首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Beauveria brongniartii is a fungal pathogen that infects the beetle Melolontha melolontha, a significant agricultural pest in Europe. While research has primarily focused on the use of B. brongniartii for controlling M. melolontha, the genomic structure of the B. brongniartii population remains unknown. This includes whether its structure is influenced by its interaction with M. melolontha, the timing of beetle-swarming flights, geographical factors, or reproductive mode. To address this, we analysed genome-wide SNPs to infer the population genomics of Beauveria spp., which were isolated from infected M. melolontha adults in an Alpine region. Surprisingly, only one-third of the isolates were identified as B. brongniartii, while two-thirds were distributed among cryptic taxa within B. pseudobassiana, a fungal species not previously recognized as a pathogen of M. melolontha. Given the prevalence of B. pseudobassiana, we conducted analyses on both species. We found no spatial or temporal genomic patterns within either species and no correlation with the population structure of M. melolontha, suggesting that the dispersal of the fungi is independent of the beetle. Both species exhibited clonal population structures, with B. brongniartii fixed for one mating type and B. pseudobassiana displaying both mating types. This implies that factors other than mating compatibility limit sexual reproduction. We conclude that the population genomic structure of Beauveria spp. is primarily influenced by predominant asexual reproduction and dispersal.  相似文献   

2.
Between 1998 and 2000 soil samples from 82fields in north, east, central and south westof Switzerland were analysed for presence ofinsect pathogenic soil fungi using a selectivemedium and the Galleria bait method. Thedetection rates with either method were verysimilar. 96% of the fields distributed overall examined regions contained Metarhiziumanisopliae. The presence of Beauveriabrongniartii was limited to sites colonised byits host, Melolontha melolontha. It wasalso present at a site where M.melolontha disappeared about 40 years ago. Onthe other hand, B. brongniartii was notfound in four fields containing M.melolontha populations. Beauveriabassiana, Paecilomyces fumosoroseus and Conidiobolus sp. were other entomopathogenicfungi isolated during this survey. Differencesin the presence of M. anisopliae betweenarable fields and adjacent meadows as well asbetween orchards and meadows are discussed.  相似文献   

3.
Three species of entomopathogenicnematodes, a combination of two nematodespecies, an entomopathogenic fungal species,and a combination of a nematode and fungalspecies were evaluated against the white grubsEctinohoplia rufipes and Exomalaorientalis (Coleoptera: Scarabaeidae) in the field. The nematodes were acommercial formulation of Steinernemacarpocapsae (BioSafe) and S. glaseri from Dongrae and from Hanrim, and Heterorhabditis bacteriophora from Hamyang,Republic of Korea. The entomopathogenic funguswas Beauveria brongniartii, produced onSabouraud maltose agar plus 1% yeast (SMAY),rice bran, or compost. The combinationtreatment was S. carpocapsae with H.bacteriophora or B. brongniartii. Fieldapplications were made in August or Septemberagainst third instars at a golf course infestedwith E. rufipes in Gyeongnam Province in1991, and one in Pusan with E. orientalisin 1992 and 1993. In 1991, a significantreduction of 70.2 to 79.4% of E. rufipeslarvae was observed in the nematode, fungal andchemical (fenitrothion) treatments comparedwith a 15.7% reduction in the control. In1992, the E. orientalis larval populationwas reduced between 62.7 and 82.8% in thetreatments compared to 10.7% in the control.In 1993, larval reductions in plots treatedwith nematodes (78.3 to 97%) and B.brongniartii propagated on rice bran (84.5%)were significantly better than in plots treatedwith B. brongniartii propagated on SMAY(63.6%) or compost (59.6%). Combining twonematode species did not enhance the efficacycompared to treatments with one nematodespecies alone, but combining S.carpocapsae with B. brongniartiiproduced on SMAY resulted in a significantincrease in grub mortality over the applicationof the fungus alone produced on SMAY orcompost. The high efficacy of the nematode andmost fungal treatments was attributed to theclose proximity of the white grubs to the soilsurface which allowed for excellentpathogen-host contact and to favorable soiltemperatures, sandy soil, post irrigationapplication and/or rain and a minimal thatchlayer in the turfgrass.  相似文献   

4.
Use of 50 × 500 mm non-woven fiber bands impregnated with cultures of entomopathogenic fungi was investigated for control of Anoplophora glabripennis. Fungal bands produced as a commercial pest control product and obtained from industry contained Beauveria brongniartii NBL 851 while lab-produced bands contained B. brongniartii WU 20 or Metarhizium anisopliae VD 1. In the laboratory, adult longevity decreased when adult A. glabripennis were forced to walk for 5 s on bands impregnated with B. brongniartii NBL 851 and for 25 s on B. brongniartii WU 20 and M. anisopliae VD 1 bands. A field experiment was conducted over a 31-day period in Huaiyuan, Anhui, China, by attaching bands impregnated with B. brongniartii NBL 851 or WU 20 around the trunks of willows (Salix sp.) at two sites infested with A. glabripennis. Treatments were compared directly, by monitoring adult longevity, and indirectly, by counting oviposition scars and exit holes per tree to quantify relative oviposition per female. Adults collected from trees treated with B. brongniartii WU 20 died more quickly than adults from the trees treated with B. brongniartii NBL 851 or controls. At the site with higher A. glabripennis population densities, relative oviposition per female was significantly lower for both fungal treatments compared with the control treatment. Between fungal treatments, B. brongniartii NBL 851 had a 5 day earlier negative effect on oviposition per female than B. brongniartii WU 20.  相似文献   

5.
The virulence of two isolates of the hyphomycete fungi, Beauveria bassianaand B. brongniartii, and additional fungal species isolated from diseased Bactrocera oleae pupae and Sesamia nonagrioideslarvae were assessed against adults of the olive fruit fly B. oleae and the Mediterranean fruit fly Ceratitis capitata (Diptera: Tephritidae). Contact and oral bioassays revealed that moderate to high mortality rates for the olive fruit fly occurred when the adults were exposed to conidia of Mucor hiemalis, Penicillium aurantiogriseum, P. chrysogenum and B. bassianaisolates. A strain of M. hiemalis isolated from S. nonagrioides larvae was the most toxic resulting in 85.2% mortality to the olive fruit fly adults. B. brongniartiiand B. bassiana were the most pathogenic to the C. capitataadults causing 97.4 and 85.6% mortality. Metabolites collected from the M. hiemalis and P. chrysogenum isolates were toxic to adults of both species.  相似文献   

6.
Twenty isolates of four species of entomopathogenic hypocrealean fungi (Beauveria bassiana, Beauveria brongniartii, Isaria farinosa, and Metarhizium anisopliae) were found to be pathogenic to adults of the Asian longhorned beetle, Anoplophora glabripennis. Survival times for 50% of the beetles tested (ST50) ranged from 5.0 (M. anisopliae ARSEF 7234 and B. brongniartii ARSEF 6827) to 24.5 (I. farinosa ARSEF 8411) days. Screening studies initially included strains of B. brongniartii, which is registered as a microbial control agent in Europe, Asia and South America but not in North America. At that time, we could not confirm that this fungal species is native to North America which added uncertainty regarding future registration of this species for pest control in the USA. Therefore, subsequent bioassays documented median survival times for three M. anisopliae isolates (5–6 days to death) and two of these isolates are suggested for further development because they are already registered for pest control in the USA. An erratum to this article can be found at  相似文献   

7.
The quantitative determination of Macrophomina phaseolina population in an arid soil was carried out utilizing a selective medium. The population of the fungus increased under continuous monocropping with a susceptible host, but considerable reduction was recorded with crop rotation or a change in crop sequence. The effects of fungi, bacteria, actinomycetes, total microbial population, minimum and maximum soil temperature on the survival of M. phaseolina population were studied in the absence of a crop at different soil depths. Highest population and survival rates were recorded at 0–5 cm soil depth. Correlation and path coefficient analyses were carried out to determine the role of individual factors influencing M. phaseolina population. In winter months, low temperature and high actinomycete population were found to be the major factors governing the reduction of the population of M. phaseolina.  相似文献   

8.
Pathogenicity of nematophagous fungus Paecilomyces lilacinus (Thom) Samson in control of the most destructive greenhouse pests such as: greenhouse whitefly, Trialeurodes vaporariorum, glasshouse red spider mite, Tetranychus urticae, the cotton aphid, Aphis gossypii and western flower thrips, Frankliniella occidentalis was examined in laboratory and pot experiments. The fungus showed the greatest efficacy in controlling winged and wingless forms of the cotton aphid. The cotton aphid’s population was almost totally eliminated. In controlling the greenhouse whitefly, P. lilacinus was most successful when applied against nymphal growth stages (L3-L4). Control of the western flower thrips was most efficient against prepupal and pupal stages when the fungus was applied as a water spore suspension to the soil. When the fungus was applied at temperatures below 10 °C, it was able to reduce a glasshouse red spider mite population by 60%.  相似文献   

9.
The registered entomopathogenic fungus Beauveria brongniartii (BIPESCO 2) was tested for its virulence after one, five and 10 times sub-culturing on four types of selective synthetic nutrient media. Bioassays with third instar Melolontha melolontha larvae showed that sub-culturing negatively affects the virulence of the fungus after 10 transfers. With the Biolog™ SF-P2 and Biolog™ SF-N2 microtiter plate systems the sub-cultivated B. brongniartii conidia were monitored for any change in the carbon utilization pattern of 128 carbon sources. With the help of Spearman’s rank correlation, principal components analysis and canonical correspondence analysis, respectively, six carbon sources were identified as potential virulence indicators for BIPESCO 2 (pyruvic acid, maltose, glycyl-l-glutamic acid, malonic acid, glucuronamide and phenylethylamine). The Biolog™ microtiter plate system is suggested as a simple and inexpensive test-system for virulence determination of B. brongniartii strain BIPESCO 2 in routine quality control.  相似文献   

10.
The fungus, Muscodor albus, was tested for nematicidal and nematostatic potential against four plant-parasitic nematode species with three different feeding modes on economically important vegetable crops in the Pacific Northwest. Meloidogyne chitwoodi, Meloidogyne hapla, Paratrichodorus allius, and Pratylenchus penetrans were exposed for 72 h to volatiles generated by M. albus cultured on rye grain in sealed chambers at 24 °C in the laboratory. In addition, the nematodes were inoculated into soil fumigated with M. albus, and incubated for 7 days prior to the introduction of host plants under greenhouse conditions. The mean percent mortality of nematodes exposed to M. albus in the chamber was 82.7% for P. allius, 82.1% for P. penetrans, and 95% for M. chitwoodi; mortality in the nontreated controls was 5.8%, 7%, and 3.9%, respectively. Only 21.6% of M. hapla juveniles died in comparison to 8.9% in controls. However, 69.5% of the treated juveniles displayed reduced motility and lower response to physical stimulus by probing, in comparison to the control juveniles. This is evidence of nematostasis due to M. albus exposure. The greenhouse study showed that M. albus caused significant reduction to all nematode species in host roots and in rhizosphere soil. The percent mortality caused by M. albus applied at 0.5% and 1.0% w/w in comparison to the controls was as follows: 91% and 100% for P. allius in the soil; 100% for P. penetrans in bean roots and soil; 85% and 95% for M. chitwoodi in potato roots, and 56% and 100% in the soil; 100% for M. hapla both in pepper roots and soil. In this study, M. albus has shown both nematostatic and nematicidal properties.  相似文献   

11.
This investigation deals with the control effects of the insect pathogenic fungus Metarhizium anisopliae var. anisopliae on Daktulosphaira vitifoliae. In pot experiments, the soil surrounding phylloxera-infected grapes was inoculated with barley colonised with M. anisopliae. After thirty-two days, ineight of ten Metarhizium-applied pots nofresh phylloxera infections could be observed.In two of ten plants, a few fresh nodositiessingly occupied with phylloxera or phylloxeraeggs could be found. In all untreated plants,fresh nodosities with either single (two of sixplants) or multiple (four of six plants)occupation with phylloxera could be observed.M. anisopliae could be re-isolated in aconcentration of <1 × 103 CFU g$minus;1 soil dry weight from those pots with phylloxera-infected plants that had been treated with the fungus. The potential role of M. anisopliae in grape phylloxera management is discussed.  相似文献   

12.
Screenhouse studies were conducted to investigate the effects of Fusarium oxysporum f. sp. glycines and Sclerotium rolfsii on the pathogenicity of Meloidogyne incognita race 2 on soybean and the influence of the nematode on wilt incidence and growth of soybean. The interaction of each fungus with the nematode resulted in reduced shoot and root growth. Final nematode population was also reduced with concomitant inoculation of nematode and fungus or inoculation of fungus before nematode. While M. incognita suppressed wilt incidence in two nematode-susceptible cultivars of soybean (TGX 1485-2D and TGX 1440-IE), it had limited effect on wilt incidence in the nematode resistant cultivar of soybean (TGX 1448-2E). When F. oxysporumwas inoculated with the nematode, the mean number of nematodes that penetrated soybean roots decreased by 75% in TGX 1448-2E, 68% in TGX 1485-1D and 65% in TGX 1440-1E. Similarly when the soil was treated with S. rolfsii, the number decreased by 78% in TGX 1448-2E, 77% in TGX 1485-1D and 68% in TGX 1440-1E. The nematode did not develop beyond second-stage juvenile in TGX-1448-2E.  相似文献   

13.
Inoculation of apple seedling roots withPenicillium claviforme reduced plant growth and resulted in morphological changes of roots resembling those found in seedlings growing in ‘apple replant problem’ soil (apple-sick soil). The introduced fungus persisted in the rhizosphere throughout the 30-month test period. The numbers of colony-forming units (CFU) ofPenicillium claviforme, as well as the ‘total’ number of CFU of micromycetes, were higher in the rhizoplane of the inoculated seedling in comparison with uninoculated plants. The numbers of CFU of phytotoxic micromycetes in the rhizosphere soil of inoculated seedlings were also proportionally higher. Apple tree growth was also reduced when seedlings were inoculated with the flucrescent bacteriumPseudomonas putida; however, no morphological changes were observed in the roots. Both micro-organisms introduced into the apple seedling rhizosphere caused changes in the microbial community. Inoculation withPenicillium claviforme andPseudomonas putida caused a decrease in the number of mycolytic bacteria in the rhizoplane of apple seedlings.  相似文献   

14.
Iyer  Nandini  Ramakrishna Rao  T. 《Hydrobiologia》1993,255(1):325-332
Using population densities and growth rates as criteria, we studied interactions between the epizoic rotifer Brachionus rubens and each of three cladoceran species differing in size and reproductive rates — Daphnia carinata, Moina macrocopa and Ceriodaphnia rigaudi. In all mixed — species experiments, B. rubens existed in both the epizoic mode, attached to the cladoceran host, and in the free-swimming mode. Rotifer population growth rates were significantly depressed in the presence of M. macrocopa, presumably as a consequence of exploitative and interference competition. The largest cladoceran, D. carinata probably did not suppress B. rubens, because the epizoic component of the rotifer population escaped from the deleterious effects of mechanical interference. Peak population numbers and initial population growth rates reached by all three cladocerans were lower in the presence of B. rubens, probably because of the adverse effects of the epizoic infestation, which was maximal on D. carinata and least on C. rigaudi. In mixed-species cultures of D. carinata and M. macrocopa, the presence of B. rubens helped D. carinata coexist with M. macrocopa, which otherwise would have suppressed the Daphnia.  相似文献   

15.
Residual populations of storage mites sheltering in crevices and cracks escape conventional control treatments and are implicated in the infestation of newly harvested grain. In a series of 24 h laboratory tests, the performance of solitary adults of two predatory mite species, Cheyletus eruditus (Schrank) and Blattisocius tarsalis (Berlese), were assessed for controlling small numbers of the flour mite Acarus siro (L.). Tests were carried out in the presence or absence of prey refuges or grain debris to afford shelter to the flour mites. While C. eruditus had a significant effect on the motile stages of A. siro, in contrast B. tarsalis had a significant effect on the eggs. The maximum percentage of motile stages of A. siro eaten by C. eruditus was 82%, whereas the minimum percentage of A. siro eggs eaten by B. tarsalis was 99%. While the performance of C. eruditus in predating on motile stages of the flour mite was hindered by the presence of the prey refuge (38% eaten) and grain debris (25% eaten), the performance of B. tarsalis in predating on flour mite eggs was unaffected (100% eaten in presence of prey refuge or grain debris). In prolonged exposures (36 days) the performance of 2, 4 or 8 adult predators, either a single species or a combination of both, was assessed for their ability to control a population of the flour mite developing up to F2 from an initial inoculum of 80 females and 20 males, allowed to oviposit for 72 h in the absence of predatory mites. The maximum reduction in prey population of 80% was achieved with eight B. tarsalis. Combining the two predatory species did not enhance the reduction of A. siro population.  相似文献   

16.
The common soil inhabiting nematophagous fungus Paecilomyces lilacinus (Thom) Samson and the nematode trapping fungus Monacrosporium lysipagum (Drechsler) Subram were assayed for their ability to reduce the populations of three economically important plant-parasitic nematodes in pot trials. The fungi were tested individually and in combination against the root-knot nematode Meloidogyne javanica (Treub) Chitwood, cereal cyst nematode Heterodera avenae Wollenweber, or burrowing nematode Radopholus similis (Cobb) Thorne on tomato, barley and tissue cultured banana plants, respectively. In all cases, nematode populations were controlled substantially by both individual and combined applications of the fungi. Combined application of P. lilacinus and M. lysipagum reduced 62% of galls and 94% of M.␣javanica juveniles on tomato when compared to the experiment with no fungi added. Sixty five percent of H. avenae cysts were reduced on barley by combined application of fungi. Control of R. similis on banana, both in the roots and in the soil, was greatest when M. lysipagum was applied alone (86%) or in combination with P. lilacinus (96%), using a strategy where the fungi were inoculated twice in 18 weeks growth period. Overall, combined application of P. lilacinus and M. lysipagum was the most effective treatment in controlling nematode populations, although in some cases M. lysipagum alone was as effective as the combined application of fungi, particularly against M. javanica.  相似文献   

17.
Honey bees are important pollinators of commercial blueberries in the southeastern United States, and blueberry producers often use supplemental bees to achieve adequate fruit set. However, honey bees also vector the plant pathogenic fungus Monilinia vaccinii-corymbosi which infects open blueberry flowers through the gynoecial pathway causing mummy berry disease. Here, we report the results of a 3-year field study to test the hypothesis that using bee hives equipped with dispensers containing the biocontrol product Serenade, a commercial formulation of the bacterium Bacillus subtilis which has shown activity against flower infection by M. vaccinii-corymbosi in laboratory experiments, can reduce mummy berry disease incidence when honey bees are used as pollinators in blueberries. Individual honey bees carried 5.1–6.4 × 105 colony-forming units (CFU) of B. subtilis when exiting hive-mounted dispensers with Serenade. On caged rabbiteye blueberry bushes in the field, population densities of B. subtilis vectored by honey bees reached a carrying capacity of <103 CFU per flower stigma within 2 days of exposure, and there was a highly significant non-linear relationship between B. subtilis populations per stigma and bee activity, expressed as number of legitimate flower visits per time interval per cage (R = 0.6928, P < 0.0001, n = 32). Honey bee density (1600 or 6400 individuals per 5.8-m3 cage) and Serenade treatment (presence or absence of the product in hive-mounted dispensers) significantly (P < 0.05) affected the incidence of fruit mummification on caged bushes, whereby increasing bee density increased disease incidence and application of Serenade reduced disease levels. Taken together, results of this study suggest that use of a hive-dispersed biocontrol product such as Serenade as a supplement during pollination can reduce the risk of mummy berry disease. This may be a prudent practice that optimizes the benefits to pollination of high bee densities while reducing the associated disease-vectoring risk.  相似文献   

18.
Hirsutella rhossiliensis, a nematophagous fungus, has shown potential in biocontrol of plant-parasitic nematodes. Monitoring the population dynamics of a biocontrol agent in soil requires comprehensive techniques and is essential to understand how it works. Bioassay based on the fungal parasitism on the juveniles of soybean cyst nematode, Heterodera glycines, can be used to evaluate the activity of the fungus but fails to quantify fungal biomass in soil. A real-time polymerase chain reaction (PCR) assay was developed to quantify the fungal population density in soil. The assay detected as little as 100 fg of fungal genomic DNA and 40 conidia g−1 soil, respectively. The parasitism bioassay and the real-time PCR assay were carried out to investigate the presence, abundance and activity of H. rhossiliensis in soil after application of different inoculum levels. Both of the percentage of assay nematodes parasitized by H. rhossiliensis based on the parasitism bioassay and the DNA yield of the fungus quantified by real-time PCR increased significantly with the increase of the inoculum levels. The DNA yield of the fungus was positively correlated with the percentage of assay nematodes parasitized by H. rhossiliensis. The combination of the two is useful for monitoring fungal biomass and activity in soil.  相似文献   

19.
The influence of simulated sunlight on survival of conidia of 4 species of entomopathogenic Hyphomycetes was investigated. Conidia from 65 isolates ofBeauveria bassiana, 23 ofMetarhizium anisopliae, 14 ofMetarhizium flavoviride and 33 isolates ofPaecilomyces fumosoroseus were irradiated by artificial sunlight (295 to 1,100 nm at an ultraviolet-B irradiance of 0.3 W m–2) for 0, 1, 2, 4 and 8 h. Survival was estimated by comparing the number of colony forming units (CFU) produced by conidia exposed to irradiation to the number of CFUs produced by an unexposed control. Survival decreased with increased exposure to simulated sunlight; exposure for 2 h or more was detrimental to all isolates tested. Overall, isolates ofM. flavoviride were the most resistant to irradiation followed byB. bassiana andM. anisopliae. Conidia ofP. fumosoroseus were most susceptible. In addition to the large interspecies differences in susceptibility to irradiation, there was also an intraspecies variation indicating that strain selection to irradiation tolerance may be important in the development of microbial control agents where increased persistence in an insolated environment is desirable.Abbreviations CFU Colony forming units - UV-B ultraviolet radiation-B  相似文献   

20.
Two pot experiments using naturally infested soil and a range of watering regimes were conducted to study the possible effect of level and frequency of wetting of hot soil (to simulate the period between growing seasons in Western Australia) on inoculum of the take-all fungus (Gaeumannomyces graminis var.tritici). In combination with the high soil temperatures, all watering regimes reduced infectivity and propagule number of the take-all fungus, this reduction being absent in dry soils.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号