首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The purpose of the present study was to use zebrafish as a model to investigate how vitamin D and its receptors interact to control Ca2+ uptake function. Low-Ca2+ fresh water stimulated Ca2+ influx and expressions of epithelial calcium channel (ecac), vitamin D-25-hydroxylase (cyp2r1), vitamin D receptor a (vdra), and vdrb in zebrafish. Exogenous vitamin D increased Ca2+ influx and expressions of ecac and 25-hydroxyvitamin D3-24-hydroxylase (cyp24a1), but downregulated 1α-OHase (cyp27b1) with no effects on other Ca2+ transporters. Morpholino oligonucleotide knockdown of VDRa, but not VDRb, was found as a consequence of calcium uptake inhibition by knockdown of ecac, and ossification of vertebrae is impaired. Taken together, vitamin D-VDRa signaling may stimulate Ca2+ uptake by upregulating ECaC in zebrafish, thereby clarifying the Ca2+-handling function of only a VDR in teleosts. Zebrafish may be useful as a model to explore the function of vitamin D-VDR signaling in Ca2+ homeostasis and the related physiological processes in vertebrates.  相似文献   

2.
Mitochondrial malate dehydrogenase (mMDH) from the intestine is the NAD-linked oxidoreductase of the tricarboxylic acid cycle with the highest activity and response to vitamin D treatment in vitamin D-deficient chicks (?D). The aim of this study was to elucidate potential molecular mechanisms by which cholecalciferol or calcitriol enhances the activity of this enzyme. One group of animals used was composed of ?D and ?D treated with cholecalciferol or with calcitriol. A second group consisted of ?D and ?D supplemented with high Ca2+ diet. A third group included chicks receiving either a normal or a low Ca2+ diet. In some experiments, animals were injected with cycloheximide. Data showed that either vitamin D (cholecalciferol or calcitriol) or a low Ca2+ diet increases mMDH activity. High Ca2+ diet did not modify the intestinal mMDH activity from ?D. The mMDH activity from ?D remained unaltered when duodenal cells were exposed to 10?8 mol/L calcitriol for 15 min. The enhancement of mMDH activity by calcitriol was completely abolished by simultaneous cycloheximide injection to ?D. mMDH mRNA levels, detected by RT-PCR, indicate that calcitriol did not affect gene expression. In contrast, Western blots show that calcitriol enhanced the protein expression. In conclusion, calcitriol stimulates intestinal mMDH activity by increasing protein synthesis. No response of mMDH activity by rapid effects of calcitriol or activation through increment of serum Ca2+ was demonstrated. Consequently, ATP production would be increased, facilitating the Ca2+ exit from the enterocytes via the Ca2+-ATPase and Na+/Ca2+ exchanger, which participate in the intestinal Ca2+ absorption.  相似文献   

3.
In a previous communication we reported that glucose deprivation from KHRB medium resulted in a marked stimulation of Ca2+ uptake by brain tissue, suggesting a relationship between glucose and Ca2+ homeostasis in brain tissue [17]. Experiments were carried out to investigate the significance of glucose in Ca2+ transport in brain cells. The replacement of glucose with either D-methylglucoside or 2-deoxyglucose, non-metabolizable analogues of glucose, resulted in stimulation of Ca2+ uptake just as by glucose deprivation. These data show that glucose metabolism rather than glucose transfer was necessary to stimulate Ca2+ uptake in brain tissue. Inhibition of glucose metabolism with either NaF, NaCN, or iodoacetate resulted in stimulation of Ca2+ uptake similar to that produced by glucose deprivation. These results lend further support for the concept that glucose metabolism is essential for Ca2+ homeostasis in brain. Anoxia promotes glucose metabolism through glycolytic pathway to keep up with the demand for ATP by cellular processes (the Pasteur effect). Incubation of brain slices under nitrogen gas did not alter Ca2+ uptake by brain tissue, as did glucose deprivation and the inhibitors of glucose metabolism. We conclude that glucose metabolism resulting in the synthesis of ATP is essential for Ca2+ homeostasis in brain. Verapamil and nifedipine which block voltage-gated Ca2+ channels, did not alter Ca2+ uptake stimulated by glucose deprivation, indicating that glucose deprivation-enhanced Ca2+ uptake was not mediated by Ca2+ channels. Tetrodotoxin which specifically blocks Na+ channels, abolished Ca2+ uptake enhanced by glucose deprivation, but had no effect on Ca2+ uptake in presence of glucose (controls). These results suggest that stimulation of Ca2+ uptake by glucose deprivation may be related to Na+ transfer via Na-Ca exchange in brain.  相似文献   

4.
We have evaluated the effect of vitamin D-3 and its metabolite 1,25-dihydroxyvitamin D-3 on Ca2+ accumulation by chick intestinal mitochondria. Ca2+ accumulation appears to occur in two phases: an early, transient accumulation into an Na+-labile pool followed by an ATP-dependent accumulation into an Na+-resistant pool. Ca2+ accumulation is extensive at free Ca2+ concentrations greater than 3 · 10?6 M in the presence of ATP. Ruthenium red and dinitrophenol block Ca2+ accumulation, but atractyloside does not. Oligomycin blocks ATP-supported accumulation completely with a partial inhibition of ATP and malate-supported accumulation. Little difference could be found in mitochondrial preparations from vitamin D-deficient chicks compared to those from vitamin D-3 (or 1,25(OH)2D-3)-supplemented chicks with respect to respiratory control, oxygen consumption, efficiency of oxidative phosphorylation, affinity for Ca2+, or the rate and extent of ATP-supported Ca2+ accumulation. Intestinal cytosol stimulated Ca2+ accumulation, but this was not specific with respect to vitamin D status or tissue of origin, nor was it duplicated by chick intestinal Ca2+-binding protein. 30 ng/ml 1,25(OH)2D-3 stimulated Ca2+ accumulation directly, regardless of the presence of intestinal cytosol. Other vitamin D metabolites were less potent: 25-hydroxyvitamin D-3 > 24,25-dihydroxyvitamin D-3 = vitamin D-3. Since increasing the free Ca2+ concentration from 3 · 10?6 to 1 · 10?5 M increased Ca2+ accumulation approx. 50-fold, whereas direct stimulation by 1,25(OH)2D-3 in vitro increased Ca2+ accumulation less than 2-fold, we conclude that 1,25(OH)2D-3 influences mitochondrial accumulation of Ca2+ in vivo primarily by altering cytosol concentrations of free Ca2+.  相似文献   

5.
Summary— The effects of vitamin D on the intramuscular distribution of total and bound calcium, phosphate and on available cytosolic calcium, were investigated in skeletal muscle. Total calcium and phosphorus were measured on ashed subcellular fractions of muscles from vitamin D-repleted and vitamin D-deprived rats. The variations in available calcium were followed by determining the activities of calcium-sensitive enzymes in isolated cytosol. Bound-calcium was revealed ultra-microscopically by pyroantimonate. In vitamin D-repleted muscles, the pyroantimonate method revealed specific areas of intense bound-calcium deposition: the myofibrils, where they formed pronounced lines parallel to the Z-bands. In vitamin D-deficient muscles, the calcium-pyroantimonate deposits appeared clearly reduced. This loss was accompanied by a marked reduction in total calcium and phosphorus in all the subcellular fractions, as compared to vitamin D-repleted muscles. Unexpectedly, the activity of the Ca2+-activated isocitrate-dehydrogenase was increased in the cytosol, while that of the Ca2+-inhibited pyruvate-kinase decreased. Prolonged vitamin D-administration to vitamin D-repleted rats led to an intensification of calcium-pyroantimonate deposits and a general increase in total calcium and phosphorus, but no change in the cytosolic Ca2+-sensitive enzyme activities. Cessation of vitamin D-administration to vitamin D-repleted rats produced a regression of calcium-pyroantimonate deposits, a general decrease of total calcium and phosphate levels, and stimulation of the Ca2+-activated isocitrate-dehydrogenase accompanied by lowering of the Ca2+-inhibited pyruvate-kinase. The results clearly indicate a correlation between vitamin D-repletion and the total and bound calcium content of skeletal muscle. In addition, they demonstrate an apparent contradiction between the decrease of total and bound calcium, and the activities of cytosolic Ca2+ sensitive enzymes during vitamin D-deprivation, which can only be explained by an increase in available calcium. It is suggested that vitamin D stimulates intramuscular mechanisms tending to lower available calcium by inactivating the cation via the formation of calcium chelates.  相似文献   

6.
The role of calmodulin (CaM) in gibberellic acid (GA3)-stimulated Ca2+ uptake was investigated in endomembranes isolated from aleurone cells of barley (Hordeum vulgare L.). Unidirectional Ca2+ -uptake activity of endoplasmic reticulum (ER) was higher in membranes isolated from aleurone layers treated for 16 h with GA3 and Ca2+ compared with those isolated from layers incubated in Ca2+ alone. However, the level of uptake from Ca2+-treated tissue could be stimulated to that of the GA3-treated cells by applying exogenous CaM which increased the V max of the Ca2+ transporter approximately threefold. Calcium uptake in ER from GA3-treated tissue was inhibited by the CaM antagonist W7 in 50% of experiments, whereas the activity in membranes from non-GA3-treated tissue was unaffected. Treatment with GA3 also led to a twofold increase in CaM levels in aleurone layers within 4–6 h, paralleling the time course of the stimulation of Ca2+ uptake and preceding the stimulation of α-amylase secretion. We propose that the elevation of Ca2+ uptake into the ER induced by GA3 may be coordinated and regulated by elevated levels of membrane-associated CaM and this may regulate Ca2+-dependent α-amylase synthesis in the lumen of the ER.  相似文献   

7.
The rate of isoproterenol stimulated secretion of protein from parotid glands of vitamin D deficient rats and rats treated with methylprednisolone was increased compared to the secretory response of tissue from control rats. It is suggested that the increased secretory response is secondary to a decreased capacity of mitochondria from the tissue of these animals to take up and store Ca2+; i.e. the mitochondria are less efficient buffers of cytoplasmic Ca2+. Under these conditions any process, such as protein secretion, which requires an increased cytoplasmic Ca2+ concentration will operate more effectively.  相似文献   

8.
The presence of an Na+/Ca2+ exchange system in basolateral plasma membranes from rat small intestinal epithelium has been demonstrated by studying Na+ gradient-dependent Ca2+ uptake and the inhibition of ATP-dependent Ca2+ accumulation by Na+. The presence of 75 mM Na+ in the uptake solution reduces ATP-dependent Ca2+ transport by 45%, despite the fact that Na+ does not affect Ca2+-ATPase activity. Preincubation of the membrane vesicles with ouabain or monensin reduces the Na+ inhibition of ATP-dependent Ca2+ uptake to 20%, apparently by preventing accumulation of Na+ in the vesicles realized by the Na+-pump. It was concluded that high intravesicular Na+ competes with Ca2+ for intravesicular Ca2+ binding sites. In the presence of ouabain, the inhibition of ATP-dependent Ca2+ transport shows a sigmoidal dependence on the Na+ concentration, suggesting cooperative interaction between counter transport of at least two sodium ions for one calcium ion. The apparent affinity for Na+ is between 15 and 20 mM. Uptake of Ca2+ in the absence of ATP can be enhanced by an Na+ gradient (Na+ inside > Na+ outside). This Na+ gradient-dependent Ca2+ uptake is further stimulated by an inside positive membrane potential but abolished by monensin. The apparent affinity for Ca2+ of this system is below 1 μM. In contrast to the ATP-dependent Ca2+ transport, there is no significant difference in Na+ gradient-dependent Ca2+ uptake between basolateral vesicles from duodenum, midjejunum and terminal ileum. In duodenum the activity of ATP-driven Ca2+ uptake is 5-times greater than the Na+/Ca2+ exchange capacity but in the ileum both systems are of equal potency. Furthermore, the Na+/Ca2+ exchange mechanism is not subject to regulation by 1α,25-dihydroxy vitamin D-3, since repletion of vitamin D-deficient rats with this seco-steroid hormone does not influence the Na+/Ca2+ exchange system while it doubles the ATP-driven Ca2+ pump activity.  相似文献   

9.
We have isolated an endogenous positive inotropic factor (EPIF) from porcine left heart ventricular tissue, which demonstrated to have only weak digitalis-like properties including the inhibition of myocardial Na+,K+-ATPase. EPIF completely lacks digitalis-like toxicity such as after-contractions in larger doses. In our recent studies, we have demonstrated that EPIF produces a decrease in the amplitude of the post-rest rapid cooling contracture which indicated that EPIF may release Ca2+from the sarcoplasmic reticulum. In the present study, the effects of EPIF were investigated on the Ca2+uptake and release properties of SR enriched membrane vesicles from rat heart. At pH 6.8 and in the presence of oxalate, EPIF dose-dependently inhibited the ATPdependent uptake of Ca2+by SR vesicles. Concentrations as low as 25 ul (in 1 mL uptake medium) of EPIF caused a 45-47% reduction in the uptake of Ca2+within 3-4 min. Increases in EPIF concentration to 50 ul/mL caused additional reduction of only 15-20% in the uptake of Ca2+. Concentrations of 25 ul/mL of EPIF had little or no effects on passive release of actively loaded Ca2+in SR vesicles. On doubling the concentrations to 50 ul/mL EPIF, however, enhanced the release of Ca2+by 25-28% during 1-2 min. and 44-48% after 4 min of incubation of Ca2+loaded vesicles in the release medium. Relatively smaller effects of EPIF on Ca2+release implies that EPIF may mainly lower the uptake of Ca2+in SR. This reduced uptake of Ca2+may be explained by the EPIF-induced inhibition of Ca2+pump.  相似文献   

10.
Rats fed a diet deficient in both vitamin D and Ca2+ exhibited a greater depression of the renal parathyroid hormone (PTH)-dependent adenylate cyclase than was observed in rats fed diets deficient in either vitamin D or calcium. Total serum Ca2+ was decreased from a control level of 11.2 mg/dl to 8.5 mg/dl in rats fed the diet deficient in calcium alone, and to 5.4 mg/dl in rats fed the diet deficient in vitamin D. Serum calcium was decreased further to 4.3 mg/dl in rats fed the diet deficient in both vitamin D and Ca2+. Serum immunoreactive PTH was significantly elevated over control levels when rats were fed the test diets; however, there were no significant differences between the elevated levels in the three experimental groups. Repletion of rats deficient in vitamin D only with a single oral dose of 3200 I.U. vitamin D-2 resulted in restoration of serum calcium to normal levels, a return of serum PTH to the control state, and an associated increase in PTH-dependent adenylate cyclase activity to the control level by 72 h. Repletion of rats deficient in both vitamin D and Ca2+ with the same dose of vitamin D-2 raised serum Ca2+ to 7.2 mg/dl by 72 h, but did not cause a reduction in circulating PTH, nor did it result in any significant improvement in the responsiveness of the membrane adenylate cyclase to PTH. These results suggest that elevated PTH is a factor in the down regulation of the PTH-dependent adenylate cyclase, but do not rule out a role for calcium as a regulatory factor.  相似文献   

11.
The effect of adrenocorticotropic hormone and dibutyryl cyclic AMP on the uptake of45Ca2+ by the rat adrenal gland has been investigated. After injection of 45Ca2+ and adrenocorticotropic hormone into rats, the adrenal 45Ca2+ concentration was significantly enhanced 90 to 180 min following hormone administration. The rise in adrenal 45Ca2+ content was accompanied by a marked increase of the serum corticosterone levels. During incubation of rat adrenal glands in the presence of 45Ca2+, adrenocorticotropic hormone and dibutyryl cyclic AMP caused significant accumulation of adrenal 45Ca2+ and increased corticosterone synthesis. The degree of stimulation of both adrenal 45Ca2+ uptake and corticosterone synthesis by adrenocorticotropic hormone or dibutyryl cyclic AMP was dependent upon the concentration of calcium in the incubation medium and upon the amount of adrenocorticotropic hormone or dibutyryl cyclic AMP added. Theophylline mimicked the stimulatory effect of adrenocorticotropic hormone and dibutyryl cyclic AMP and increased the uptake of 45Ca2+ by rat adrenal glands in vitro. Determination of calcium by atomic absorption spectroscopy showed that the adrenocorticotropic hormone-mediated adrenal 45Ca2+ uptake was due to a net accumulation of calcium in the tissue and not only to an increased rate of exchange of extracellular 45Ca2+ with the intracellular calcium pool. Adrenocorticotropic hormone-stimulated adrenal 45Ca2+ uptake was not observed when steroidogenesis was inhibited with elipten. Both adrenocorticotropic hormone-mediated corticosterone synthesis and adrenal 45Ca2+ uptake were abolished after treatment of rats with cycloheximide but not after treatment with actinomycin D, indicating that adrenal 45Ca2+ uptake and steroidogenesis have similar requirements for de novo protein synthesis, but not RNA synthesis.  相似文献   

12.
The effect of adrenocorticotropic hormone and dibutyryl cyclic AMP on the uptake of 45Ca2+ by the rat adrenal gland has been investigated. After injection of 45Ca2+ and adrenocorticotropic hormone into rats, the adrenal 45Ca2+ concentration was significantly enhanced 90 to 180 min following hormone administration. The rise in adrenal 45Ca2+ content was accompanied by a marked increase of the serum corticosterone levels. During incubation of rat adrenal glands in the presence of 45Ca2+, adrenocorticotropic hormone and dibutyryl cyclic AMP caused significant accumulation of adrenal 45Ca2+ and increased corticosterone synthesis. The degree of stimulation of both adrenal 45Ca2+ uptake and corticosterone synthesis by adrenocorticotropic hormone or dibutyryl cyclic AMP was dependent upon the concentration of calcium in the incubation medium and upon the amount of adrenocorticotropic hormone or dibutyryl cyclic AMP added. Theophylline mimicked the stimulatory effect of adrenocorticotropic hormone and dibutyryl cyclic AMP and increased the uptake of 45Ca2+ by rat adrenal glands in vitro. Determination of calcium by atomic absorption spectroscopy showed that the adrenocorticotropic hormone-mediated adrenal 45Ca2+ uptake was due to a net accumulation of calcium in the tissue and not only to an increased rate of exchange of extracellular 45Ca2+ with the intracellular calcium pool. Adrenocorticotropic hormone-stimulated adrenal 45Ca2+ uptake was not observed when steroidogenesis was inhibited with elipten. Both adrenocorticotropic hormone-mediated corticosterone synthesis and adrenal 45Ca2+ uptake were abolished after treatment of rats with cycloheximide but not after treatment with actinomycin D, indicating that adrenal 45Ca2+ uptake and steroidogenesis have similar requirements for de novo protein synthesis, but not RNA synthesis.  相似文献   

13.
Summary The volume change of sarcoplasmic reticulum vesicles was induced by Ca2+ uptake. This volume change was measured by the light-scattering method. When vesicles were shrunk beforehand under the condition that anions are more permeable than cations, they swelled during Ca2+ uptake due to the concomitant incorporation of anions. On the contrary, they shrank with Ca2+ uptake due to the extrusion of cations under the condition that cations are more permeable than anions. From the analysis of the volume change it was concluded that all ions other than Ca2+ were transported passively in order to neutralize the membrane potential generated by the Ca2+ pump. These results support the idea that the Ca2+ pump is electrogenic. By using this technique, it became possible to measure the fast Ca2+ uptake rate. The dependence of the Ca2+ uptake rate on the Ca2+ concentration suggests that the site at which Ca2+ inhibits Ca2+ uptake is located inside the vesicle. From the osmotic response of the vesicles, the intravesicular concentration of free Ca2+ was estimated to be about 15mm, when Ca2+ was fully taken up under the physiological condition.  相似文献   

14.
Summary We have measured Ca2+ uptake and Ca2+ release in isolated permeabilized pancreatic acinar cells and in isolated membrane vesicles of endoplasmic reticulum prepared from these cells. Ca2+ uptake into cells was monitored with a Ca2+ electrode, whereas Ca2+ uptake into membrane vesicles was measured with45Ca2+. Using inhibitors of known action, such as the H+ ATPase inhibitors NBD-Cl and NEM, the Ca2+ ATPase inhibitor vanadate as well as the second messenger inositol 1,4,5-trisphosphate (IP3) and its analog inositol 1,4,5-trisphosphorothioate (IPS3), we could functionally differentiate two non-mitochondrial Ca2+ pools. Ca2+ uptake into the IP3-sensitive Ca2+ pool (IsCaP) occurs by a MgATP-dependent Ca2+ uptake mechanism that exchanges Ca2+ for H+ ions. In the absence of ATP Ca2+ uptake can occur to some extent at the expense of an H+ gradient that is established by a vacuolar-type MgATP-dependent H+ pump present in the same organelle. The other Ca2+ pool takes up Ca2+ by a vanadate-sensitive Ca2+ ATPase and is insensitive to IP3 (IisCaP). The IsCaP is filled at higher Ca2+ concentrations (10–6 mol/liter) which may occur during stimulation. The low steady-state [Ca2+] of 10–7 mol/liter is adjusted by the IisCaP.It is speculated that both Ca2+ pools can communicate with each other, the possible mechanism of which, however, is at present unknown.  相似文献   

15.
Bovine chromaffin secretory granules were purified by isopycnic Metrizamide gradient centrifugation and their Ca2+ sequestration pathways were characterized. The rate of Ca2+ sequestration at 37°C was first order, with a maximal uptake of 26.9 ±0.46 (mean ± S.D., n = 3) nmol Ca2+/mg protein and a first order rate constant (k) of 0.046 ± 0.002 min–1. At 4°C the rate of uptake was substantially attenuated, with only 2.47 ± 0.2 (mean ± S.D, n = 3) nmol Ca2+/mg protein sequestered in 60 min. Ca2+ sequestration was 93% inhibited by 180 mM NaCl [I50% of 78.7 ± 9.3 mM NaCl (mean ± S.D., n = 11)] but only slightly inhibited by KCl or MgCl2. Ca 2+ sequestration was not stimulated by incubation with MgATP but was inhibited by 57% after incubation with 30 M monensin. Ca 2+ sequestration was dependent on extravesicular Ca 2+ with half-maximal sequestration at pCa2+ 6.81 ± 0.028 (mean ± S.D., n = 3). Sequestered Ca2+ could be exchanged with external 45Ca2+, the exchange rate was first order (k of 0.042 ± 0.004: mean ± S.D., n = 3) and saturated at 27.7 ± 1.1 nmol Ca2+/mg (mean ± S.D., n = 3). The Ca2+/Ca2+ exchange system was totally inhibited by NaCl or KCl but only slightly by MgCl2. About 75% of sequestered 45Ca2+ could be released by incubation with NaCl, but only 8% was released by incubation with KCI. Half-maximal release of sequestered 45Ca2+ required 69.3 ± 12.2 mM NaCl (mean ± S.D., n = 3). The Na+-induced release of sequestered 45Ca2+ was rapid, t0.5 of 2.80 ± 0.63 min (mean ± S.D., n = 3) and inhibited at 4°C. The concurrent incubation of chromaffin granules with 45Ca2+ and either annexin proteins V or VI resulted in attenuated uptake of 45Ca2+. These results suggest that Ca2+ uptake in adrenal chromaffin granules is regulated by Na+ and Ca2+ gradients and also possibly by annexins V and VI.Abbreviations EGTA ethylene glycol bis (-aminoethyl ether)-N,-N,N,N-tetraacetic acid - SDS Sodium dodecyl sulphate - PAGE Polyacrylamide gel electrophoresis - BSA bovine serum albumin - AI Annexin I - AIIt Annexin II tetramer - AIII Annexin III - AIV Annexin IV - AV Annexin V - AVI Annexin VI - k first order rate constant - AT total extent of Ca2+ uptake (nmol) - BufferA 300 mM sucrose, 10 mM potassium phosphate (pH 7.0), 5 mM EGTA - Buffer B 300 mM sucrose, 10 mM potassium phosphate (pH 7.0) and 1 mM EGTA - Buffer C 300 mM sucrose, 10 mM potassium phosphate (pH 7.0) - Buffer D 300 mM sucrose, 10 mM potassium phosphate (pH 7.0), 0.5 mM EGTA and 0.65 MM CaCl2 - Buffer E 300 mM sucrose, 10 mM potassium phosphate (pH 7.0), 0.25 mM EGTA and 0.325 mM CaCl2  相似文献   

16.
A Ca2+-activated proteolytic enzyme 1 that partially degrades myofibrials was isolated from hind limb muscles of normal rabbits and rabbits undergoing rapid muscle atrophy as a result of vitamin E deficiency. Extractable Ca2+-activated protease activity was 3.6 times higher in muscle tissue from vitamin E-deficient rabbits than from muscle tissue of control rabbits. Ultrastructural studies of muscle from vitamin E-deficient rabbits showed that the Z disk was the first myofibrillar structure to show degradative changes in atrophying muscle. Myofibris prepared from muscles vitamin E-deficient rabbits showed partial or complete loss of Z-disk density. Sodium dodecyl sulfate polyacrylamide gel electrophoresis showed that the amount of troponin-T (37 000 daltons) and α-actinin (96 000 daltons) was reduced in myofibrils from atrophying muscle as compared to myofibrils prepared from control muscle. In vitro treatment of purified myofibrils with purified Ca2+-activated proteolytic enzyme produced alterations in myofibrillar ultrastructure that were identical to the initial alterations occuring in myofibrils from atrophying muscle (i.e. weakening and subsequent removal of Z disks). Additionally the electrophoretic banding pattern of Ca2+-activated proteolytic enzyme-treated myofibrils is very similar to that of myofibrils prepared from muscles atrophying as a result of nutritional vitamin E deficiency. The possible role of Ca2+-activated proteolytic enzyme in disassembly and degradation of the myofibril is discussed.  相似文献   

17.
In the present study we examine the effects of Al on the uptake of Ca2+ and H2PO-4 in beech (Fagus sylvatica L.) grown in inorganic nutrient solutions and nutrient solutions supplied with natural fulvic acids (FA). All the solutions used were chemically well characterized. The uptake of Al by roots of intact plants exposed to solutions containing 0, 0.15 or 0.3 mM AlCl3 for 24 h, was significantly less if FA (300 mg l−1) were also present in the solutions. The Ca2+(45Ca2+) uptake was less affected by Al in solutions supplied with FA than in solutions without FA. There was a strong negative correlation between the Al and Ca2+ uptake (r2=0.98). When the Al and Ca2+ (45Ca2+) uptake were plotted as a function of the Al3+ activity (or concentration of inorganic mononuclear Al), almost the same response curves were obtained for the -FA and +FA treatments. We conclude that FA-complexed Al was not available for root uptake and therefore could not affect the Ca2+ uptake. The competitive effect of Al on the Ca2+ uptake was also shown in a 5-week cultivation experiment, where the Ca concentration in shoots decreased at an AlCl3 concentration of 0.3 mM. The effect of Al on H2PO4 uptake was more complex. The P content in roots and shoots was not significantly affected, compared with the control, by cultivation for 5 weeks in a solution supplied with 0.3 mM AlCl3, despite a reduction of the H2PO4 concentration in the nutrient solution to about one-tenth. At this concentration Al obviously had a positive effect on H2PO4 uptake. The presence of FA decreased 32P-phosphate uptake by more than 60% during 24 h, and the addition of 0.15 or 0.3 mM AlCl3 to these solutions did not alter the uptake of 32P-phosphate.  相似文献   

18.
ATP-dependent Sr2+ transport was examined in vitro using basolateral membrane (BLM) vesicles isolated from rat renal cortex to clarify the discrimination mechanisms between strontium (Sr) and calcium (Ca) in renal tubules during reabsorption. ATP-dependent Sr2+ uptake and Ca2+ uptake were observed in renal BLM vesicles and were inhibited by vanadate. Hill plots indicate similar kinetic behavior for Ca2+ and Sr2+ uptake. The apparentK m andV max of ATP-dependent Sr2+ uptake were both higher than those for Ca2+ uptake. ATP-dependent Sr2+ uptake by BLM vesicles diminished in the presence of 0.1 μM Ca2+ and was more markedly inhibited by 1 μM Ca2+. Hill plots of Sr2+ uptake data with and without 0.1 μM Ca2+ showed that the cooperative behavior of Sr2+ uptake was not changed by Ca2+. In the presence of 0.1 μM Ca2+, the affinity of the transport system for Sr2+ and the velocity of Sr2+ uptake in the BLM were both decreased. However, the rate of Ca2+ uptake was not diminished by Sr2+ concentrations of <1.6 μM. These results suggest that Ca2+ is preferentially transported in the renal cortex BLM when Ca2+ and Sr2+ are present at the same time.  相似文献   

19.
The electrolyte distribution and sugar uptake by teased renal tubules of winter flounder (Pseudopleuronectes americanus) was studied using incubation media with 1.4 mM Ca2+ (controls) and without Ca2+. The omission of Ca2+: (a) produced some cellular swelling, and increase in cell Na+ and loss of K+; (b) had no effect on the extracellular propylene-glycol space; (c) increased the uptake of non-metabolizable methyl-α-D-glucoside by the tissue: whereas in controls the equilibrium tissue/medium ratio (T/M) for the Na+-independent uptake of the sugar was 0.71 ± 0.03 (SEM, n = 9), in Ca2+-free media the T/M rose in 1.18 ± 0.06. The increase in sugar uptake seen in absence of Ca2+ was abolished by absence of Na+ (Li+-media), 0.5 mM ouabain and 0.5 mM phlorizin; (d) produced an increase in the galactose phosphate level without affecting that of free sugar; (e) decreased the active uptake of 2-deoxy-D-galactose by the tubules. These results were analyzed on the basis of available information on the transport characteristics of the sugars at the luminal and antiluminal cell faces. It is suggested that absence of Ca2+ increases the permeability of the intercellular junctions, thus permitting sugars to enter from the external medium into the tubular lumen. Methyl-α-D-glucoside and D-galactose can then be taken up into the cells by brush-border localized active processes, whereas 2-deoxy-D-galactose is not reabsorbed at this cellular face. At 1.4 mM Ca2+, the intercellular junction appears to be relatively impermeable to sugars and the transport properties in teased tubules reflect then events predominantly localized at the antiluminal cell face.  相似文献   

20.
Preincubation of synaptosomes in standard physiological medium stimulates 2-fold Ca2+ uptake as compared to non-preincubated synaptosomes. When the sodium concentration in the preincubation medium has been halved, Ca2+ uptake was reduced by approximately 50 percent. The addition of ouabain to the preincubation medium decreases depolarization-stimulated Ca2+ uptake by about 40 percent. A steady-state level of Ca2+ uptake is achieved by synaptosomes preincubated for 0,5 or 10 min. These findings suggest that Ca2+ uptake might depend on the Na-gradient formed during the preincubation of synaptosomes under control conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号