首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
B Dichtl  W Keller 《The EMBO journal》2001,20(12):3197-3209
Recognition of poly(A) sites in yeast pre-mRNAs is poorly understood. Employing an in vitro cleavage system with cleavage and polyadenylation factor (CPF) and cleavage factor IA we show that the efficiency and positioning elements are dispensable for poly(A)-site recognition within a short CYC1 substrate in vitro. Instead, U-rich elements immediately upstream and downstream of the poly(A) site mediate cleavage-site recognition within CYC1 and ADH1 pre-mRNAs. These elements act in concert with the poly(A) site to produce multiple recognition sites for the processing machinery, since combinations of mutations within these elements were most effective in cleavage inhibition. Intriguingly, introduction of a U-rich element downstream of the GAL7 poly(A) site strongly enhanced cleavage, underscoring the importance of downstream sequences in general. RNA- binding analyses demonstrate that cleavage depends on the recognition of the poly(A)-site region by CPF. Consistent with in vitro results, mutation of sequences upstream and downstream of the poly(A) site affected 3'-end formation in vivo. A model for yeast pre-mRNA cleavage-site recognition outlines an unanticipated high conservation of yeast and mammalian 3'-end processing mechanisms.  相似文献   

2.
3.
To study the substrate requirements for the histone 3'-end processing reaction of mammalian histone pre-mRNAs, we created a set of mutations in the sequences flanking the processing site of a mouse H3 gene. We found that deletion of the downstream purine-rich element hypothesized to interact with U7 small nuclear RNA abolishes in vitro 3'-end processing. Somewhat surprisingly, however, mutations in the hairpin loop element which destabilize or destroy the secondary structure reduce but do not abolish 3'-end processing. This is in apparent contrast to results obtained for the sea urchin system, where both sequence elements appear to be absolutely required for 3'-end formation.  相似文献   

4.
Yth1p is the yeast homologue of the 30 kDa subunit of mammalian cleavage and polyadenylation specificity factor (CPSF). The protein is part of the cleavage and polyadenylation factor CPF, which includes cleavage factor II (CF II) and polyadenylation factor I (PF I), and is required for both steps in pre-mRNA 3'-end processing. Yth1p is an RNA-binding protein that was previously shown to be essential for polyadenylation. Here, we demonstrate that Yth1p is also required for the cleavage reaction and that two protein domains have distinct roles in 3'-end processing. The C-terminal part is required in polyadenylation to tether Fip1p and poly(A) polymerase to the rest of CPF. A single point mutation in the highly conserved second zinc finger impairs both cleavage and polyadenylation, and affects the ability of Yth1p to interact with the pre-mRNA and other CPF subunits. Finally, we find that Yth1p binds to CYC1 pre-mRNA in the vicinity of the cleavage site. Our results indicate that Yth1p is important for the integrity of CPF and participates in the recognition of the cleavage site.  相似文献   

5.
The polypyrimidine tract binding protein (PTB) has been described as a global repressor of regulated exons. To investigate PTB functions in a physiological context, we used a combination of morpholino-mediated knockdown and transgenic overexpression strategies in Xenopus laevis embryos. We show that embryonic endoderm and skin deficient in PTB displayed a switch of the alpha-tropomyosin pre-mRNA 3' end processing to the somite-specific pattern that results from the utilization of an upstream 3'-terminal exon designed exon 9A9'. Conversely, somitic targeted overexpression of PTB resulted in the repression of the somite-specific exon 9A9' and a switch towards the nonmuscle pattern. These results validate PTB as a key physiological regulator of the 3' end processing of the alpha-tropomyosin pre-mRNA. Moreover, using a minigene strategy in the Xenopus oocyte, we show that in addition to repressing the splicing of exon 9A9', PTB regulates the cleavage/polyadenylation of this 3'-terminal exon.  相似文献   

6.
The CstF polyadenylation factor is a multisubunit complex required for efficient cleavage and polyadenylation of pre-mRNAs. Using an RNase H-mediated mapping technique, we show that the 64-kDa subunit of CstF can be photo cross-linked to pre-mRNAs at U-rich regions located downstream of the cleavage site of the simian virus 40 late and adenovirus L3 pre-mRNAs. This positional specificity of cross-linking is a consequence of CstF interaction with the polyadenylation complex, since the 64-kDa protein by itself is cross-linked at multiple positions on a pre-mRNA template. During polyadenylation, four consecutive U residues can substitute for the native downstream U-rich sequence on the simian virus 40 pre-mRNA, mediating efficient 64-kDa protein cross-linking at the downstream position. Furthermore, the position of the U stretch not only enables the 64-kDa polypeptide to be cross-linked to the pre-mRNA but also influences the site of cleavage. A search of the GenBank database revealed that a substantial portion of mammalian polyadenylation sites carried four or more consecutive U residues positioned so that they should function as sites for interaction with the 64-kDa protein downstream of the cleavage site. Our results indicate that the polyadenylation machinery physically spans the cleavage site, directing cleavage factors to a position located between the upstream AAUAAA motif, where the cleavage and polyadenylation specificity factor is thought to interact, and the downstream U-rich binding site for the 64-kDa subunit of CstF.  相似文献   

7.
F Chen  J Wilusz 《Nucleic acids research》1998,26(12):2891-2898
We have previously identified a G-rich sequence (GRS) as an auxiliary downstream element (AUX DSE) which influences the processing efficiency of the SV40 late polyadenylation signal. We have now determined that sequences downstream of the core U-rich element (URE) form a fundamental part of mammalian polyadenylation signals. These novel AUX DSEs all influenced the efficiency of 3'-end processing in vitro by stabilizing the assembly of CstF on the core downstream URE. Three possible mechanisms by which AUX DSEs mediate efficient in vitro 3'-end processing have been explored. First, AUX DSEs can promote processing efficiency by maintaining the core elements in an unstructured domain which allows the general polyadenylation factors to efficiently assemble on the RNA substrate. Second, AUX DSEs can enhance processing by forming a stable structure which helps focus binding of CstF to the core downstream URE. Finally, the GRS element, but not the binding site for the bacteriophage R17 coat protein, can substitute for the auxiliary downstream region of the adenovirus L3 polyadenylation signal. This suggests that AUX DSE binding proteins may play an active role in stimulating 3'-end processing by stabilizing the association of CstF with the RNA substrate. AUX DSEs, therefore, serve as a integral part of the polyadenylation signal and can affect signal strength and possibly regulation.  相似文献   

8.
To investigate the role of sequences lying downstream of the conserved AAUAAA hexanucleotide in pre-mRNA cleavage and polyadenylation, deletions or substitutions were constructed in polyadenylation signals from simian virus 40 and adenovirus, and their effects were assayed in both crude and fractionated HeLa cell nuclear extracts. As expected, these sequences influenced the efficiency of both cleavage and polyadenylation as well as the accuracy of the cleavage reaction. Sequences near or upstream of the actual site of poly(A) addition appeared to specify a unique cleavage site, since their deletion resulted, in some cases, in heterogeneous cleavage. Furthermore, the sequences that allowed the simian virus 40 late pre-RNA to be cleaved preferentially by partially purified cleavage activity were also those at the cleavage site itself. Interestingly, sequences downstream of the cleavage site interacted with factors not directly involved in catalyzing cleavage and polyadenylation, since the effects of deletions were substantially diminished when partially purified components were used in assays. In addition, these sequences contained elements that could affect 3'-end formation both positively and negatively.  相似文献   

9.
Transient expression of the mdg1 deletion mutants revealed sites of 3'-end processing in the leader region of the transcribed RNA. The efficiency of the processing is regulated in different types of cells. The sequences within the mdg1 body and the 3'-LTR are involved in its regulation. We have also shown, that one of the small open reading frames in the mdg1 leader region in principle might be translated.  相似文献   

10.
Analysis of RNA cleavage at the adenovirus-2 L3 polyadenylation site.   总被引:23,自引:8,他引:23       下载免费PDF全文
Processing at the L3 polyadenylation site of human adenovirus-2 involves endonucleolytic cleavage generating the 3' terminal sequence -UAOH to which adenosine residues are added. This dinucleotide is 19 nucleotides downstream of the AAUAAA polyadenylation signal. The ATP analog cordycepin triphosphate (3' dATP) inhibits poly(A) synthesis, but precursor RNA is processed to give a product terminating in -UAAH. Addition of only one adenosine analog demonstrates that the initial poly(A) tract is synthesized by polymerization of single residues rather than by ligation of preformed poly(A). Cleavage is not coupled to polyadenylation since incubation with an ATP analog containing a non-hydrolyzable alpha--beta bond generates a product with a 3' terminus coincident with the -UAOH) addition site. Addition of this accurately processed RNA to a nuclear extract results in efficient polyadenylation, suggesting that downstream sequences are not required for synthesis of the poly(A) tract. Finally, processing at the L3 poly(A) site may involve both endonucleolytic and exonucleolytic activities.  相似文献   

11.
12.
The sequence AAUAAA is found near the polyadenylation site of eucaryotic mRNAs. This sequence is required for accurate and efficient cleavage and polyadenylation of pre-mRNAs in vivo. In this study we show that synthetic simian virus 40 late pre-mRNAs are cleaved and polyadenylated in vitro in a HeLa cell nuclear extract, and that cleavage in vitro is abolished by each of four different single-base changes in AAUAAA. In this same extract, precleaved RNAs (RNAs with 3' termini at the polyadenylation site) are efficiently polyadenylated. This in vitro polyadenylation reaction also requires the AAUAAA sequence.  相似文献   

13.
14.
To define basic features of mRNA processing and decay in Escherichia coli, we have examined a set of mRNAs encoded by the filamentous phage f1 that have structures typical of bacterial mRNAs. They bear a stable hairpin stem-loop on the 3' end left from rho-independent termination and are known to undergo processing by RNase E. A small percentage of the f1 mRNAs were found to bear poly(A) tails that were attached to heterogeneous positions near the common 3' end. In a poly(A) polymerase-deficient host, the later-appearing processed mRNAs were stabilized, and a novel small RNA accumulated. This approximately 125-nt RNA proved to arise via RNase E cleavage from the 3'-terminal region of the mRNAs bearing the terminator. Normally ribosomes translating gene VIII appear to protect this cleavage site from RNase E, so that release of the fragment from the mRNAs occurs very slowly. The data presented define additional steps in the f1 mRNA processing and decay pathways and clarify how features of the pathways are used in establishing and maintaining the persistent filamentous phage infection. Although the primary mode of decay is endonucleolytic cleavage generating a characteristic 5' --> 3' wave of products, polyadenylation is involved in part in degradation of the processed mRNAs and is required for turnover of the 125-nt mRNA fragment. The results place polyadenylation at a later rather than an initiating step of decay. They also provide a clear illustration of how stably structured RNA 3' ends act as barriers to 3' --> 5' exonucleolytic mRNA decay.  相似文献   

15.
16.
The 3' termini of ribosomal RNA precursors from mouse FM3A cultured cells are mapped to eight sites within 625 bp downstream from the 3' terminus of 28 S rRNA. Three additional sites are mapped in liver RNA from C3H/He strain mice. Two of them, the sites at 570 bp and 625 bp are assumed to be termination sites in vivo, because they correspond to in vitro termination sites of RNA polymerase I, and 45 S RNAs having these 3' termini decay with kinetics distinct from others. The amount of 45 S RNA having the 3' terminus at other sites is variable among several mouse strains, despite their having the same DNA sequence in these regions. The ability to produce 3' termini in these sites seems to follow Mendel's law of inheritance. Therefore, we postulate that these nine sites are RNA processing sites which are controlled genetically.  相似文献   

17.
18.
Accurate cleavage and polyadenylation of exogenous RNA substrate   总被引:103,自引:0,他引:103  
C L Moore  P A Sharp 《Cell》1985,41(3):845-855
Purified precursor RNA containing the L3 polyadenylation site of late adenovirus 2 mRNA is accurately cleaved and polyadenylated when incubated with nuclear extract from HeLa cells. The reaction is very efficient; 75% of the precursor is correctly processed. Cleavage is rapidly followed by polymerization of an initial poly(A) tract of approximately 130 nucleotides. Additional adenosine residues are added during further incubation. In the presence of the ATP analog alpha-beta-methylene-adenosine 5' triphosphate, the precursor RNA is cleaved but not polyadenylated, suggesting that processing is not coupled to the synthesis of the initial poly(A) tract. In the absence of free Mg2+, a small RNA of approximately 46 nucleotides is stabilized against degradation. Fingerprint analysis suggests this RNA is produced by endonucleolytic cleavage at the L3 site. Like the in vitro splicing reaction, the in vitro polyadenylation reaction is inhibited by adding antiserum against the small nuclear ribonucleoprotein particle containing U1 RNA.  相似文献   

19.
20.
We used nuclear extracts from Drosophila Kc cells to characterize 3' end processing of Drosophila histone pre-mRNAs. Drosophila SLBP plays a critical role in recruiting the U 7 snRNP to the pre-mRNA and is essential for processing all five Drosophila histone pre-mRNAs. The Drosophila processing machinery strongly prefers cleavage after a fourth nucleotide following the stem-loop and favors an adenosine over pyrimidines in this position. Increasing the distance between the stem-loop and the HDE does not result in a corresponding shift of the cleavage site, suggesting that in Drosophila processing the U 7 snRNP does not function as a molecular ruler. Instead, SLBP directs the cleavage site close to the stem-loop. The upstream cleavage product generated in Drosophila nuclear extracts contains a 3' OH, and the downstream cleavage product is degraded by a nuclease dependent on the U 7 snRNP, suggesting that the cleavage factor has been conserved between Drosophila and mammalian processing. A 2'O-methyl oligonucleotide complementary to the first 17 nt of the Drosophila U 7 snRNA was not able to deplete the U 7 snRNP from Drosophila nuclear extracts, suggesting that the 5' end of the Drosophila U 7 snRNA is inaccessible. This oligonucleotide selectively inhibited processing of only two Drosophila pre-mRNAs and had no effect on processing of the other three pre-mRNAs. Together, these studies demonstrate that although Drosophila and mammalian histone pre-mRNA processing share common features, there are also significant differences, likely reflecting divergence in the mechanism of 3' end processing between vertebrates and invertebrates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号