首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Cloning of genes encoding polyketide synthases (PKSs) has allowed us to identify a gene cluster for ML-236B biosynthesis in Penicillium citrinum. Like lovastatin, which is produced by Aspergillus terreus, ML-236B (compactin) inhibits the enzyme 3-hydroxy-3-methylglutaryl-coenzyme A (HMG-CoA) reductase. Genomic sequencing and Northern analysis showed that nine predicted genes for ML-236B biosynthesis were located within a 38-kb region and were transcribed when ML-236B was produced. The predicted amino acid sequences encoded by these nine genes, designated mlcA- mlcH and mlcR, were similar to those encoded by the genes for lovastatin synthesis, and were therefore assumed to be involved either directly or indirectly in ML-236B biosynthesis. Targeted disruption experiments provided evidence that two PKS genes in the cluster, mlcA and mlcB, are required for the biosynthesis of the nonaketide and the diketide moieties, respectively, of ML-236B, suggesting that the gene cluster as a whole is responsible for ML-236B biosynthesis in P. citrinum. Bioconversion of some of the predicted intermediates by an mlcA-disrupted mutant was also investigated in order to analyze the ML-236B biosynthetic pathway. The molecular organization of the gene cluster and proposed functions for the ML-236B biosynthetic genes in P. citrinum are described.  相似文献   

3.
4.
An increase in compactin (ML-236B) production was achieved by introducing a whole compactin biosynthetic gene cluster or the regulatory gene mlcR into compactin high-producing Penicillium citrinum. In the previous report, we introduced mlcR encoding the positive regulator of compactin biosynthetic genes into compactin high-producing strain no. 41520, and most of the transformants produced higher amounts of compactin. Here, we characterize one of the resulting high producers (strain TIR-35, which produced 50% more compactin) and reveal that TIR-35 contained five copies of mlcR and that early, enhanced expression of mlcR caused compactin overproduction. Similarly, the introduction of mlcR into strain T48.19, which was created previously from strain no. 41520 by introducing a partial compactin biosynthetic gene cluster, enhanced compactin production further. Our results indicated that genetic engineering is an effective tool to improve compactin production, even in compactin high producers.  相似文献   

5.
6.
7.
To assess the importance of de novo cholesterol synthesis for bile salt formation, the effects of ML-236B (an inhibitor of 3-hydroxy-3-methylglutaryl-coenzyme A reductase) on biliary excretion of bile salts and lipids were studied in rats with permanent catheters in bile duct, heart and duodenum. In rats having their bile diverted continuously for 8 days, duodenal administration of ML-236B (50 mg/kg) caused an immediate transient choleresis, which subsided after 2 h. Concomitant with the choleresis concentrations of bile salt, phospholipid and cholesterol fell, but this decrease was maintained for 6 h. Consequently, ML-236B inhibited biliary output salts and lipids from the second till the sixth hour after injection. The kinetics of biliary excretion of intravenously injected [14C]taurocholate were not affected by ML-236B administration. In rats having their biliary catheter connected to the duodenal catheter, or in rats with prolonged bile diversion but treated with mevalonolactone, ML-236B again caused a transient choleresis (having subsided after 2 h), but now did not affect biliary excretion of bile salts and lipids. It is concluded that (1) ML-236B causes a transient bile salt-independent choleresis, (2) ML-236B depresses excretion of bile salts and lipids by blocking mevalonate synthesis and not by blocking the bile salt or lipid transport, (3) biliary excretions of phospholipids and cholesterol partly depend on excretion of bile salt, and (4) in rats with a prolonged total bile diversion newly formed mevalonate is a major substrate for bile salt synthesis.  相似文献   

8.
An automatic feeding process for microbial hydroxylation of ML236B sodium salt (ML-236B Na; compactin) by Streptomyces carbophilus SANK 62585 was developed. The hydroxylated product, pravastatin sodium salt (pravastatin; trade name Mevalotin), is an inhibitor of 3-hydroxy-3-methyglutaryl-coenzyme A reductase (HMG-CoA reductase) used as cholesterol-lowering drug. The hydroxylation activity of S. carbophilus was induced by the addition of ML236B Na to culture broth but inhibited by high concentration of ML236B Na. In order to obtain high conversion yield, it was necessary to maintain optimum ML236B Na concentration throughout the fermentation by continuous feeding. For this purpose, we developed an on-line monitoring method, which mainly consisted of a cross-flow filtration module, high-performance liquid chromatography (HPLC) analyzer, feed pump, and microcomputer for regulation of ML236B Na concentration. An algorithm for control of ML236B Na feed rate based on feedback and feed-forward control where conversion rate after Deltat was estimated by using regression analysis of the five latest values of conversion rate. In a fed-batch culture employing this system, the concentration of ML236B Na was maintained at optimum level during the fermentation and the productivity of pravastatin was increased threefold over that obtained in manual control culture. (c) 1993 John Wiley & Sons, Inc.  相似文献   

9.
ML-236B (“Compactin”), a competitive inhibitor of 3-hydroxy-3-methylglutaryl(HMG)-CoA reductase, increased the cholesterol synthesis and the HMG-CoA reductase activity in isolated rat hepatocytes. These increases were prevented by 0.2 mM puromycin, but not by 10 μg/ml actinomycin D and 40 μg/ml α-amanitin. These results indicated that the increases in cholesterol synthesis and HMG-CoA reductase activity by ML-236B required the enzyme synthesis but not newly synthesized mRNA. The regulatory site of feed-back inhibition by cholesterol for the HMG-CoA reductase synthesis in liver may be at the translational level.  相似文献   

10.
11.
Julien B  Shah S  Ziermann R  Goldman R  Katz L  Khosla C 《Gene》2000,249(1-2):153-160
The epothilone biosynthetic gene cluster was isolated from Sorangium cellulosum strain SMP44. The gene cluster contains seven genes and spans approx. 56kb. The genes encoding the PKS, epoA, epoC, epoD, epoE, and epoF, are divided into nine modules. The EpoB protein is a non-ribosomal peptide synthetase (NRPS) that catalyzes formation of the thiazole found in the epothilones. EpoK is a P450 enzyme responsible for the epoxidation of epothilones C and D to epothilones A and B, respectively. EpoK was expressed in Escherichia coli, and the purified protein was shown to convert epothilone D to epothilone B in vitro.  相似文献   

12.
Furaquinocin (FQ) A, produced by Streptomyces sp. strain KO-3988, is a natural polyketide-isoprenoid hybrid compound that exhibits a potent antitumor activity. As a first step toward understanding the biosynthetic machinery of this unique and pharmaceutically useful compound, we have cloned an FQ A biosynthetic gene cluster by taking advantage of the fact that an isoprenoid biosynthetic gene cluster generally exists in flanking regions of the mevalonate (MV) pathway gene cluster in actinomycetes. Interestingly, Streptomyces sp. strain KO-3988 was the first example of a microorganism equipped with two distinct mevalonate pathway gene clusters. We were able to localize a 25-kb DNA region that harbored FQ A biosynthetic genes (fur genes) in both the upstream and downstream regions of one of the MV pathway gene clusters (MV2) by using heterologous expression in Streptomyces lividans TK23. This was the first example of a gene cluster responsible for the biosynthesis of a polyketide-isoprenoid hybrid compound. We have also confirmed that four genes responsible for viguiepinol [3-hydroxypimara-9(11),15-diene] biosynthesis exist in the upstream region of the other MV pathway gene cluster (MV1), which had previously been cloned from strain KO-3988. This was the first example of prokaryotic enzymes with these biosynthetic functions. By phylogenetic analysis, these two MV pathway clusters were identified as probably being independently distributed in strain KO-3988 (orthologs), rather than one cluster being generated by the duplication of the other cluster (paralogs).  相似文献   

13.
14.
15.
The polyene antibiotic filipin was used to visualize the presence and distribution of cholesterol in the plasma membrane of glutaraldehyde-fixed human chronic lymphocytic leukemia (CLL) cells. Both compactin (ML-236B), a competitive inhibitor of 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase, and 25-hydroxycholesterol reduced the content of filipin-cholesterol complexes in the plasma membrane of CLL cells grown in media supplemented with either 15% delipidized horse serum or 15% normal (whole) horse serum. The reduction due to compactin was reversed by the concomitant addition of mevalonolactone. The ability of compactin to reduce the relative cholesterol content (as judged by filipin labeling) in CLL cells grown in lipoprotein-containing (normal) serum suggest that either CLL cells are different from other cells in that they predominantly utilize endogenously synthesized cholesterol for incorporation into the plasma membrane, or that a separate pool of endogenously synthesized cholesterol provides cholesterol for the plasma membrane.  相似文献   

16.
Streptomyces venezuelae ISP5230 produces a group of jadomycin congeners with cytotoxic activities. To improve jadomycin fermentation process, a genetic engineering strategy was designed to replace a 3.4-kb regulatory region of jad gene cluster that contains four regulatory genes (3′ end 272 bp of jadW2, jadW3, jadR2, and jadR1) and the native promoter upstream of jadJ (PJ) with the ermEp* promoter sequence so that ermEp* drives the expression of the jadomycin biosynthetic genes from jadJ in the engineered strain. As expected, the mutant strain produced jadomycin B without ethanol treatment, and the yield increased to about twofold that of the stressed wild-type. These results indicated that manipulation of the regulation of a biosynthetic gene cluster is an effective strategy to increase product yield.  相似文献   

17.
A fungal metabolite, ML236B (Compactin), isolated from Penicillium citrinum, is a specific inhibitor of 3-hydroxy-3-methylglutaryl (HMG)-coenzyme A reductase (EC 1.1.1.34). Three ML236B-resistant (ML236Br) mutants, MF-1, MF-2, and MF-3, were isolated from V79 after N-methyl-N'-nitro-N-nitrosoguanidine mutagenesis. The fluctuation test showed 2.2 X 10(-6) mutants per cell per generation of a spontaneous mutation frequency of ML236Br clones. These ML236Br clones showed a four- to fivefold-higher resistance to the drug than did their parental V79. Radioactive acetate, but not mevalonate, incorporation into the sterol fraction increased about 10-fold in ML236Br clones in comparison with that in V79. The cellular level of HMG-coenzyme A reductase in three ML236Br mutants was found to be a few-fold higher than that of V79 when cultured in the presence of lipoproteins. The 125I-labeled low-density lipoprotein-binding assay showed binding activity in three ML236Br clones comparable to that of the parental V79 cells. By contrast, an internalization assay of 125I-labeled low-density lipoprotein into the cells showed significantly reduced activity in three ML236Br clones in comparison with V79.  相似文献   

18.
A bacterial artificial chromosome (BAC) library was constructed to isolate the biosynthetic gene cluster for the polyketide/peptide hybrid-type antibiotic cystothiazole A from the myxobacterium Cystobacter fuscus strain AJ-13278. Sequence analysis of a 63.9 kb contiguous region that encompasses the biosynthetic gene cluster (cta) led to the identification of a polyketide synthase (PKS)/nonribosomal peptide synthetase (NRPS) hybrid gene cluster 32.1 kb in size, which consists of six open reading frames (ORFs), ctaB to ctaG, as well as downstream genes ctaJ and ctaK (1.0 and 0.9 kb, respectively) responsible for the final biosynthetic steps. The genes ctaB, ctaE, and ctaF encode PKSs, the genes ctaC and ctaG encode NRPSs, and ctaD encodes an NRPS-PKS hybrid enzyme. Disruption of ctaD impaired cystothiazole A production. Additionally, two downstream genes, ctaJ and ctaK, which encode a nitrilase and an O-methyltransferase, respectively, must be responsible for the final methyl ester formation in the cystothiazole A biosynthesis.  相似文献   

19.
20.
The rfb (O antigen) gene cluster of a group C1 Salmonella enterica strain was sequenced; it comprised seven open reading frames which precisely replaced the 16 open reading frames of a group B strain. Two genes of the mannose biosynthetic pathway were present: rfbK (phosphomannomutase) had a G+C content of 0.61 and had only 40% identity to rfbK of group B but was very similar to cpsG of the capsular polysaccharide pathway with 96% identity, whereas rfbM [guanosine diphosphomannose (GDP-Man) pyrophosphorylase] had a G+C content of 0.39. Other genes had G+C contents ranging from 0.24 to 0.28. rfbM(C1) and rfbM(B) had 60% identity, which is much less than expected within a species, but nonetheless indicates a much more recent common ancestor than for rfbK. The other genes showed much lower or no similarity to rfb genes of other S. enterica strains. It appears that the gene cluster evolved outside of Salmonella in a species with low G+C content: the rfbM gene presumably derives from that period whereas the rfbK gene appears to have arisen after transfer of the cluster to S. enterica by duplication of the S. enterica cpsG gene, presumably replacing an rfbK gene of low G+C content.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号