共查询到20条相似文献,搜索用时 15 毫秒
1.
Shirley Chiang Tanya Burch Gary Van Domselaar Kevin Dick Alina Radziwon Craig Brusnyk Megan Rae Edwards Jessica Piper Todd Cutts Jingxin Cao Xuguang Li Runtao He 《Molecular and cellular biochemistry》2010,334(1-2):221-232
The cellular counterpart of the “soluble” guanylyl cyclase found in tissue homogenates over 30 years ago is now recognized as the physiological receptor for nitric oxide (NO). The ligand-binding site is a prosthetic haem group that, when occupied by NO, induces a conformational change in the protein that propagates to the catalytic site, triggering conversion of GTP into cGMP. This review focuses on recent research that takes this basic information forward to the beginnings of a quantitative depiction of NO signal transduction, analogous to that achieved for other major transmitters. At its foundation is an explicit enzyme-linked receptor mechanism for NO-activated guanylyl cyclase that replicates all its main properties. In cells, NO signal transduction is subject to additional, activity-dependent modifications, notably through receptor desensitization and changes in the activity of cGMP-hydrolyzing phosphodiesterases. The measurement of these parameters under varying conditions in rat platelets has made it possible to formulate a cellular model of NO-cGMP signaling. The model helps explain cellular responses to NO and their modification by therapeutic agents acting on the guanylyl cyclase or phosphodiesterase limbs of the pathway. 相似文献
2.
3.
4.
MCF-7 human breast cancer cells express the aryl hydrocarbon receptor (AhR), and treatment with AhR agonists such as 2,3,7, 8-tetrachlorodibenzo-p-dioxin (TCDD) inhibits estrogen receptor (ER)-mediated responses. This study investigates physical and functional interactions of the AhR complex with a prototypical coactivator (estrogen receptor associating protein 140, ERAP 140) and corepressor (silencing mediator for retinoic acid and thyroid hormone receptor, SMRT) for ER and other members of the nuclear receptor superfamily. The AhR, AhR nuclear translocator (Arnt), and AhR/Arnt proteins were coimmunoprecipitated with 35S-ERAP 140 and 35S-SMRT and, in gel mobility shift assays, AhR/Arnt binding to 32P-dioxin response element (DRE) was enhanced by ERAP-140 and inhibited by SMRT; supershifted bands were not observed. In transactivation assays, coactivator and corepressor proteins enhanced or inhibited AhR-mediated gene expression; however, these responses varied with the amount of coactivator/corepressor expression. These results confirmed functional and physical interactions of AhR/Arnt with ERAP 140 and SMRT in breast cancer cells. 相似文献
5.
6.
7.
8.
9.
10.
11.
12.
13.
14.
15.
16.
17.
18.