首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The yeast SNM1/PSO2 gene specifically functions in DNA interstrand cross-link (ICL) repair, and its role has been suggested to be separate from other DNA repair pathways. In vertebrates, there are three homologs of SNM1 (SNM1A, SNM1B, and SNM1C/Artemis; SNM1 family proteins) whose functions are largely unknown. We disrupted each of the SNM1 family genes in the chicken B-cell line DT40. Both SNM1A- and SNM1B-deficient cells were sensitive to cisplatin but not to X-rays, whereas SNM1C/Artemis-deficient cells exhibited sensitivity to X-rays but not to cisplatin. SNM1A was nonepistatic with XRCC3 (homologous recombination), RAD18 (translesion synthesis), FANCC (Fanconi anemia), and SNM1B in ICL repair. SNM1A protein formed punctate nuclear foci depending on the conserved SNM1 (metallo-beta-lactamase) domain. PIAS1 was found to physically interact with SNM1A, and they colocalized at nuclear foci. Point mutations in the SNM1 domain, which disrupted the interaction with PIAS1, led to mislocalization of SNM1A in the nucleus and loss of complementation of snm1a cells. These results suggest that interaction between SNM1A and PIAS1 is required for ICL repair.  相似文献   

2.
Pso2/Snm1 plays a key role in the repair of DNA interstrand cross-links in yeast. Human cells possess three orthologues of Pso2; SNM1A, SNM1B/Apollo and SNM1C/Artemis. Studies using mammalian cells disrupted or depleted for these genes have yielded equivocal evidence that any of these is a true functional homologues of the yeast gene. Here we show that ectopic expression of only one of the three human orthologues, hSNM1A, effectively suppresses the sensitivity of yeast pso2 (snm1) disruptants to cross-linking agents. Two other phenotypes of the pso2 mutants are also partially rescued by ectopic expression of hSNM1A, namely the double-strand repair break defect observed during cross-link processing in pso2 cells, as well as the spontaneous intrachromatid recombination defect of pso2 msh2 double mutants. Finally, we show that recombinant hSNM1A is a 5'-exonuclease, as also recently reported for the yeast Pso2 protein. Together our data suggest that hSnm1A is a functional homologue of yeast Pso2/Snm1.  相似文献   

3.
4.
The eukaryotic SNM1 gene family has been implicated in a number of cellular pathways, including repair of DNA interstrand cross-links, involvement in VDJ recombination, repair of DNA double-strand breaks, and participation in cell cycle checkpoint pathways. In particular, mammalian SNM1 has been shown to be required in a mitotic checkpoint that causes arrest of cells in prophase prior to chromosome condensation in response to spindle poisons. Here, we report on the phenotype of a knockout of Snm1 in the mouse. Snm1-/- mice are viable and fertile but exhibit a complex phenotype. Both homozygous and heterozygous mice show a decline in survival compared to wild-type littermates. In homozygous mutant males, this reduction in survival is principally due to bacterial infections in the preputial and mandibular glands and to a lesser extent to tumorigenesis, while in homozygous and heterozygous females, it is due almost solely to tumorigenesis. The high incidence of bacterial infections in the homozygous mutant males suggests an immune dysfunction; however, examinations of T- and B-cell development and immunoglobulin class switching did not reveal a defect in these pathways. Crossing of Snm1 mutant mice with a Trp53 null mutant resulted in an increase in mortality and a restriction of the tumor type to lymphomas, particularly those of the thymus. Taken together, these findings demonstrate that Snm1 is a tumor suppressor in mice that in addition has a role in immunity.  相似文献   

5.
6.
SNM1A is a member of the SNM1 family of nucleases required for cellular processing of interstrand DNA crosslinks (ICLs). Little is known about the molecular function of SNM1A, in terms of its recruitment to ICL lesions or its DNA damage processing activity. Here we show that SNM1A contains a functional PIP box (PCNA-interacting protein box) and a UBZ (ubiquitin binding zinc finger), required for assembly of SNM1A into nuclear focus. Moreover, RAD18-dependent monoubiquitination of PCNA is required for Mitomycin C and Ultraviolet Light inducible SNM1A nuclear focus assembly. Taken together, our results identify a novel RAD18-PCNA(Ub)-SNM1A pathway required for nuclear focus formation and ICL resistance.  相似文献   

7.
Human SNM1B/Apollo is involved in the cellular response to DNA-damage, however, its precise role is unknown. Recent reports have implicated hSNM1B in the protection of telomeres. We have found hSNM1B to interact with TRF2, a protein which functions in telomere protection and in an early response to ionizing radiation. Here we show that endogenous hSNM1B forms foci which colocalize at telomeres with TRF1 and TRF2. However, we observed that additional hSNM1B foci could be induced upon exposure to ionizing radiation (IR). In live-cell-imaging experiments, hSNM1B localized to photo-induced double-strand breaks (DSBs) within 10s post-induction. Further supporting a role for hSNM1B in the early stages of the cellular response to DSBs, we observed that autophosphorylation of ATM, as well as the phosphorylation of ATM target proteins in response to IR, was attenuated in cells depleted of hSNM1B. These observations suggest an important role for hSNM1B in the response to IR damage, a role that may be, in part, upstream of the central player in maintenance of genome integrity, ATM.  相似文献   

8.
In mammalian cells, POLQ (pol θ) is an unusual specialized DNA polymerase whose in vivo function is under active investigation. POLQ has been implicated by different experiments to play a role in resistance to ionizing radiation and defense against genomic instability, in base excision repair, and in immunological diversification. The protein is formed by an N-terminal helicase-like domain, a C-terminal DNA polymerase domain, and a large central domain that spans between the two. This arrangement is also found in the Drosophila Mus308 protein, which functions in resistance to DNA interstrand crosslinking agents. Homologs of POLQ and Mus308 are found in multicellular eukaryotes, including plants, but a comparison of phenotypes suggests that not all of these genes are functional orthologs. Flies defective in Mus308 are sensitive to DNA interstrand crosslinking agents, while mammalian cells defective in POLQ are primarily sensitive to DNA double-strand breaking agents. Cells from Polq?/? mice are hypersensitive to radiation and peripheral blood cells display increased spontaneous and ionizing radiation-induced levels of micronuclei (a hallmark of gross chromosomal aberrations), though mice apparently develop normally. Loss of POLQ in human and mouse cells causes sensitivity to ionizing radiation and other double strand breaking agents and increased DNA damage signaling. Retrospective studies of clinical samples show that higher levels of POLQ gene expression in breast and colorectal cancer are correlated with poorer outcomes for patients. A clear understanding of the mechanism of action and physiologic function of POLQ in the cell is likely to bear clinical relevance.  相似文献   

9.
BRCA1 is a tumor suppressor involved in the maintenance of genome integrity. BRCA1 co-localizes with DNA repair proteins at nuclear foci in response to DNA double-strand breaks caused by ionizing radiation (IR). The response of BRCA1 to agents that elicit DNA single-strand breaks (SSB) is poorly defined. In this study, we compared chemicals that induce SSB repair and observed the most striking nuclear redistribution of BRCA1 following treatment with the alkylating agent methyl methanethiosulfonate (MMTS). In MCF-7 breast cancer cells, MMTS induced movement of endogenous BRCA1 into distinctive nuclear foci that co-stained with the SSB repair protein XRCC1, but not the DSB repair protein gamma-H2AX. XRCC1 did not accumulate in foci after ionizing radiation. Moreover, we showed by deletion mapping that different sequences target BRCA1 to nuclear foci induced by MMTS or by ionizing radiation. We identified two core MMTS-responsive sequences in BRCA1: the N-terminal BARD1-binding domain (aa1-304) and the C-terminal sequence aa1078-1312. These sequences individually are ineffective, but together they facilitated BRCA1 localization at MMTS-induced foci. Site-directed mutagenesis of two SQ/TQ motif serines (S1143A and S1280A) in the BRCA1 fusion protein reduced, but did not abolish, targeting to MMTS-inducible foci. This is the first report to describe co-localization of BRCA1 with XRCC1 at SSB repair foci. Our results indicate that BRCA1 requires BARD1 for targeting to different types of DNA lesion, and that distinct C-terminal sequences mediate selective recruitment to sites of double- or single-strand DNA damage.  相似文献   

10.
11.
Ionizing radiation and interstrand DNA crosslinking compounds provide important treatments against cancer due to their extreme genotoxicity for proliferating cells. Both the efficacies of such treatments and the mutagenic potential of these agents are modulated by the ability of cells to repair the inflicted DNA damage. Here we demonstrate that homologous recombination-deficient mRAD54(-/-) mice are hypersensitive to ionizing radiation at the embryonic but, unexpectedly, not at the adult stage. However, at the adult stage mRAD54 deficiency dramatically aggravates the ionizing radiation sensitivity of severe combined immune deficiency (scid) mice that are impaired in DNA double-strand break repair through DNA end-joining. In contrast, regardless of developmental stage, mRAD54(-/-) mice are hypersensitive to the interstrand DNA crosslinking compound mitomycin C. These results demonstrate that the two major DNA double-strand break repair pathways in mammals have overlapping as well as specialized roles, and that the relative contribution of these pathways towards repair of ionizing radiation-induced DNA damage changes during development of the animal.  相似文献   

12.
RNase MRP is a ribonucleoprotein endoribonuclease that has been shown to have roles in both mitochondrial DNA replication and nuclear 5.8S rRNA processing. SNM1 encodes an essential 22.5-kDa protein that is a component of yeast RNase MRP. It is an RNA binding protein that binds the MRP RNA specifically. This 198-amino-acid protein can be divided into three structural regions: a potential leucine zipper near the amino terminus, a binuclear zinc cluster in the middle region, and a serine- and lysine-rich region near the carboxy terminus. We have performed PCR mutagenesis of the SNM1 gene to produce 17 mutants that have a conditional phenotype for growth at different temperatures. Yeast strains carrying any of these mutations as the only copy of snm1 display an rRNA processing defect identical to that in MRP RNA mutants. We have characterized these mutant proteins for RNase MRP function by examining 5.8S rRNA processing, MRP RNA binding in vivo, and the stability of the RNase MRP RNA. The results indicate two separate functional domains of the protein, one responsible for binding the MRP RNA and a second that promotes substrate cleavage. The Snm1 protein appears not to be required for the stability of the MRP RNA, but very low levels of the protein are required for processing of the 5.8S rRNA. Surprisingly, a large number of conditional mutations that resulted from nonsense and frameshift mutations throughout the coding regions were identified. The most severe of these was a frameshift at amino acid 7. These mutations were found to be undergoing translational suppression, resulting in a small amount of full-length Snm1 protein. This small amount of Snm1 protein was sufficient to maintain enough RNase MRP activity to support viability. Translational suppression was accomplished in two ways. First, CEN plasmid missegregation leads to plasmid amplification, which in turn leads to SNM1 mRNA overexpression. Translational suppression of a small amount of the superabundant SNM1 mRNA results in sufficient Snm1 protein to support viability. CEN plasmid missegregation is believed to be the result of a prolonged telophase arrest that has been recently identified in RNase MRP mutants. Either the SNM1 gene is inherently susceptible to translational suppression or extremely small amounts of Snm1 protein are sufficient to maintain essential levels of MRP activity.  相似文献   

13.
Interaction of the Fanconi anemia proteins and BRCA1 in a common pathway   总被引:17,自引:0,他引:17  
Fanconi anemia (FA) is a human autosomal recessive cancer susceptibility disorder characterized by cellular sensitivity to mitomycin C and ionizing radiation. Although six FA genes (for subtypes A, C, D2, E, F, and G) have been cloned, their relationship to DNA repair remains unknown. In the current study, we show that a nuclear complex containing the FANCA, FANCC, FANCF, and FANCG proteins is required for the activation of the FANCD2 protein to a monoubiquitinated isoform. In normal (non-FA) cells, FANCD2 is monoubiquitinated in response to DNA damage and is targeted to nuclear foci (dots). Activated FANCD2 protein colocalizes with the breast cancer susceptibility protein, BRCA1, in ionizing radiation-induced foci and in synaptonemal complexes of meiotic chromosomes. The FANCD2 protein, therefore, provides the missing link between the FA protein complex and the cellular BRCA1 repair machinery. Disruption of this pathway results in the cellular and clinical phenotype common to all FA subtypes.  相似文献   

14.
Traditionally, the kinetics of DNA repair have been estimated using immunocytochemistry by labeling proteins involved in the DNA damage response (DDR) with fluorescent markers in a fixed cell assay. However, detailed knowledge of DDR dynamics across multiple cell generations cannot be obtained using a limited number of fixed cell time-points. Here we report on the dynamics of 53BP1 radiation induced foci (RIF) across multiple cell generations using live cell imaging of non-malignant human mammary epithelial cells (MCF10A) expressing histone H2B-GFP and the DNA repair protein 53BP1-mCherry. Using automatic extraction of RIF imaging features and linear programming techniques, we were able to characterize detailed RIF kinetics for 24 hours before and 24 hours after exposure to low and high doses of ionizing radiation. High-content-analysis at the single cell level over hundreds of cells allows us to quantify precisely the dose dependence of 53BP1 protein production, RIF nuclear localization and RIF movement after exposure to X-ray. Using elastic registration techniques based on the nuclear pattern of individual cells, we could describe the motion of individual RIF precisely within the nucleus. We show that DNA repair occurs in a limited number of large domains, within which multiple small RIFs form, merge and/or resolve with random motion following normal diffusion law. Large foci formation is shown to be mainly happening through the merging of smaller RIF rather than through growth of an individual focus. We estimate repair domain sizes of 7.5 to 11 µm2 with a maximum number of ~15 domains per MCF10A cell. This work also highlights DDR which are specific to doses larger than 1 Gy such as rapid 53BP1 protein increase in the nucleus and foci diffusion rates that are significantly faster than for spontaneous foci movement. We hypothesize that RIF merging reflects a "stressed" DNA repair process that has been taken outside physiological conditions when too many DSB occur at once. High doses of ionizing radiation lead to RIF merging into repair domains which in turn increases DSB proximity and misrepair. Such finding may therefore be critical to explain the supralinear dose dependence for chromosomal rearrangement and cell death measured after exposure to ionizing radiation.  相似文献   

15.
Conserved metallo β‐Lactamase and β‐CASP (CPSF‐Artemis‐Snm1‐Pso2) domain nuclease family member SNM1B/Apollo is a shelterin‐associated protein that localizes to telomeres through its interaction with TRF2. To study its in vivo role, we generated a knockout of SNM1B/Apollo in a mouse model. Snm1B/Apollo homozygous null mice die at birth with developmental delay and defects in multiple organ systems. Cell proliferation defects were observed in Snm1B/Apollo mutant mouse embryonic fibroblasts (MEFs) owing to high levels of telomeric end‐to‐end fusions. Deficiency of the nonhomologous end‐joining (NHEJ) factor Ku70, but not p53, rescued the developmental defects and lethality observed in Snm1B/Apollo mutant mice as well as the impaired proliferation of Snm1B/Apollo‐deficient MEFs. These findings demonstrate that SNM1B/Apollo is required to protect telomeres against NHEJ‐mediated repair, which results in genomic instability and the consequent multi‐organ developmental failure. Although Snm1B/Apollo‐deficient MEFs exhibited high levels of apoptosis, abrogation of p53‐dependent programmed cell death did not rescue the multi‐organ developmental failure in the mice.  相似文献   

16.
Zhang X  Richie C  Legerski RJ 《DNA Repair》2002,1(5):379-390
SNM1 is involved in the repair of DNA interstrand cross-links (ICLs) in Saccharomyces cerevisiae and possibly in human cells, although relatively little is known about its biochemical function. The hSNM1 contains a long 5' untranslated region (5'UTR) predicted to fold into a complex secondary structure, and which contains numerous short open reading frames (ORFs). We show here using bicistronic constructs that human SNM1 mRNA contains an internal ribosome entry site (IRES) that generally suppresses translation, except during mitosis where translation is upregulated. These results suggest that hSNM1 may have a mitotic function possibly involved in response to DNA interstrand cross-linking agents.  相似文献   

17.
Tumor cells at very low oxygen tensions are known to be about three times more resistant to killing by ionizing radiation. Since cells at intermediate oxygen tensions (defined here as greater than 0.1% and less than 2% O(2)) show partial radioresistance, they should be a consideration in tumor treatment. In an effort to estimate the extent and range of oxygenation in SiHa human cervical carcinoma xenografts, patterns of cell killing and DNA damage by radiation and two bioreductive drugs, PD-144872 and RSU-1069, were compared to those seen in SiHa cells grown as spheroids. These drugs produce DNA interstrand crosslinks that are largely responsible for cell killing, and the degree of crosslinking increases as the oxygenation is reduced. About 60% of the cells in SiHa xenografts exhibited drug-induced crosslinks, but only about 35% showed extensive crosslinking indicative of hypoxia below 0.1% oxygen. Patterns of toxicity and DNA damage in xenografts were comparable to those of spheroids equilibrated with about 2% oxygen, indicating that most cells in the xenografts exhibit some radioresistance due to lack of oxygen. Similarly, pimonidazole binding indicated that about 60% of the cells in SiHa xenografts were either intermediate in oxygenation or hypoxic, but only about half of those were consistent with extreme oxygen depletion. The apparent size of the population of "intermediately hypoxic" cells has implications for the use of ionizing radiation, hypoxic cell cytotoxins, and other antitumor agents whose cytotoxicity is dependent on cellular oxygen content.  相似文献   

18.
Bloom syndrome (BS) is an autosomal recessive disorder characterized by a high incidence of cancer and genomic instability. BLM, the protein defective in BS, is a RecQ-like helicase, presumed to function in DNA replication, recombination, or repair. BLM localizes to promyelocytic leukemia protein (PML) nuclear bodies and is expressed during late S and G2. We show, in normal human cells, that the recombination/repair proteins hRAD51 and replication protein (RP)-A assembled with BLM into a fraction of PML bodies during late S/G2. Biochemical experiments suggested that BLM resides in a nuclear matrix-bound complex in which association with hRAD51 may be direct. DNA-damaging agents that cause double strand breaks and a G2 delay induced BLM by a p53- and ataxia-telangiectasia mutated independent mechanism. This induction depended on the G2 delay, because it failed to occur when G2 was prevented or bypassed. It coincided with the appearance of foci containing BLM, PML, hRAD51 and RP-A, which resembled ionizing radiation-induced foci. After radiation, foci containing BLM and PML formed at sites of single-stranded DNA and presumptive repair in normal cells, but not in cells with defective PML. Our findings suggest that BLM is part of a dynamic nuclear matrix-based complex that requires PML and functions during G2 in undamaged cells and recombinational repair after DNA damage.  相似文献   

19.
20.
The protein Snm1B plays a key role in interstrand crosslink (ICL) repair. In a yeast two-hybrid screen we identified the protein PSF2 to bind Snm1B. PSF2 is a member of the GINS complex involved in replication initiation and elongation, and is known to play a role in ICL repair. Snm1B was shown to bind PSF2 in human cells through two regions, strongly to a 144 amino acid N-terminal region and weakly to a second smaller 37 amino acid C-terminal region. Ectopic expression of PSF2 increased the amount of Mus81, a protein component of the endonucleolytic complex involved in ICL repair, co-immunoprecipitating with Snm1B. Moreover, deleting the N-terminal, but not C-terminal region of Snm1B reduced the amount of co-immunoprecipitated Mus81. Conversely, the telomere-binding protein TRF2 competed with PSF2 for binding to the C-terminus of Snm1B, and deletion of this region, but not the N-terminal region, reduced Snm1B chromatin association. We speculate that the N-terminal region of Snm1B forms a complex containing PSF2 and Mus81, while the C-terminal region is important for PSF2-mediated chromatin association.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号