnetic Co(II) and Ni(II) ions to the apo form of Neurospora metallothionein (MT) was investigated by various spectroscopic techniques. In contrast to native copper MT, which was shown to bind 6 mol of Cu(I)/mol of protein (Lerch, 1980), all substituted forms reveal an overall metal to protein stoichiometry of 3. The charge-transfer (CT) transitions of the complexes containing diamagnetic metal ions as well as the d-d transitions of those with paramagnetic metal ions are indicative of a distorted Td coordination. Electron paramagnetic resonance and absorption measurements of the Co(II) derivative are in agreement with the presence of a metal-thiolate cluster in this protein. Metal titration studies of the apoprotein reveal characteristic spectral features for the derivatives containing two metal equivalents as compared to those with a full complement of three metal ions. The former features are indicative of an exclusive Td type of metal-sulfur coordination whereas the latter suggest that the third metal ion is coordinated in a different fashion. This finding is in agreement with the presence of only seven cysteine residues in Neurospora MT as opposed to nine cysteine residues in the three-metal cluster of the mammalian MT's [Winge, D.R., & Miklossy, K.-A. (1982) J. Biol. Chem. 257, 3471].  相似文献   

9.
Reaction of Cd7-metallothionein-2 (MT) with Cu(II) ions has been studied by a variety of spectroscopic techniques including UV-absorption, circular dichroism (CD) and luminescence spectroscopy. The addition of up to 5 Cu(II) equivalents to Cd7-MT resulted in a cooperative formation of the monomeric Cd3,Cu5-MT form, as revealed by the analytical data and the presence of isosbestic or isodichroic points in the respective UV and CD spectra. The presence of Cu(I) luminescence and the absence of Cu(II) EPR signal indicated that copper is bound in the Cu(I) oxidation state, i.e., Cd3,Cu(I)5-MT. Consequently, the reduction of Cu(II) ions is accompanied by the oxidation of thiolate ligands of the protein. The absorption features and the luminescence data at 77 K are consistent with the presence of an air-stable Cu(I)-cluster in Cd3,Cu(I)5-MT. The participation of other ligands, besides cysteine thiolates, in metal coordination cannot be ruled out. With more than 5 Cu(II) equivalents added a mixture of unstable MT metalloforms were formed. The concomitant reduction and binding of copper ions by metallated MT represent a new aspect of the MT structure.  相似文献   

10.
The oncogenic E7 proteins of human papilloma virus (HPV 16) and of cottontail rabbit papilloma virus (CRPV) have been purified from an expression system in Escherichia coli. The proteins as purified from E. coli contain one tightly bound Zn(II) ion per molecule. The metal site shows facile exchange with either Cd(II) or Cu(I). The HPV 16 E7 maximally bound one Cd(II) or two Cu(I) ions, while the CRPV E7 bound two Cd(II) or three Cu(I) ions. The Cd(II) and Cu(I) E7 molecules exhibited optical transitions in the ultraviolet suggestive of metal:thiolate coordination. E7 proteins from HPV 16 and CRPV contain 7 and 8 cysteines/molecule, respectively. Reaction of the E7 proteins with the sulfhydryl reagent, dithiodipyridine, revealed that all the cysteinyl sulfurs are present in the reduced thiol state. Cu(I)-E7 molecules are luminescent with maximal emission at 570 nm. The observed emission at room temperature is indicative of metal coordination within a compact protein environment shielded from solvent interactions. The emission maxima occurs at the same wavelength (570 nm) as Cu(I)-cysteinyl sulfur clusters in Cu(I)-metallothioneins. The single Zn(II) atom in each protein can be removed from E7 in the presence of EDTA. The resulting apoE7 molecules remain soluble and can be partially reconstituted with Cd(II) to regain the ultraviolet charge transfer transitions.  相似文献   

11.
ZntA from Escherichia coli is a P-type ATPase that confers resistance to Pb(II), Zn(II), and Cd(II) in vivo. We had previously shown that purified ZntA shows ATP hydrolysis activity with the metal ions Pb(II), Zn(II), and Cd(II). In this study, we utilized the acylphosphate formation activity of ZntA to further investigate the substrate specificity of ZntA. The site of phosphorylation was Asp-436, as expected from sequence alignments. We show that in addition to Pb(II), Zn(II), and Cd(II), ZntA is active with Ni(II), Co(II), and Cu(II), but not with Cu(I) and Ag(I). Thus, ZntA is specific for a broad range of divalent soft metal ions. The activities with Ni(II), Co(II), and Cu(II) are extremely low; the activities with these non-physiological substrates are 10-20-fold lower compared with the values obtained with Pb(II), Zn(II), and Cd(II). Similar results were obtained with DeltaN-ZntA, a ZntA derivative lacking the amino-terminal metal binding domain. By characterizing the acylphosphate formation reaction in ZntA in detail, we show that a step prior to enzyme phosphorylation, most likely the metal ion binding step, is the slow step in the reaction mechanism in ZntA. The low activities with Ni(II), Co(II), and Cu(II) are because of a further decrease in the rate of binding of these metal ions. Thus, metal ion selectivity in ZntA and possibly other P1-type ATPases is based on the charge and the ligand preference of particular metal ions but not on their size.  相似文献   

12.
Products of metal exchange reactions of metallothionein   总被引:3,自引:0,他引:3  
Hepatic metallothionein (MT) isolated from Cd-exposed animals always contains Zn (2-3 mol/mol of protein) in addition to Cd (4-5 mol/mol of protein), and the two metals are distributed in a nonuniform, but reproducible, manner among the seven binding sites of the protein's two metal-thiolate clusters. Different methodologies of preparing rabbit liver Cd, Zn-MT in vitro were investigated to provide insight into why such a distinct mixture of mixed-metal clusters is produced in vivo and by what mechanism they form. 113Cd NMR spectra of the products of stepwise displacement of Zn2+ from Zn7-MT by 113Cd2+ show that Cd binding to the clusters is not cooperative (i.e., clusters containing exclusively Cd are not formed in preference to mixed-metal Cd, Zn clusters), there is no selective occupancy of one cluster before the other, and many clusters are produced with a nonnative metal distribution indicating that this pathway is probably not followed in vivo. In contrast, the surprising discovery was made that the native cluster compositions and their relative concentrations could be reproduced exactly by simply mixing together the appropriate amounts of Cd7-MT and Zn7-MT and allowing intermolecular metal exchange to occur. This heretofore unknown metal interchange reaction occurs readily, and the driving force appears to be the relative thermodynamic instability of three-metal clusters containing Cd. With this new insight into how Cd,Zn-MT is likely to be formed in vivo we are able for the first time to postulate rational explanations for previous observations regarding the response of hepatic Zn and metallothionein levels to Cd administration.  相似文献   

13.
Cu-metallothionein was purified from Saccharomyces cerevisiae harboring plasmids containing mutated CUP1 metallothionein genes resulting in deletions at the carboxy-terminal end of the polypeptide. The truncated polypeptides are recovered as polypeptides of 35 and 48 residues in length. The Cu-S cluster in the wild-type metallothionein and the two truncates were characterized. The truncated proteins, designated T35 and T48, contain 4 and 2 fewer cysteinyl residues, respectively, compared to the 12 cysteines in wild-type metallothionein; yet the mutant molecules bind Cu(I) ions in a stoichiometry comparable to the wild-type protein, i.e. 7-8 mol eq. The Cu(I) ions bound to T48 are as tenaciously bound as those bound to the wild-type molecule. The electronic transitions in the ultraviolet are similar for Cu-T48 and the wild-type protein. Both mutants and wild-type Cu-protein exhibit luminescence. The corrected emission maxima occurs at 609 nm with a corrected excitation peak near 277 nm. The luminescence quantum yield and lifetime of fluorescence decay of Cu-T48 and wild-type Cu-metallothionein are similar. The absolute quantum yield of the wild-type Cu-protein luminescence is 0.0058 and has a 440-ns lifetime. The similar fluorescence rate constant in the two molecules suggests they possess a similar chromophore. The Cu-T35 protein is more labile than Cu-T48 or the wild-type protein in the association of Cu(I) ions and the air sensitivity of the electronic transitions and luminescence. Although T48 lacks 2 of the 12 cysteines in the wild-type protein, we are unable to detect any differences in the properties of the native metal clusters in the two molecules; T35 lacking 4 cysteinyl residues forms a Cu(I) cluster with properties significantly different from the wild-type molecule. Properties of the Cu-thiolate cluster were also studied in Cu(I)-reconstituted samples. The cluster in wild-type metallothionein forms in all-or-nothing fashion. This conclusion is based on copper binding stoichiometry and luminescence studies. The relative quantum yield of samples with intermediate Cu(I) levels was constant, consistent with all-or-none cluster formation.  相似文献   

14.
Addition of cadmium salts to the growth medium of Schizosaccharomyces pombe leads to synthesis of a Cd.gamma-Glu peptide complex and an enhanced generation of sulfide ions. The gamma-Glu peptide complex functions in the detoxification of heavy metal ions. Native Cd.gamma-Glu peptide complexes contain acid-labile sulfide in the metal-thiolate cluster. Two forms of the complex exist differing primarily in their sulfide content. Sulfide concentrations up to 0.2 and 1.2 mol/mol of peptide were observed in native isolates of forms I and II, respectively. Addition of sulfide to the low sulfide form I converted it to a complex similar to form II. Properties of the Cd.gamma-Glu peptide complex were altered by the incorporation of sulfide ions. Sulfide-dependent electronic transitions in the ultraviolet were evident, and the absorbance maximum of the transition was related to the sulfide content and the bound metal ion. High sulfide forms of the Cd and Zn complexes exhibited absorbance peaks at 318 nm and 255 nm, respectively. Incorporation of sulfide into the Cd.gamma-Glu peptide complex imparted greater thermodynamic stability to the complex, an increased Stokes radius, and an enhanced Cd(II) binding capacity. Sulfide generation may be a cellular response in part to enhance the effectiveness of the gamma-Glu peptide system for Cd(II) detoxification.  相似文献   

15.
In mammalian metallothioneins the metals are organized in two adamantane-type clusters with three and four metal ions which are tetrahedrally coordinated by thiolate ligands. The metal selectivity of the metal-thiolate clusters in rabbit liver metallothionein has been studied by offering two ions, i.e. Co(II)/Cd(II), Zn(II)/Cd(II) or Co(II)/Zn(II), to the metal-free protein. The heterogeneous metal complexes thus formed were characterized by electronic absorption, magnetic circular dichroism. 113Cd-NMR and EPR spectroscopy. In the case of Co/Cd-metallothionein, homometallic cluster occupation occurs, with the Cd(II) ions bound exclusively to the four-metal cluster. In contrast, heterometallic clusters were formed for both Zn/Cd- and Co/Zn-metallothionein. Based on evidence from corresponding inorganic structures of adamantane metal-thiolate cages, it is suggested that the major factor governing the cluster type is the protein structure perturbation due to the cluster volume variations. Thus, while metal thiolate affinities are important in the folding process, size-match selectivity is the dominant factor in the metal-loaded protein.  相似文献   

16.
The gamma-glutamyl peptide induced in Schizosaccharomyces pombe in response to metal stress has been purified following exposure of the organism to cadmium and copper salts. Induction of the peptide enables S. pombe to proliferate in media containing high concentrations of cadmium and copper. Two Cd-gamma-Glu peptide complexes are produced which differ in the content of acid-labile sulfur. One Cu-gamma-Glu peptide complex is induced, and it lacks acid-labile sulfur in the metal-binding cluster. The peptides are composed of repeating dipeptide units of gamma-Glu-Cys with a carboxyl-terminal glycine with heterogeneity observed in the repeat unit n. The number of repeats averages 3.2 and 3.8 for the Cd-peptides I and II and 3.6 for the Cu-peptide, in the case of the Cu-complex peptides with n values from 2 to 4 were separated by reverse phase high pressure liquid chromatography. The Cu-gamma-Glu peptide complex is oligomeric, but the exact number of peptide units per complex is not known. The copper binding stoichiometry averages 2.3 g atoms of Cu/mol of peptide, whereas Cd-peptides I and II average 1.8 and 2.7 mol eq of Cd(II)/peptide unit. The pH of half-dissociation of Cu ions from the gamma-Glu peptide is near 1.3, whereas pH values of 4 and 5.4 are sufficient for half-displacement of Cd ions from the sulfide-containing and -lacking peptides II and I, respectively. In the Cu-peptide complex copper is bound as Cu(I) as the complex exhibits luminescence characteristic of Cu(I)-S chelation. The luminescence emission peaks at 619 nm with a corrected excitation peak centered at 290 nm. The luminescence of the Cu-complex indicates the clustering of Cu(I) ions within a solvent-inaccessible complex. The complex is air-labile as the luminescence emission is gradually lost upon air exposure.  相似文献   

17.
18.
The binding of diamagnetic Cd(II) and paramagnetic Co(II) ions to the metal-free form of crab, Cancer pagurus, metallothionein (MT) was studied by various spectroscopic techniques. Both reconstituted and native Cd(II)-MT containing 6 mol Cd(II)/mol protein display electronic absorption, circular dichroism (CD) and magnetic circular dichroism (MCD) spectra which were indistinguishable. The stoichiometric replacement of Cd(II) ions in native Cd(II)6-MT by paramagnetic Co(II) ions enabled the geometry of the metal-binding sites to be probed. The electronic absorption and MCD spectra of Co(II)6-MT revealed features characteristic of distorted tetrahedral tetrathiolate Co(II) coordination for all six metal-binding sites. The stepwise incorporation of Cd(II) and Co(II) ions into this protein was monitored by electronic absorption and CD, and by electronic absorption and EPR spectroscopy, respectively. The results indicate that the metal-thiolate cluster structure is generated when more than four metal ions are bound. Below this titration point separate tetrahedral tetrathiolate complexes exist. This suggests that the cluster formation occurs in a two-step process. Furthermore, the spectroscopic features in both Cd(II)- and Co(II)-metal derivatives above the full metal occupancy of six suggest the existence of one additional metal-binding site. The subsequent loss of one Cd(II) ion from crab Cancer Cd(II)7-MT in the gel filtration studies demonstrate the low metal-binding affinity of the latter site. While the spectroscopic properties indicate an exclusively tetrahedral type of metal-thiolate sulfur coordination for the binding of the first six metal ions, they suggest that the seventh metal ion is coordinated in a different fashion.  相似文献   

19.
In this paper we report a systematic XAS study of a set of samples in which Cu(II) was progressively added to complexes in which Zn(II) was bound to the tetra-octarepeat portion of the prion protein. This work extends previous EPR and XAS analysis in which, in contrast, the effect of adding Zn(II) to Cu(II)–tetra-octarepeat complexes was investigated. Detailed structural analysis of the XAS spectra taken at both the Cu and Zn K-edge when the two metals are present at different relative concentrations revealed that Zn(II) and Cu(II) ions compete for binding to the tetra-octarepeat peptide by cross-regulating their relative binding modes. We show that the specific metal–peptide coordination mode depends not only, as expected, on the relative metal concentrations, but also on whether Zn(II) or Cu(II) was first bound to the peptide. In particular, it seems that the Zn(II) binding mode in the absence of Cu(II) is able to promote the formation of small peptide clusters in which triplets of tetra-octarepeats are bridged by pairs of Zn ions. When Cu(II) is added, it starts competing with Zn(II) for binding, disrupting the existing peptide cluster arrangement, despite the fact that Cu(II) is unable to completely displace Zn(II). These results may have a bearing on our understanding of peptide-aggregation processes and, with the delicate cross-regulation balancing we have revealed, seem to suggest the existence of an interesting, finely tuned interplay among metal ions affecting protein binding, capable of providing a mechanism for regulation of metal concentration in cells.  相似文献   

20.
The metalloprotein metallothionein (MT) is remarkable in its metal binding properties: for the mammalian protein, well-characterized species exist for metal to sulfur ratios of M7S20, M12S20, and M18S20, where M = Cd(II), Zn(II), Hg(II), Ag(I), Au(I), and Cu(I). Optical spectra in general, and circular dichroism (CD) and luminescence spectra in particular, provide rich detail of a complicated metal binding chemistry when metals are added directly to the metal-free or zinc-containing protein. CD spectral data unambiguously identify key metal to protein stoichiometric ratios that result in well-defined structures. Electrospray ionization-mass spectrometry data are reported for reactions in which Hg(II) binds to apo-MT 2A as previously described from CD data. Emission spectra in the 450-750 nm region have been reported for metallothioneins containing Ag(I), Au(I), and Cu(I). The luminescence of Cu-MT can also be detected directly from mammalian and yeast cells. We report both steady-state and new dynamic data for titrations of Zn-MT with Cu(I). Analysis of kinetic data for the addition of the first two Cu(I) atoms to Zn-MT indicates a first-order mechanism over a concentration range of 5-50 microM. Three-dimensional modeling was carried out using the results of the CD and EXAFS studies, model calculations for Zn7-MT, Hg7-MT, and Cu12-MT are described.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号