首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Specific morphological and biochemical characteristics of seeds can cause oxygen deficiency within maternal and embryonic tissues. In this study, optical sensors were used to measure O(2) profiles across developing seeds of Vicia faba and Pisum sativum and developmental and environmental modulations of internal O(2) levels were studied. In addition, the metabolic state of developing embryos was analysed by monitoring adenylate energy charge, adenylate nucleotides and the levels of nucleotide sugars. Within the seed coat O(2) concentration decreased sharply to approximately 3% towards the inner border. Lowest O(2) levels were detected within the endospermal cavity between the seed coat and embryo. It is probable that low seed coat permeability provides an hypoxic environment for legume embryo development. The O(2) concentration in embryonic tissue changed during development with the lowest levels in the early stages. Measured in darkness, the levels were below 3%, but increased upon illumination indicating that photosynthesis significantly contributes to internal O(2) levels. Only in very young embryos were ATP levels and energy charge low. Otherwise they were maintained at a constant higher value. ADP-glucose and UDP-glucose did not show large fluctuations. Throughout embryo development fermentative activity did not play a major role. Obviously, specific mechanisms prevent seed tissues from becoming anoxic during development. The possible role of low oxygen on seed metabolism and on the control of seed development in legumes is discussed.  相似文献   

2.
3.
This study tests the hypotheses that in vivo oxygen levels inside developing maize grains locally affect assimilate partitioning and ATP distribution within the kernel. These questions were addressed through combined topographical analysis (O2- and ATP-mapping), metabolite profiling, and isotope flux analysis. Internal and external oxygen levels were also experimentally altered. Under ambient conditions, mean O2 concentration immediately inside starchy endosperm dropped to only 1.4% of atmospheric saturation (approximately 3.8 microm), but was 10-fold higher in the oil-storing embryo. Increasing the O2 supply to intact kernels stimulated their O2 demand, shifted ATP localization within the kernel, and elevated their ATP/ADP ratio. Enhanced O2 availability also increased steady-state levels of glycolytic intermediates and those of the citric acid cycle, as well as some related pools of free amino acids. Subsequent analyses indicated that starch formation within endosperm, but not lipid biosynthesis within embryo, was adapted to the endogenous low oxygen. Increasing the O2 supply did not change ADP-glucose levels, activity of ADP-glucose pyrophosphorylase, 13C-labeling of ADP-glucose, or flux of 14C-sucrose into starch. In contrast, enhanced O2 availability increased 14C-label uptake into the embryo, 13C-labeling of acetyl-coenzyme A, and finally 14C-incorporation into lipids. Lipid accumulation in embryo appeared highest in regions with higher ATP. Consistent with labeling data, a decrease in O2 supply most strongly affected the embryo, whereas rising O2 levels expanded ATP-rich zones toward the starch-storing endosperm and the scutellar part of embryo. The latter might be responsible for higher 14C-label uptake into the embryo and flux toward lipid. Collectively, data indicate that the in vivo oxygen distribution in maize kernels markedly affects ATP gradients, metabolite levels, and favors assimilate partitioning toward starch within the O2-depleted endosperm. Clear advantages are thus evident for peripheral localization of the protein and lipid storing structures in maize kernels.  相似文献   

4.
To analyse the energy status of Vicia faba embryos in relation to differentiation processes, we measured ATP concentrations directly in cryosections using a quantitative bioluminescence-based imaging technique. This method provides a quantitative picture of the ATP distribution close to the in vivo situation. ATP concentrations were always highest within the axis. In pre-storage cotyledons, the level was low, but it increased strongly in the course of further development, starting from the abaxial region of cotyledons and moving towards the interior. Greening pattern, chlorophyll distribution and photosynthetic O2 production within embryos temporally and spatially corresponded to the ATP distribution, implicating that the overall increase of the energy state is associated to the greening process. ATP patterns were associated to the photosynthetic capacity of the embryo. The general distribution pattern as well as the steady state levels of ATP were developmentally regulated and did not change upon dark/light conditions. The major storage protein legumin started to accumulate in abaxial regions with high ATP, whereas starch localized in regions with relatively lower ATP levels. This suggests a role of the energy state in the partitioning of assimilates into the different storage-product classes. Highest biosynthetic rates occurred when cotyledons became fully green and contained high ATP levels, implicating that a photoheterotrophic state was required to ensure high fluxes. Based on these data, we propose a model for the role of embryonic photosynthesis to improve the energy status of the embryo.  相似文献   

5.
Several metabolic fluxes were analyzed during gradual transitions from aerobic to oxygen-limited conditions in chemostat cultures of Pseudomonas mendocina growing in synthetic medium at a dilution rate of 0.25 h-1. P. mendocina growth was glucose limited at high oxygen partial pressures (70 and 20% pO2) and exhibited an oxidative type of metabolism characterized by respiratory quotient (RQ) values of 1.0. A similar RQ value was obtained at low pO2 (2%), and detectable levels of acetic, formic, and lactic acids were determined in the extracellular medium. RQs of 0.9 +/- 0.12 were found at 70% pO2 for growth rates ranging from 0.025 to 0.5 h-1. At high pO2, the control coefficients of oxygen on catabolic fluxes were 0.19 and 0.22 for O2 uptake and CO2 production, respectively. At low pO2 (2%), the catabolic and anabolic fluxes were highly controlled by oxygen. P. mendocina showed a mixed-type fermentative metabolism when nitrogen was flushed into chemostat cultures. Ethanol and acetic, lactic, and formic acids were excreted and represented 7.5% of the total carbon recovered. Approximately 50% of the carbon was found as uronic acids in the extracellular medium. Physiological studies were performed under microaerophilic conditions (nitrogen flushing) in continuous cultures for a wide range of growth rates (0.03 to 0.5 h-1). A cell population, able to exhibit a near-maximum theoretical yield of ATP (YmaxATP = 25 g/mol) with a number of ATP molecules formed during the transfer of an electron towards oxygen along the respiration chain (P/O ratio) of 3, appears to have adapted to microaerophilic conditions.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

6.
Several metabolic fluxes were analyzed during gradual transitions from aerobic to oxygen-limited conditions in chemostat cultures of Pseudomonas mendocina growing in synthetic medium at a dilution rate of 0.25 h-1. P. mendocina growth was glucose limited at high oxygen partial pressures (70 and 20% pO2) and exhibited an oxidative type of metabolism characterized by respiratory quotient (RQ) values of 1.0. A similar RQ value was obtained at low pO2 (2%), and detectable levels of acetic, formic, and lactic acids were determined in the extracellular medium. RQs of 0.9 +/- 0.12 were found at 70% pO2 for growth rates ranging from 0.025 to 0.5 h-1. At high pO2, the control coefficients of oxygen on catabolic fluxes were 0.19 and 0.22 for O2 uptake and CO2 production, respectively. At low pO2 (2%), the catabolic and anabolic fluxes were highly controlled by oxygen. P. mendocina showed a mixed-type fermentative metabolism when nitrogen was flushed into chemostat cultures. Ethanol and acetic, lactic, and formic acids were excreted and represented 7.5% of the total carbon recovered. Approximately 50% of the carbon was found as uronic acids in the extracellular medium. Physiological studies were performed under microaerophilic conditions (nitrogen flushing) in continuous cultures for a wide range of growth rates (0.03 to 0.5 h-1). A cell population, able to exhibit a near-maximum theoretical yield of ATP (YmaxATP = 25 g/mol) with a number of ATP molecules formed during the transfer of an electron towards oxygen along the respiration chain (P/O ratio) of 3, appears to have adapted to microaerophilic conditions.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

7.
Oxygen is a powerful regulator of preimplantation embryo development, affecting gene expression, the proteome, and energy metabolism. Even a transient exposure to atmospheric oxygen can have a negative impact on embryo development, which is greatest prior to compaction, and subsequent postcompaction culture at low oxygen cannot alleviate this damage. In spite of this evidence, the majority of human in vitro fertilization is still performed at atmospheric oxygen. One of the physiological parameters shown to be affected by the relative oxygen concentration, carbohydrate metabolism, is linked to the ability of the mammalian embryo to develop in culture and remain viable after transfer. The aim of this study was, therefore, to determine the effect of oxygen concentration on the ability of mouse embryos to utilize both amino acids and carbohydrates both before and after compaction. Metabolomic and fluorometric analysis of embryo culture media revealed that when embryos were exposed to atmospheric oxygen during the cleavage stages, they exhibited significantly greater amino acid utilization and pyruvate uptake than when cultured under 5% oxygen. In contrast, postcompaction embryos cultured in atmospheric oxygen showed significantly lower mean amino acid utilization and glucose uptake. These metabolic changes correlated with developmental compromise because embryos grown in atmospheric oxygen at all stages showed significantly lower blastocyst formation and proliferation. These findings confirm the need to consider both embryo development and metabolism in establishing optimal human embryo growth conditions and prognostic markers of viability, and further highlight the impact of oxygen on such vital parameters.  相似文献   

8.
In oil-storing Brassica napus (rape) seeds, starch deposition occurs only transiently in the early stages of development, and starch is absent from mature seeds. This work investigates the influence of a reduction of ADP-Glc pyrophosphorylase (AGPase) on storage metabolism in these seeds. To manipulate the activity of AGPase in a seed-specific manner, a cDNA encoding the small subunit of AGPase was expressed in the sense or antisense orientation under the control of an embryo-specific thioesterase promoter. Lines were selected showing an embryo-specific decrease in AGPase due to antisense and cosuppression at different stages of development. At early developmental stages (25 days after flowering), a 50% decrease in AGPase activity was accompanied by similar decreases in starch content and the rate of starch synthesis measured by injecting (14)C-Suc into seeds in planta. In parallel to inhibition of starch synthesis, the level of ADP-Glc decreased, whereas Glc 1-phosphate levels increased, providing biochemical evidence that inhibition of starch synthesis was due to repression of AGPase. At 25 days after flowering, repression of starch synthesis also led to a decrease in the rate of (14)C-Suc degradation and its further metabolism via other metabolic pathways. This was not accompanied by an increase in the levels of soluble sugars, indicating that Suc import was inhibited in parallel. Flux through glycolysis, the activities of hexokinase, and inorganic pyrophosphate-dependent phosphofructokinase, and the adenylate energy state (ATP to ADP ratio) of the transgenic seeds decreased, indicating inhibition of glycolysis and respiration compared to wild type. This was accompanied by a marked decrease in the rate of storage lipid (triacylglycerol) synthesis and in the fatty acid content of seeds. In mature seeds, glycolytic enzyme activities, metabolite levels, and ATP levels remained unchanged, and the fatty acid content was only marginally lower compared to wild type, indicating that the influence of AGPase on carbon metabolism and oil accumulation was largely compensated for in the later stages of seed development. Results indicate that AGPase exerts high control over starch synthesis at early stages of seed development where it is involved in establishing the sink activity of the embryo and the onset of oil accumulation.  相似文献   

9.
The role of oxygen and energy state in development and storage activity of cereal grains is an important issue, but has remained largely uninvestigated due to the lack of appropriate analytical methods. Metabolic profiling, bioluminescence-based in situ imaging of ATP, and oxygen-sensitive microsensors were combined here to investigate barley seed development. For the first time temporal and spatial maps of O2 and ATP distribution in cereal grains were determined and related to the differentiation pattern. Steep O2 gradients were demonstrated and strongly hypoxic regions were detected within the caryopsis (<0.1% of atmospheric saturation). Growing lateral and peripheral regions of endosperm remained well-supplied with O2 due to pericarp photosynthesis. ATP distribution in the developing grain was coupled to endosperm differentiation. High ATP concentrations were associated with the local onset of starch storage within endosperm, while low ATP overlapped with the hypoxic regions. Temporally, the building of steep gradients in ATP coincided with overall elevating metabolite levels, specific changes in the metabolite profiles (glycolysis and citrate cycle), and channelling of metabolic fluxes towards storage (increase of starch accumulation rate). These findings implicate an inhomogenous spatial arrangement of metabolic activity within the caryopsis. It is suggested that the local onset of starch storage is coupled with the accumulation of ATP and elevated metabolic activity. Thus, the ATP level reflects the metabolic state of storage tissue. On the basis of these findings, a hypothetical model for the regulation of starch storage in barley seeds is proposed.  相似文献   

10.
As reported in a previous paper (Plant, Cell and Environment 24, 357–365, 2001), introduction of sucrose phosphorylase into the cytosol of potato results in increased respiration, an inhibition of starch accumulation and decreased tuber yield. Herein a more detailed investigation into the effect of sucrose phosphorylase expression on tuber metabolism, in order to understand why storage and growth are impaired is described. (1) Although the activity of the introduced sucrose phosphorylase was low and accounted for less than 10% of that of sucrose synthase its expression led to a decrease in the activities of enzymes of starch synthesis relative to enzymes of glycolysis and relative to total amylolytic activity. (2) Incubation of tuber discs in [14C]glucose revealed that the transformants display a two‐fold increase of the unidirectional rate of sucrose breakdown. However this was largely compensated by a large stimulation of sucrose re‐synthesis and therefore the net rate of sucrose breakdown was not greatly affected. Despite this fact major shifts in tuber metabolism, including depletion of sucrose to very low levels, higher rates of glycolysis, and larger pools of amino acids were observed in these lines. (3) Expression of sucrose phosphorylase led to a decrease of the cellular ATP/ADP ratio and energy charge in intact growing tubers. It was estimated that at least 30% of the ATP formed during respiration is consumed as a result of the large acceleration of the cycle of sucrose breakdown and re‐synthesis in the transformants. Although the absolute rate of starch synthesis in short‐term labelling experiments with discs rose, starch synthesis fell relative to other fluxes including respiration, and the overall starch content of the tubers was lower than in wild‐type tubers. (4) External supply of amino acids to replace sucrose as an osmoticum led to a feed‐back inhibition of glycolysis, but did not restore allocation to starch. (5) However, an external supply of the non‐metabolizable sucrose analogue palatinose – but not sucrose itself – stimulated flux to starch in the transformants. (6) The results indicate that the impaired performance of sucrose phosphorylase‐expressing tubers is attributable to decreased levels of sucrose and increased energy consumption during sucrose futile cycling, and imply that sucrose degradation via sucrose synthase is important to maintain a relatively large sucrose pool and to minimize the ATP consumption required for normal metabolic function in the wild type.  相似文献   

11.
Based on the topographical analysis of photosynthesis and oil storage, we propose in a companion paper that photosynthetic oxygen release plays a key role in the local energy state, storage metabolism and flux toward lipid biosynthesis in developing soybean seeds. To test this hypothesis, we combined topographical analysis of ATP gradients across tissues, microsensor quantifications of internal O2 levels, assays of energy balance, metabolite profiles and isotope-labelling studies. Seeds show a marked degree of oxygen starvation in vivo (minimum O2 levels 0.1 kPa, approximately 1.3 microm), affecting ATP gradients, overall energy state, metabolite pools and storage activity. Despite the low light availability, photosynthesis supplies significant amounts of oxygen to the hypoxic seed tissue. This is followed by an increase in local ATP levels, most prominently within the lipid-synthesizing (inner) regions of the embryo. Concomitantly, partitioning of 14C-sucrose to lipids is increased, suggesting higher rates of lipid biosynthesis. It is concluded that both respiratory and biosynthetic fluxes are dynamically adjusted to photosynthetic oxygen supply.  相似文献   

12.
While flux balance analysis (FBA) provides a framework for predicting steady-state leaf metabolic network fluxes, it does not readily capture the response to environmental variables without being coupled to other modelling formulations. To address this, we coupled an FBA model of 903 reactions of soybean (Glycine max) leaf metabolism with e-photosynthesis, a dynamic model that captures the kinetics of 126 reactions of photosynthesis and associated chloroplast carbon metabolism. Successful coupling was achieved in an iterative formulation in which fluxes from e-photosynthesis were used to constrain the FBA model and then, in turn, fluxes computed from the FBA model used to update parameters in e-photosynthesis. This process was repeated until common fluxes in the two models converged. Coupling did not hamper the ability of the kinetic module to accurately predict the carbon assimilation rate, photosystem II electron flux, and starch accumulation of field-grown soybean at two CO2 concentrations. The coupled model also allowed accurate predictions of additional parameters such as nocturnal respiration, as well as analysis of the effect of light intensity and elevated CO2 on leaf metabolism. Predictions included an unexpected decrease in the rate of export of sucrose from the leaf at high light, due to altered starch–sucrose partitioning, and altered daytime flux modes in the tricarboxylic acid cycle at elevated CO2. Mitochondrial fluxes were notably different between growing and mature leaves, with greater anaplerotic, tricarboxylic acid cycle and mitochondrial ATP synthase fluxes predicted in the former, primarily to provide carbon skeletons and energy for protein synthesis.  相似文献   

13.
Substrate cycles in the central metabolism of maize root tips under hypoxia   总被引:1,自引:0,他引:1  
Substrate cycles, also called "futile" cycles, are ubiquitous and lead to a net consumption of ATP which, in the normoxic maize root, have been estimated at about 50% of the total ATP produced [Alonso, A.P., Vigeolas, H., Raymond, P., Rolin, D., Dieuaide-Noubhani, M., 2005. A new substrate cycle in plants. Evidence for a high glucose-phosphate-to-glucose turnover from in vivo steady-state and pulse-labeling experiments with [(13)C] glucose and [(14)C] glucose. Plant Physiol. 138, 2220-2232]. To evaluate their role we studied the substrate cycles of maize root tips under an oxygen limitation of respiration (3% O(2)). Short-time labeling experiments with [U-(14)C]-Glc were performed to quantify the fluxes through sucrose and starch cycles of synthesis and degradation. Steady-state labeling with [1-(13)C]-Glc followed by (1)H NMR and (13)C NMR analysis of sugars and free alanine was used to quantify fluxes in the central metabolic pathways, including the Glc-P/Glc cycle and the fructose-P/triose-P cycle of glycolysis. Comparison with results previously obtained in normoxia [Alonso et al., as mentioned above] showed that 3% O(2) induced fermentation and reduced respiration, which led to a lesser amount of ATP produced. The rates of Glc consumption, glycolytic flux and all substrate cycles were lower, but the proportion of ATP consumed in the substrate cycles remained unchanged. These findings suggest that substrate cycles are not a luxury but an integral part of the organization of the plant central metabolism.  相似文献   

14.
Mitochondria are required for seed development, but little information is available about their function and role during this process. We isolated the mitochondria from developing maize (Zea mays L. cv. Nongda 108) embryos and investigated the mitochondrial membrane integrity and respiration as well as the mitochondrial proteome using two proteomic methods, the two‐dimensional gel electrophoresis (2‐DE) and sequential windowed acquisition of all theoretical fragment ion mass spectra (SWATH). Mitochondrial membrane integrity and respiration were maintained at a high level up to 21 days after pollination (DAP) and decreased thereafter, while total mitochondrial number, cytochrome c oxidase activity and respiration per embryo exhibited a bell‐shaped change with peaks at 35–45 DAP. A total of 286 mitochondrial proteins changed in abundance during embryo development. During early stages of seed development (up to 21 DAP), proteins involved in energy production, basic metabolism, protein import and folding as well as removal of reactive oxygen species dominated, while during mid or late stages (35–70 DAP), some stress‐ and detoxification‐related proteins increased in abundance. Our study, for the first time, depicted a relatively comprehensive map of energy production by mitochondria during embryo development. The results revealed that mitochondria were very active during the early stages of maize embryo development, while at the late stages of development, the mitochondria became more quiescent, but well‐protected, presumably to ensure that the embryo passes through maturation, drying and long‐term storage. These results advance our understanding of seed development at the organelle level.  相似文献   

15.
Loef I  Stitt M  Geigenberger P 《Planta》2001,212(5-6):782-791
To investigate the importance of the overall size of the total adenine nucleotide pool for the regulation of primary metabolism in growing potato tubers, freshly cut discs were provided with zero or 2 mM adenine in the presence of 1 or 100 mM [U-14C]glucose or 100 mM [U-14C]sucrose in the presence and absence of 20 mM orthophosphate (Pi). Adenine led to a 150–250% increase of the total adenine nucleotide pool, which included an increase of ADP, a larger increase of ATP and an increase of the ATP:ADP ratio. There was a 50–100% increase of ADP-glucose (ADPGlc), and starch synthesis was stimulated. Respiratory oxygen uptake was stimulated, and the levels of glycerate-3-phosphate, phosphoenolpyruvate and α-ketoglutarate decreased. The response to adenine was not modified by Pi. It is proposed that increased ATP stimulates ADPGlc pyrophosphorylase, leading to a higher rate of starch synthesis. The impact on starch synthesis is constrained, however, because increased ADP can lead to a stimulation of respiration and decline of glycerate-3-phosphate, which will inhibit ADPGlc pyrophosphorylase. The quantitative impact depends on the conditions. In the presence of 1 mM glucose, the levels of phosphorylated intermediates and the rate of starch synthesis were low. Adenine led to a relatively large stimulation of respiration, but only a small stimulation of starch synthesis. In the presence of 100 mM glucose, discs contained high levels of phosphorylated intermediates, low ATP:ADP ratios (<3) and low rates of starch synthesis (<20% of the metabolised glucose). Adenine led to marked increase of ATP and 2- to 4-fold stimulation of starch synthesis. Discs incubated with 100 mM sucrose already had high ATP:ADP ratios (>8) and high rates of starch synthesis (>50% of the metabolised sucrose). Adenine led to a further increase, but the stimulation was less marked than in high glucose. These results have implications for the function of nucleotide cofactors in segregating sucrose mobilisation and respiration, and the need for energy conservation during sugar-starch conversions. Received: 9 February 2000 / Accepted: 9 June 2000  相似文献   

16.
The effect of inhibiting ATP production via oxidative phosphorylation during pericompaction of in vitro produced bovine embryos was investigated. This was achieved by: (i) varying the atmospheric O2 concentration (0, 1, 2, 4 and 7%); (ii) addition of oxidative phosphorylation inhibitors, NaN3 and antimycin A; and (iii) addition of 2,4-dinitrophenol, an uncoupler of oxidative phosphorylation from electron transport. The development of embryos under various O2 concentrations from day 5 to day 7 of development indicated that an optimal concentration occurred at about 2%. Addition of NaN3 revealed that doses above 100 mumol l-1 were toxic to embryo development, but that concentrations of 5-10 mumol l-1 stimulated embryo development by 10-25%. A similar result was observed after addition of 2,4-dinitrophenol, whereas antimycin A was inhibitory at doses as low as 1 mumol l-1. At concentrations of NaN3 or 2,4-dinitrophenol that stimulated embryo development, the number of cells of the resulting blastocysts was also significantly increased. Addition of NaN3 from day 1 of development inhibited subsequent development. Metabolic data of NaN3-treated embryos revealed that O2 uptake was significantly lower at inhibitory doses (100 mumol l-1). A significant (P < 0.05) log linear increase in glucose uptake was measured between the three concentrations of NaN3 (0, 10 and 100 mumol l-1). These results demonstrate that ATP production via oxidative phosphorylation is essential for bovine embryo development in vitro. However, transient (subacute) inhibition appears to be beneficial to embryo development and the number of cells, perhaps by creating a more favourable intracellular environment.  相似文献   

17.
Plastids isolated from developing leaves and embryos of oilseed rape (Brassica napus L.) were incubated with substrates in the light or the dark, with or without exogenous ATP. Incorporation of HCO-3, and carbon from a range of substrates into fatty acids and/or starch by leaf chloroplasts was absolutely light-dependent and was unaffected by provision of ATP. Incorporation of HCO-3 into fatty acids and/or starch by embryo plastids was also light-dependent. However, the light-dependent rates attained, when expressed on a comparable basis, were less than 32% of those from Glc6P (plus ATP), which was the most effective substrate for starch and fatty acid synthesis. In the light alone the rates of carbon incorporation from Glc6P, pyruvate and acetate into fatty acids, and from Glc6P into starch by embryo plastids were less than 27% of the respective ATP-dependent (dark) rates. Light had no effect on these ATP-dependent rates of synthesis by embryo plastids. While transporter activities for both glucose and Glc6P were present in embryo plastids, leaf chloroplasts did not have the latter activity. It is concluded that light at in vivo levels can contribute energy to carbon metabolism in embryo plastids. However, this contribution is likely to be small and these plastids are therefore largely dependent upon interaction with the cytosol for the ATP, reducing power and carbon precursors that are required for maximal rates of starch and fatty acid synthesis.  相似文献   

18.
Variations in carbohydrates and proteins were monitored during avocado (Persea americana Mill.) zygotic embryo development and correlated with growth parameters in order to define specific markers characterizing distinct embryogenic phases. Hexose (glucose and fructose) levels were initially high and declined as embryo development advanced reaching the lowest levels in completely mature embryos. Sucrose and starch evolution showed an opposite trend with a progressive increase during embryo growth. The beginning of the maturation phase could be identified by a switch in the carbohydrate status from high hexose/sucrose ratio to low hexose/sucrose ratio. Storage protein accumulation began at early cotyledonary stages (7–8 mm), increasing significantly in the maturation phase where they represented 83% of total proteins. Mature embryos (38–40 mm) contained albumins, globulins and glutelins, albumins being the predominant and most heterogeneous fraction. Storage protein accumulation occurred in a sequential and specific way suggesting a possible role as indicators of embryo development. The complete maturation stage could be characterized by the synthesis and accumulation of a 49 kDa albumin.  相似文献   

19.
Glucose metabolism in preimplantation embryos has traditionally been viewed from a somatic cell viewpoint. Here, we show that gene expression in early embryos is similar to rapidly dividing cancer cells. In vitro-produced pig blastocysts were subjected to deep-sequencing, and were found to express two gene variants that have been ascribed importance to cancer cell metabolism (HK2 and the M2 variant of PKM2). Development was monitored and gene expression was quantified in additional embryos cultured in low or high O(2) (5% CO(2), 5% O(2), 90% N(2) vs. 5% CO(2) in air). Development to the blastocyst stage in the two atmospheres was similar, except low O(2) resulted in more total and inner cell mass nuclei than high O(2). Of the 15 candidate genes selected that are involved in glucose metabolism, only TALDO1 and PDK1 were increased in the low O(2) environment. One paradigm that has been used to explain glycolysis under low oxygen tension is the Warburg Effect (WE). The WE predicts that expression of both HK2 and PKM2 M2 results in a slowing of glucose metabolism through the TCA cycle, thereby forcing the products of glycolysis to be metabolized through the pentose phosphate pathway and to lactic acid. This charging of the system is apparently so important to the early embryo that redundant mechanisms are present, that is, a fetal form of PKM2 and high levels of PDK1. Here, we set the framework for using the WE to describe glucose metabolism and energy production during preimplantation development.  相似文献   

20.
In this study we examined the effect of polyamines (PAs) putrescine (Put), spermidine (Spd) and spermine (Spm) on growth, morphology evolution, endogenous PAs levels and nitric oxide (NO) release in Ocotea catharinensis somatic embryo cultures. We observed that Spd and Spm reduced culture growth, permitted embryo morphogenetic evolution from the earliest to last embryo development stages, increased endogenous PAs levels, and induced NO release in O. catharinensis somatic embryos. On the other hand, Put had little effect on these parameters. Spd and Spm could successfully be used to promote somatic embryo maturation in O. catharinensis. The results suggest that Spd and Spm have an important role during the growth, development and morphogenetic evolution of somatic embryos, through alterations in the endogenous nitric oxide and PAs metabolism in this species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号