首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
1. A method has been devised for quenching cell incubations with an aqueous phenol/chloroform/EDTA mixture of neutral pH, to allow the analysis of acid-labile cell components. 2. Using this method, we have searched for the appearance of Ins(1:2cyclic,4,5)P3 [inositol 1:2(cyclic),4,5-trisphosphate] in WRK1 mammary tumour cells that were labelled to high specific radioactivity with [3H]inositol and then stimulated with 0.4 microM-vasopressin. 3. Vasopressin caused a very rapid accumulation of Ins(1,4,5)P3 (inositol 1,4,5-trisphosphate), followed by a slower decline towards the original concentration. An acid-labile and inositol-labelled compound with the chromatographic properties of Ins(1:2cyclic,4,5)P3 was present in unstimulated cells at less than 5% of the elevated concentration of Ins(1,4,5)P3. Its concentration rose 2-3-fold during stimulation for 3 min, at which time its concentration was about 5% of the elevated concentration of Ins(1,4,5)P3. 4. We conclude that Ins(1,4,5)P3 is the major product of phosphoinositidase C-catalysed phosphatidylinositol 4,5-bisphosphate hydrolysis in vasopressin-stimulated WRK1 cells. Ins(1:2cyclic,4,5)P3 is unlikely to be an important intracellular messenger in these cells, at least during the first few minutes of stimulation.  相似文献   

2.
1. Basal and carbachol-stimulated accumulations of isomeric [3H]inositol mono-, bis-, tris- and tetrakis-phosphates were examined in rat cerebral-cortex slices labelled with myo-[2-3H]inositol. 2. In control samples the major [3H]inositol phosphates detected were co-eluted on h.p.l.c. with Ins(1)P, Ins(4)P (inositol 1- and 4-monophosphate respectively), Ins(1,4)P2 (inositol 1,4-bisphosphate), Ins(1,4,5)P3 (inositol 1,4,5-tris-phosphate) and Ins(1,3,4,5)P4 (inositol 1,3,4,5-tetrakisphosphate). 3. After stimulation to steady state with carbachol, accumulation of each of these products was markedly increased. 4. Agonist stimulation, however, also evoked much more dramatic increased accumulations of a second [3H]inositol trisphosphate, which was co-eluted on h.p.l.c. with authentic Ins(1,3,4)P3 (inositol 1,3,4-trisphosphate) and of three further [3H]inositol bisphosphates ([3H]InsP2(s]. 5. Examination of the latter by chemical degradation by periodate oxidation and/or h.p.l.c. allowed identification of these as [3H]Ins(1,3)P2, [3H]Ins(3,4)P2 and [3H]Ins(4,5)P2 (inositol 1,3-, 3,4- and 4,5-bisphosphates respectively), which respectively accounted for about 22%, 8% and 3% of total [3H]InsP2 in extracts from stimulated tissue slices. 6. By using a h.p.l.c. method which clearly resolves Ins(1,3,4,5)P4 and Ins(1,3,4,6)P4 (inositol 1,3,4,6-tetrakisphosphate), only the former isomer could be detected in extracts from either control or stimulated tissue slices. Similarly, [3H]inositol pentakis- and hexakis-phosphates were not detectable either in the presence or absence of carbachol under the radiolabelling conditions described. 7. The catabolism of [3H]Ins(1,4,5)P3 and [3H]Ins(1,3,4)P3 by cell-free preparations from cerebral cortex was also studied. 8. In the presence of Mg2+, [3H]Ins(1,4,5)P3 was specifically dephosphorylated via [3H]Ins(1,4)P2 and [3H]Ins(4)P to free [3H]inositol, whereas [3H]Ins(1,3,4)P3 was degraded via [3H]Ins(3,4)P2 and, to a lesser extent, via [3H]Ins(1,3)P2 to D- and/or L-[3H]Ins(1)P and [3H]inositol. 9. In the presence of EDTA, hydrolysis of [3H]Ins(1,4,5)P3 was greater than or equal to 95% inhibited, whereas [3H]Ins(1,3,4)P3 was still degraded, but yielded only a single [3H]InsP2 identified as [3H]Ins(1,3)P2. 10. The significance of these observations with cell-free preparations is discussed in relation to the proportions of the separate isomeric [3H]inositol phosphates measured in stimulated tissue slices.  相似文献   

3.
When [3H]inositol-prelabelled N1E-115 cells were stimulated with carbamylcholine (CCh) (100 microM), high K+ (60 mM), and prostaglandin E1 (PGE1) (10 microM), a transient increase in [3H]inositol pentakisphosphate (InsP5) accumulation was observed. The accumulation reached its maximum level at 15 s and had declined to the basal level at 2 min. CCh, high K+, and PGE1 also caused accumulations of [3H]inositol 1,4,5-trisphosphate [Ins(1,4,5)P3], [3H]inositol 1,3,4,6-tetrakisphosphate [Ins(1,3,4,6)P4], and [3H]inositol hexakisphosphate (InsP6). Muscarine and CCh induced accumulations of [3H]Ins(1,4,5)P3, [3H]-Ins(1,3,4,6)P4, [3H]InsP5, and [3H]InsP6 with a similar potency and exerted these maximal effects at 100 microM, whereas nicotine failed to do so at 1 mM. With a slower time course, CCh, high K+, and PGE1 caused accumulations of [3H]-inositol 1,3,4-trisphosphate [Ins(1,3,4)P3] and [3H]inositol 1,3,4,5-tetrakisphosphate [Ins(1,3,4,5)P4]. In an N1E-115 cell homogenate, [3H]Ins(1,4,5)P3, [3H]Ins(1,3,4,5)P4, and [3H]Ins(1,3,4)P3 were converted to [3H]InsP5 through [3H]-Ins(1,3,4,6)P4. The above results indicate that Ins(1,3,4,6)P4, InsP5, and InsP6 are rapidly formed by several kinds of stimulants in N1E-115 cells.  相似文献   

4.
In the rat mammary tumoral cell line (WRK1 cells), vasopressin was previously described to stimulate a phospholipase C. In this study, we have analysed the effect of vasopressin both on intracellular calcium mobilization and on the accumulation of inositol phosphates. Maximal concentration of vasopressin simultaneously induces an accumulation of Ins(1,4,5)P3 and a rise of intracellular calcium concentration. Both these two phenomena are transient and exhibit similar kinetics. A sustained accumulation of InsP2, Ins(1,3,4)P3 and InsP are observed later. Yet no stimulation of InsP4 can be objectified. These results indicate that Ins(1,4,5)P3 is the major inositol phosphate involved in intracellular calcium mobilization.  相似文献   

5.
The accumulation of inositol phosphates in WRK 1 cells, stimulated with a range of vasopressin concentrations, was diminished by prior exposure to cholera toxin or forskolin, whilst that observed in the presence of maximal concentrations of the hormone was enhanced in pertussis-toxin-treated cells. In the presence of [32P]NAD+, both cholera toxin and pertussis toxin provoked the labelling of peptides with approximate Mrs of 45,000 and 41,000 respectively in the membranes of WRK 1 cells. Exposure to cholera toxin or forskolin for 15-18 h enhanced cyclic AMP accumulation in these cells. The concentrations of these agents which provoked half-maximal cyclic AMP accumulation were similar to those required to diminish receptor-mediated inositol phosphate accumulation by 50%. In contrast, half-maximal ADP-ribosylation of the 45,000Mr peptide needed 100-fold greater concentrations of the toxin than were effective in provoking half-maximal inhibition of inositol phosphate accumulation. Cholera toxin or forskolin also reduced the maximal specific binding, to intact WRK 1 cells, of both [3H][Arg8]vasopressin and the V1a antagonist [3H][beta-mercapto-beta,beta-cyclopentamethylenepropionic acid,O-methyl-Tyr2, Arg8]vasopressin. The kinetics for the loss of this binding capacity following cholera-toxin treatment were very similar to those describing the diminution of vasopressin-stimulated inositol phosphate accumulation in the same cells.  相似文献   

6.
In WRK1 cells vasopressin stimulates Ins(1,4,5)P3 accumulation and mobilizes intracellular calcium. These two phenomena are transient and exhibit similar time-courses. Experiments performed on intact cells or membrane preparations demonstrate that calcium may also stimulate an accumulation of inositol phosphates. This suggests a possible positive feedback regulation of the primary accumulation of Ins(1,4,5)P3 induced by vasopressin. In order to test such a possibility we studied the vasopressin-induced Ins(1,4,5)P3 accumulation, where intracellular calcium mobilization is artificially suppressed by incubating the cells with EGTA in the presence of ionomycin. Under these conditions the accumulation of Ins(1,4,5)P3 induced by 1 microM vasopressin is inhibited by around 50% when measured 5 s after stimulation. This inhibition is not due to an alteration of the VIa vasopressin receptor binding properties, a reduction of the amount of substrate available for the phospholipase C, a stimulation of the Ins(1,4,5)P3 5-phosphatase or an activation of the Ins(1,4,5,)P3 kinase. It is more likely the consequence of the suppression of calcium wave generated by Ins(1,4,5)P3 which may in its turn stimulate a phospholipase C. Different arguments favour this hypothesis: (1) calcium at an intracellular physiological concentration (0.1-1 microM) is able to stimulate a phospholipase C; (2) artificially increasing the [Ca2+]i inside the WRK1 cell induces an accumulation of Ins(1,4,5)P3; and (3) the time-course of the inhibition of Ins(1,4,5)P3 accumulation induced by an EGTA/ionomycin treatment correlates well with that of the calcium mobilization. Altogether these results suggest that Ins(1,4,5)P3 accumulation in WRK1 cells may result from two distinct mechanisms: a direct vasopressin receptor-mediated PLC activation which is independent of calcium and a calcium-mediated PLC activation related to the intracellular calcium mobilization.  相似文献   

7.
In previous studies it has been shown that both bradykinin and histamine increase the formation of 3H-labeled inositol phosphates in adrenal chromaffin cells prelabelled with [3H]inositol and that both these agonists stimulate release of catecholamines by a mechanism dependent on extracellular calcium. Here, we have used mass assays of inositol 1,4,5-trisphosphate [Ins(1,4,5)P3] and inositol 1,3,4,5-tetrakisphosphate [Ins(1,3,4,5)P4] to investigate changes in levels of these two candidates as second messengers in response to stimulation with bradykinin and histamine. Bradykinin increased the mass of Ins(1,3,4,5)P4 despite the failure in earlier studies with [3H]inositol-labelled cells to observe a bradykinin-mediated increase in content of [3H]InsP4. Bradykinin elicited a very rapid increase in level of Ins(1,4,5)P3, which was maximal at 5-10 s and then rapidly decreased to a small but sustained elevation at 2 min. The bradykinin-elicited Ins(1,3,4,5)P4 response increased to a maximum at 30-60 s and at 2 min was still elevated severalfold above basal levels. Histamine, which produced a larger overall total inositol phosphate response in [3H]inositol-loaded cells, produced significantly smaller Ins(1,4,5)P3 and Ins(1,3,4,5)P4 responses compared with bradykinin. The bradykinin stimulation of Ins(1,4,5)P3 accumulation was partially dependent on a high (1.8 mM) extracellular Ca2+ concentration, whereas the Ins(1,3,4,5)P4 response was almost completely lost when the extracellular Ca2+ concentration was reduced to 100 nM. Changes in the inositol polyphosphate second messengers are compared with the time course of bradykinin-stimulated increases in free intracellular Ca2+ concentrations and noradrenaline release.  相似文献   

8.
The accumulation of inositol polyphosphates in the cerebellum in response to agonists has not been demonstrated. Guinea pig cerebellar slices prelabeled with [3H]inositol showed the following increases in response to 1 mM serotonin: At 15 s, there was a peak in 3H label in the second messenger inositol 1,4,5-trisphosphate [Ins(1,4,5)P3], decreasing to a lower level in about 1 min. The level of 3H label in the putative second-messenger inositol 1,3,4,5-tetrakisphosphate [Ins(1,3,4,5)P4] increased rapidly up to 60 s and increased slowly thereafter. The accumulation of 3H label in various inositol phosphate isomers at 10 min, when steady state was obtained, showed the following increases due to serotonin: inositol 1,3,4-trisphosphate [Ins(1,3,4)P3], eight-fold; Ins(1,3,4,5)P4, 6.4-fold; Ins(1,4,5)P3, 75%; inositol 1,4-bisphosphate [Ins(1,4)P2], 0%; inositol 3,4-bisphosphate, 100%; inositol 1-phosphate/inositol 3-phosphate, 30%; and inositol 4-phosphate, 40%. [3H]Inositol 1,3-bisphosphate was not detected in controls, but it accounted for 7.2% of the total inositol bisphosphates formed in the serotonin-stimulated samples. The fact that serotonin did not increase the formation of Ins(1,4)P2 could be due to the fact that Ins(1,4)P2 is rapidly degraded or that Ins(1,4,5)P3 is metabolized primarily by Ins(1,4,5)P3-3'kinase to form Ins(1,3,4,5)P4. In the presence of pargyline (10 microM), [3H]Ins(1,3,4,5)P4 and [3H]Ins(1,3,4)P3 levels were increased, even at 1 microM serotonin. Ketanserin (7 microM) completely inhibited the serotonin effect, indicating stimulation of serotonin2 receptors. Quisqualic acid (100 microM) also increased the levels of [3H]Ins(1,4,5)P3, [3H]Ins(1,3,4,5)P4, and [3H]Ins(1,3,4)P3, but the profile of these increases was different.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

9.
The role of phosphoinositide turnover in the mediation of acid secretion was examined in an enriched preparation of isolated rabbit parietal cells (75%). Both gastrin and CCK-8 (octapeptide of cholecystokinin) stimulated [14C]aminopyrine (AP) uptake by cells (EC50 0.07 +/- 0.03 nM (gastrin) and 0.093 +/- 0.065 nM (CCK-8] and increased [3H]inositol phosphates cellular contents (EC50 0.142 +/- 0.016 nM (gastrin) and 0.116 +/- 0.027 nM (CCK-8] in a parallel fashion. In addition, the EC50 values for both phenomenon were quite similar to the Kd values obtained from binding experiments. HPLC analysis of the different [3H]inositol phosphates produced under gastrin or CCK-8 stimulation showed a 2-fold increase in [3H]Ins(1,4,5)P3 levels within 5 s with a concomitant increase in [3H]Ins(1,4)P2 content within 15 s. A low but significant rise in [3H]Ins(1,3,4,5)P4 and [3H]Ins(1,3,4)P3 cellular contents was also observed. No difference between gastrin- and CCK-8-induced inositol phosphates production could be shown. We can conclude that gastrin and CCK-8 display an identical profile of action, suggesting that they stimulate the acid secretory function of parietal cells through the same receptor site coupled to the Ins(1,4,5)P3 production.  相似文献   

10.
1. myo-[3H]Inositol 1,4,5-trisphosphate [Ins(1,4,5)P3], when added to lysed platelets, was rapidly converted into [3H]inositol 1,3,4,5-tetrakisphosphate [Ins(1,3,4,5)P4], which was in turn converted into [3H]inositol 1,3,4-trisphosphate [Ins(1,3,4)P3]. This result demonstrates that platelets have the same metabolic pathways for interconversion of inositol polyphosphates that are found in other cells. 2. Labelling of platelets with [32P]Pi, followed by h.p.l.c., was used to measure thrombin-induced changes in the three inositol polyphosphates. Interfering compounds were removed by a combination of enzymic and non-enzymic techniques. 3. Ins(1,4,5)P3 was formed rapidly, and reached a maximum at about 4 s. It was also rapidly degraded, and was no longer detectable after 30-60 s. 4. Formation of Ins(1,3,4,5)P4 was almost as rapid as that of Ins(1,4,5)P3, and it remained detectable for a longer time. 5. Ins(1,3,4)P3 was formed after an initial lag, and this isomer reached its maximum, which was 10-fold higher than that of Ins(1,4,5)P3, at 30 s. 6. Comparison of the intracellular Ca2+ concentration as measured with fura-2 indicates that agents other than Ins(1,4,5)P3 are responsible for the sustained maintenance of a high concentration of intracellular Ca2+. It is proposed that either Ins(1,3,4)P3 or Ins(1,3,4,5)P4 may also be Ca2+-mobilizing agents.  相似文献   

11.
The analysis of the inositol cycle in Dictyostelium discoideum cells is complicated by the limited uptake of [3H]inositol (0.2% of the applied radioactivity in 6 h), and by the conversion of [3H]inositol into water-soluble inositol metabolites that are eluted near the position of inositol 1,4,5-trisphosphate [Ins(1,4,5)P3] on anion-exchange h.p.l.c. columns. The uptake was improved to 2.5% by electroporation of cells in the presence of [3H]inositol; electroporation was optimal at two 210 microseconds pulses of 7 kV. Cells remained viable and responsive to chemotactic signals after electroporation. The intracellular [3H]inositol was rapidly metabolized to phosphatidylinositol and more slowly to phosphatidylinositol phosphate and phosphatidylinositol bisphosphate. More than 85% of the radioactivity in the water-soluble extract that was eluted on Dowex columns as Ins(1,4,5)P3 did not co-elute with authentic [32P]Ins(1,4,5)P3 on h.p.l.c. columns. Chromatography of the extract by ion-pair reversed-phase h.p.l.c. provided a good separation of the polar inositol polyphosphates. Cellular [3H]Ins(1,4,5)P3 was identified by (a) co-elution with authentic [32P]Ins(1,4,5)P3 and (b) degradation by a partially purified Ins(1,4,5)P3 5-phosphatase from rat brain. The chemoattractant cyclic AMP and the non-hydrolysable analogue guanosine 5'-[gamma-thio]triphosphate induced a transient accumulation of radioactivity in Ins(1,4,5)P3; we did not detect radioactivity in inositol 1,3,4-trisphosphate or inositol 1,3,4,5-tetrakisphosphate [Ins(1,3,4,5)P4]. In vitro, Ins(1,4,5)P3 was metabolized to inositol 1,4- and 4,5-bisphosphate, but not to Ins(1,3,4,5)P4 or another tetrakisphosphate isomer. We conclude that Dictyostelium has a receptor- and G-protein-stimulated inositol cycle which is basically identical with that in mammalian cells, but the metabolism of Ins(1,4,5)P3 is probably different.  相似文献   

12.
The action of carbachol on the generation of inositol trisphosphate and tetrakisphosphate isomers was investigated in dog-thyroid primary cultured cells radiolabelled with [3H]inositol. The separation of the inositol phosphate isomers was performed by reverse-phase high pressure liquid chromatography. The structure of inositol phosphates co-eluting with inositol 1,4,5-trisphosphate [Ins(1,4,5)P3] and inositol 1,3,4,5-tetrakisphosphate [Ins(1,3,4,5)P4] standards was determined by enzymatic degradation using a purified Ins(1,4,5)P3/Ins(1,3,4,5)P4 5-phosphatase. The data indicate that Ins(1,3,4,5)P4 was the only [3H]inositol phosphate which co-eluted with a [32P]Ins(1,3,4,5)P4 standard, whereas 80% of the [3H]InsP3 co-eluting with an Ins(1,4,5)P3 standard was actually this isomer. In the presence of Li+, carbachol led to rapid increases in [3H]Ins(1,4,5)P4. The level of Ins(1,4,5)P3 reached a peak at 200% of the control after 5-10 s of stimulation and fell to a plateau that remained slightly elevated for 2 min. The level of Ins(1,3,4,5)P4 reached its maximum at 20s. The level of inositol 1,3,4-trisphosphate [Ins(1,3,4)P3] increased continuously for 2 min after the addition of carbachol. Inositol-phosphate generation was also investigated under different pharmacological conditions. Li+ largely increased the level of Ins(1,3,4)P3 but had no effect on Ins(1,4,5)P3 and Ins(1,3,4,5)P4. Forskolin, which stimulates dog-thyroid adenylate cyclase and cyclic-AMP accumulation, had no effect on the generation of inositol phosphates. The absence of extracellular Ca2+ largely decreased the level of Ins(1,3,4,5)P4 as expected considering the Ca2(+)-calmodulin sensitivity of the Ins(1,4,5)P3 3-kinase. Staurosporine, an inhibitor of protein kinase C, increased the levels of Ins(1,4,5)P3, Ins(1,3,4,5)P4 and Ins(1,3,4)P3. This supports a negative feedback control of diacyglycerol on Ins(1,4,5)P3 generation.  相似文献   

13.
We report that there are distinct thyrotropin-releasing hormone (TRH)-responsive and -unresponsive pools of inositol (Ins) lipids in rat pituitary tumour (GH3) cells, and present evidence that the size of the responsive pool is determined by the number of activated TRH-receptor complexes. By use of an experimental protocol in which cycling of [3H]Ins is inhibited and resynthesis occurs with unlabelled Ins only, we were able to measure specifically the effects of TRH on the hydrolysis of the Ins lipids present before stimulation. A maximally effective dose of TRH (1 microM) caused a time-dependent decrease in 3H-labelled Ins lipids that attained a steady-state value of 42 +/- 1% of the initial level between 1.5 and 2 h. After 2 h, even though there was no further decrease in 3H-labelled Ins lipids, and no increase in [3H]Ins or [3H]Ins phosphates, turnover of Ins lipids, as assessed as incorporation of [32P]Pi into PtdIns, continued at a rate similar to that in cells incubated without LiCl or unlabelled Ins. These data indicate that Ins lipid turnover was not desensitized during prolonged TRH stimulation. Depletion of lipid 3H radioactivity by TRH occurred at higher TRH doses on addition of the competitive antagonist chlordiazepoxide. Addition of 1 microM-TRH after 3 h of stimulation by a sub-maximal (0.3 nM) TRH dose caused a further decrease in 3H radioactivity to the minimum level (40% of initial value). We propose that the TRH-responsive pool of Ins lipids in GH3 cells is composed of the complement of Ins lipids that are within functional proximity of activated TRH-receptor complexes.  相似文献   

14.
We have shown that there is an inositol (Ins) lipid pool in cloned rat pituitary tumor (GH3) cells that is hydrolyzed in response to thyrotropin-releasing hormone (TRH) and an unresponsive pool. Because others have suggested that incorporation of [3H]Ins by base exchange may not occur uniformly into Ins lipids in other cell types, we established conditions using permeabilized cells under which labeling occurs by Ins-phosphatidylinositol (PI) exchange in the absence of de novo PI synthesis to further characterize these pools in GH3 cells. In permeabilized cells incubated in buffer containing 10 mM Mg2+ and 0.1 mM CMP, [3H]Ins incorporation into lipids occurred by base exchange only. This was so because: 1) [3H]Ins incorporation into lipids displayed properties similar to that for release of 3H-labeled Ins by unlabeled Ins from PI in cells prelabeled in situ prior to permeabilization; and 2) there was no change in PI mass under these conditions. In permeabilized cells incubated in buffer with 0.1 mM [3H]Ins for 60 min, incorporation was 0.61 +/- 0.05 nmol of [3H]Ins/10(6) permeabilized cells, which amounted to 35% of PI, while the level of PI, measured as nonradioactive phosphorus, was 94 +/- 8.0% of control. Permeabilized GH3 cells were responsive to TRH. In cells prelabeled in situ and then permeabilized, TRH stimulated an increase in 3H-labeled Ins phosphates (IPs) in 20 min which was 10% of 3H radioactivity initially present in lipids. This increase in 3H-labeled IPs was 6.3 times the 3H radioactivity present in phosphatidylinositol 4,5-bisphosphate prior to stimulation. When prelabeled cells were exchanged with unlabeled Ins after permeabilization there was only a 10-16% decrease in 3H-labeled IP accumulation stimulated by TRH even though 3H-labeled lipids decreased to 52% of control. TRH did not affect labeling by [3H]Ins-PI exchange. In cells labeled by base exchange after permeabilization TRH stimulated a very small increase in 3H-labeled IPs of only 0.21 +/- 0.02% of 3H-labeled lipids in 20 min or only 7% of the 3H radioactivity in phosphatidylinositol 4,5-bisphosphate. These data show that in permeabilized GH3 cells base exchange can occur in the absence of de novo PI synthesis and that lipids that are preferentially labeled by base exchange comprise a pool that is less responsive to TRH than total Ins lipids.  相似文献   

15.
Abstract: Histamine stimulation of bovine adrenal medullary cells rapidly activated phospholipase C. [3H]Inositol 1,4,5-trisphosphate [[3H]Ins(1,4,5)P3] levels were transiently increased (200% of basal values between 1 and 5 s) before declining to a new steady-state level of ~140% of basal values. [3H]Inositol 1,4-bisphosphate [[3H]Ins(1,4)P2] content increased to a maximal and maintained level of 250% of basal values after 1 s, whereas levels of [3H]inositol 1,3,4-trisphosphate [[3H]-Ins(1,3,4)P3], [3H]inositol 1,3-bisphosphate, and [3H]-inositol 4-monophosphate ([3H]Ins4P) increased more slowly. The rapid responses were not reduced by the removal of extracellular Ca2+, but they were no longer sustained over time. The turnover rates of selected inositol phosphate isomers have been estimated in the intact cell. [3H]Ins(1,4,5)P3 was rapidly metabolized (t1/2 of 11 s), whereas the other isomers were metabolized more slowly, with t1/2 values of 113, 133, 104, and 66 s for [3H]Ins(1,3,4)P3, [3H]Ins(1,4)P2, an unresolved mixture of [3H]inositol 1- and 3-monophosphate ([3H]Ins1/3P), and [3H]Ins4P, respectively. The calculated turnover rate of [3H]Ins(1,4,5)P3 was sufficient to account for the turnover of the combination of both [3H]Ins(1,4)P2 and [3H]Ins(1,3,4)P3 but not that of [3H]Ins1/3P or [3H]Ins4P. These observations demonstrate that histamine stimulation of these cells results in a complex Ca2+-dependent and -independent response that may involve the hydrolysis of inositol phospholipids in addition to phosphatidylinositol 4,5-bisphosphate.  相似文献   

16.
WRK 1 cells were labelled to equilibrium with 2-myo-[3H]inositol and stimulated with vasopressin. Within 3 s of hormone stimulation there was a marked accumulation of 3H-labelled InsP2 and InsP3 (inositol bis- and tris-phosphate), but not of InsP (inositol monophosphate). There was an associated, and rapid, depletion of 3H-labelled PtdInsP and PtdInsP2 (phosphatidylinositol mono- and bis-phosphates), but not of PtdIns (phosphatidylinositol), in these cells. Some 4% of the radioactivity in the total inositol lipid pool of WRK 1 cells was recovered in InsP2 and InsP3 after 10 s stimulation with the hormone. The selectivity of the vasopressin receptors of WRK 1 cells for a variety of vasopressin agonists and antagonists revealed these to be of the V1a subtype. There was no receptor reserve for vasopressin-stimulated inositol phosphate accumulation in WRK 1 cells. The accumulation of inositol phosphates was enhanced in the presence of Li+ions. Half-maximal accumulation of InsP, InsP2 and InsP3 in vasopressin-stimulated cells was observed with 0.9, 3.0 and 3.6 mM-Li+ respectively. Bradykinin and 5-hydroxytryptamine also provoked inositol phosphate accumulation in WRK 1 cells. The effects of sub-optimal concentrations of bradykinin and vasopressin upon inositol phosphate accumulation were additive, but those of optimal concentrations of the hormones were not.  相似文献   

17.
The role of calcium ions in the L-thyroxine-induced initiation of hydrolysis of phosphatidylinositol 4,5-bisphosphate (PtdInsP2) and also the course of releasing individual fractions of inositol phosphates and diacylglycerides (DAG) were studied in liver cells during early stages of the hormone effect. L-Thyroxine stimulated a rapid hydrolysis in hepatocytes of PtdInsP2 labeled with [14C]linoleic acid and [3H]inositol mediated by phosphoinositide-specific phospholipase C. This was associated with accumulation of [14C]DAG, total inositol phosphates, [3H]inositol 1,4,5-trisphosphate (Ins1,4,5P3) and [3H]inositol 1,4-bisphosphate (Ins1,4P2). Elimination of calcium ions from the incubation medium of hepatocytes did not abolish the effect of thyroxine on the accumulation of [14C]DAG and total [3H]inositol phosphates. Preincubation of liver cells with TMB-8 increased the stimulatory effect of L-thyroxine on the accumulation of [14C]DAG. During the incubation of hepatocytes in the presence of the hormone the content of 14C-labeled fatty acids did not change. The L-thyroxineinduced accumulation of [3H]Ins1,4,5P3 and [3H]Ins1,4P2 did not depend on the presence of calcium ions in the incubation medium of the cells.  相似文献   

18.
It has been demonstrated previously that thyrotropin-releasing hormone (TRH) induces changes in inositol polyphosphates in the GH3 and GH4C1 strains of rat pituitary cells within 2.5-5.0 s. TRH also causes a rapid rise in cytosolic free calcium concentration ([Ca2+]i) in these cells which is due largely to redistribution of cellular calcium stores. Therefore, it has been concluded that TRH acts to release sequestered calcium in these cells via enhanced generation of inositol 1,4,5-trisphosphate [Ins(1,4,5)P3]. If this conclusion were correct, TRH-enhanced accumulation of Ins(1,4,5)P3 should occur at least as rapidly as the increase in [Ca2+]i. We have shown previously that the rise in [Ca2+]i induced by TRH occurs within about 400 ms; thus, it was important to investigate the subsecond time-course of changes in inositol phosphates caused by TRH. Using a rapid mixing device, we have measured changes in inositol polyphosphates on a subsecond time scale in GH4C1 cells prelabelled with myo-[2-3H]inositol. Although TRH did alter inositol polyphosphate metabolism within 500 ms, the changes observed did not reveal a statistically significant increase in Ins(1,4,5)P3 within time intervals of less than 1000 ms. Thus, we have been unable to demonstrate that a TRH-induced rise in Ins(1,4,5)P3 precedes or occurs concomitantly with the rise in [Ca2+]i in GH4C1 cells. Although these results do not disprove the current view that Ins(1,4,5)P3 mediates the action of TRH on intracellular calcium redistribution, we conclude that caution should be exercised in this, and possibly other cell systems, in accepting the dogma that all of the rapid, agonist-induced redistributions of intracellular calcium are mediated by Ins(1,4,5)P3.  相似文献   

19.
Microinjection of inositol 1,3,4,5-tetrakisphosphate or inositol 1,4,5-trisphosphate induced distinct chloride membrane currents in defolliculated Xenopus laevis oocytes. To decide whether these Cl(-)-currents were due to the injected compounds or their metabolic products, [3H]Ins(1,3,4,5)P4 or [3H]Ins(1,4,5)P3 were injected into oocytes and their metabolites were analyzed by HPLC. Our results indicate that Ins(1,3,4,5)P4 itself or its metabolite Ins(1,3,4,6)P4 is able to induce Cl(-)-membrane currents, most likely by increasing the cytosolic Ca(++)-concentration.  相似文献   

20.
Thrombin-stimulated (10 s) human platelets produce Ins(1,4,5)P3 and an additional inositol trisphosphate (InsP3), in approximately a 1:20 ratio. The major InsP3 co-migrates with Ins(1,3,4)P3 on strong-anion-exchange h.p.l.c. To identify this species unequivocally, we treated putative Ins(1,3,4)P3 obtained from thrombin-stimulated myo-[3H]inositol-labelled platelets with NaIO4/NaBH4 or 4-phosphomonoesterase. The products indicate that the major InsP3 is at least 90% D-Ins(1,3,4)P3. D-[3H]Ins(1,3,4)P3 added to saponin-permeabilized platelets is hydrolysed to an InsP2 (7.8%) and phosphorylated by a kinase to yield an inositol polyphosphate (0.9%) in 5 min. The phosphorylation product co-migrates with Ins(1,3,4,6)P4 on Partisphere WAX h.p.l.c. Under similar conditions, L-[3H]Ins(1,3,4)P3 is dephosphorylated but not phosphorylated. Relative phosphatase:kinase ratios are 8.7:1 (Vmax. values) and 0.86:1 (Km values) with respect to D-Ins(1,3,4)P3. The kinase activity is predominantly cytosolic (96.8% of total activity) in freeze-thaw-disrupted platelets, and the accumulation of its product is Ca2(+)-dependent. The activity is identified as a 6-kinase on the basis of its product's insensitivity to 5-phosphomonoesterase, resistance to periodate oxidation and co-migration with standard Ins(1,3,4,6)P4 on h.p.l.c. Incubation of platelets with beta-phorbol dibutyrate (beta-PDBu, 76 nM), causing activation of protein kinase C, results in a 57.5% inhibition (reversible by the protein kinase C inhibitor staurosporine) of Ins(1,3,4,6)P4 accumulation. alpha-PDBu, which does not stimulate protein kinase C, has no effect. Stimulation of intact platelets with thrombin results in the production of Ins(1,3,4,6)P4 (1.4-fold rise in 30 s) and Ins(1,3,4,5)P4, with the latter being the major InsP4 species. Accumulation of Ins(1,3,4,6)P4 is slightly delayed in comparison with Ins(1,3,4)P3 and is relatively small. We propose that the major route of Ins(1,3,4)P3 metabolism in stimulated human platelets is via phosphatase action.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号