首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
During pregnancy, maternal plasma cortisol concentrations approximately double. Given that cortisol plays an important role in the regulation of vascular reactivity, the present study investigated the potential role of cortisol in potentiation of uterine artery (UA) contractility and tested the hypothesis that pregnancy downregulated the cortisol-mediated potentiation. In vitro cortisol treatment (3, 10, or 30 ng/ml for 24 h) produced a dose-dependent increase in norepinephrine (NE)-induced contractions in both nonpregnant and pregnant (138-143 days gestation) sheep UA. However, this cortisol-mediated response was significantly attenuated by approximately 50% in pregnant UA. The 11 beta-hydroxysteroid dehydrogenase (11-beta HSD) inhibitor carbenoxolone did not change the effect of cortisol in nonpregnant UA but abolished its effect in pregnant UA by increasing the NE pD(2) in control tissues from 6.20 +/- 0.05 to 6.59 +/- 0.11. The apparent dissociation constant value of NE alpha(1)-adrenoceptors was not changed by cortisol in pregnant UA but was decreased in nonpregnant UA. There was no difference in glucocorticoid receptor density between nonpregnant and pregnant UA. Cortisol significantly decreased endothelial nitric oxide (NO) synthase protein levels and NO release in both nonpregnant and pregnant UA, but the effect of cortisol was attenuated in pregnant UA by approximately 50%. Carbenoxolone alone had no effects on NO release in nonpregnant UA but was decreased in pregnant UA. These results suggest that cortisol potentiates NE-mediated contractions by decreasing NO release and increasing NE-binding affinity to alpha(1)-adrenoceptors in nonpregnant UA. Pregnancy attenuates UA sensitivity to cortisol, which may be mediated by increasing type-2 11-beta HSD activity in UA.  相似文献   

2.
This study tested the hypothesis that protein kinase C (PKC) has dual regulation on norepinephrine (NE)-mediated inositol 1,4, 5-trisphosphate [Ins (1,4,5)P(3)] pathway and vasoconstriction in cerebral arteries from near-term fetal ( approximately 140 gestational days) and adult sheep. Basal PKC activity values (%membrane bound) in fetal and adult cerebral arteries were 38 +/- 4% and 32 +/- 4%, respectively. In vessels of both age groups, the PKC isoforms alpha, beta(I), beta(II), and delta were relatively abundant. In contrast, compared with the adult, cerebral arteries of the fetus had low levels of PKC-epsilon. In response to 10(-4) M phorbol 12,13-dibutyrate (PDBu; PKC agonist), PKC activity in both fetal and adult cerebral arteries increased 40-50%. After NE stimulation, PKC activation with PDBu exerted negative feedback on Ins(1,4,5)P(3) and intracellular Ca(2+) concentration ([Ca(2+)](i)) in arteries of both age groups. In turn, PKC inhibition with staurosporine resulted in augmented NE-induced Ins(1,4,5)P(3) and [Ca(2+)](i) responses in adult, but not fetal, cerebral arteries. In adult tissues, PKC stimulation by PDBu increased vascular tone, but not [Ca(2+)](i). In contrast, in the fetal artery, PKC stimulation was associated with an increase in both tone and [Ca(2+)](i). In the presence of zero extracellular [Ca(2+)], these PDBu-induced responses were absent in the fetal vessel, whereas they remained unchanged in the adult. We conclude that, although basal PKC activity was similar in fetal and adult cerebral arteries, PKC's role in NE-mediated pharmacomechanical coupling differed significantly in the two age groups. In both fetal and adult cerebral arteries, PKC modulation of NE-induced signal transduction responses would appear to play a significant role in the regulation of vascular tone. The mechanisms differ in the two age groups, however, and this probably relates, in part, to the relative lack of PKC-epsilon in fetal vessels.  相似文献   

3.
The dynamics of inositol 1,4,5-trisphosphate (Ins (1,4,5)P3) production during periods of G-protein-coupled receptor-mediated Ca2+ oscillations have been investigated using the pleckstrin homology (PH) domain of phospholipase C (PLC) delta1 tagged with enhanced green fluorescent protein (eGFP-PHPLCdelta1). Activation of noradrenergic alpha1B and muscarinic M3 receptors recombinantly expressed in the same Chinese hamster ovary cell indicates that Ca2+ responses to these G-protein-coupled receptors are stimulus strength-dependent. Thus, activation of alpha1B receptors produced transient base-line Ca2+ oscillations, sinusoidal Ca2+ oscillations, and then a steady-state plateau level of Ca2+ as the level of agonist stimulation increased. Activation of M3 receptors, which have a higher coupling efficiency than alpha1B receptors, produced a sustained increase in intracellular Ca2+ even at low levels of agonist stimulation. Confocal imaging of eGFP-PHPLCdelta1 visualized periodic increases in Ins(1,4,5)P3 production underlying the base-line Ca2+ oscillations. Ins(1,4,5)P3 oscillations were blocked by thapsigargin but not by protein kinase C down-regulation. The net effect of increasing intracellular Ca2+ was stimulatory to Ins(1,4,5)P3 production, and dual imaging experiments indicated that receptor-mediated Ins(1,4,5)P3 production was sensitive to changes in intracellular Ca2+ between basal and approximately 200 nM. Together, these data suggest that alpha1B receptor-mediated Ins(1,4,5)P3 oscillations result from a positive feedback effect of Ca2+ onto phospholipase C. The mechanisms underlying alpha1B receptor-mediated Ca2+ responses are therefore different from those for the metabotropic glutamate receptor 5a, where Ins(1,4,5)P3 oscillations are the primary driving force for oscillatory Ca2+ responses (Nash, M. S., Young, K. W., Challiss, R. A. J., and Nahorski, S. R. (2001) Nature 413, 381-382). For alpha1B receptors the Ca2+-dependent Ins(1,4,5)P3 production may serve to augment the existing regenerative Ca2+-induced Ca2+-release process; however, the sensitivity to Ca2+ feedback is such that only transient base-line Ca2+ spikes may be capable of causing Ins(1,4,5)P3 oscillations.  相似文献   

4.
The functions of ryanodine receptors (RyRs) and inositol (1,4,5)-trisphosphate receptors [Ins(1,4,5)P(3)Rs] in adrenergically activated contractions of pressurized rat mesenteric small arteries were investigated. Caffeine (20 mM) but not phenylephrine (PE; 10 microM) facilitated the depletion of smooth muscle sarcoplasmic reticulum (SR) Ca(2+) stores by ryanodine (40 microM). In ryanodine-treated SR-depleted arteries, 1) Ca(2+) sparks were absent, 2) low concentrations of PE failed to elicit either vasoconstriction or normal asynchronous propagating Ca(2+) waves, and 3) high [PE] induced abnormally slow oscillatory contractions (vasomotion) and synchronous Ca(2+) oscillations. In ryanodine-treated SR-depleted arteries denuded of endothelium, high [PE] induced steady contraction and steady elevation of intracellular [Ca(2+)]. In contrast, 2-aminoethyl diphenylborate (2-APB), a putative blocker of Ins(1,4,5)P(3)Rs, produced opposite effects to ryanodine: 1) Ca(2+) sparks were present; 2) Ca(2+) waves were absent; 3) caffeine-releasable Ca(2+) stores were intact; and 4) PE, even at high concentrations on endothelial-denuded arteries, failed to elicit contraction, asynchronous Ca(2+) waves, or synchronous Ca(2+) oscillations or maintained elevated [Ca(2+)]. We conclude that 1) Ins(1,4,5)P(3)Rs are essential for adrenergically induced asynchronous Ca(2+) waves and the associated steady vasoconstriction, 2) RyRs are not appreciably opened during adrenergic activation (because PE did not facilitate the development of the effects of ryanodine), and 3) Ins(1,4,5)P(3)Rs are not essential for Ca(2+) sparks. This provides an explanation of the fact that adrenergic stimulation decreases the frequency of Ca(2+) sparks (previously reported) while simultaneously increasing the frequency of asynchronous propagating Ca(2+) waves; different SR Ca(2+)-release channels are involved.  相似文献   

5.
This study was carried out to determine the intracellular components responsible for the transmembrane current evoked by stimulation of H1-histaminergic receptors in DDT1 MF-2 smooth muscle cells. Histamine elicited an outward current that was reversed below the K+ equilibrium potential and passed voltage-independent K+ channels. A histamine concentration-dependent rise in outward current and in cytoplasmic-free Ca2+ with similar time courses was observed. The histamine-induced current was not found after depletion of internal Ca2+ stores, suggesting a coupling between internal Ca2+ and K+ current. The time course of the initial increase in inositol (1,4,5)-trisphosphate (Ins (1,4,5)P3) caused by histamine differs from that of the internal Ca2+ response. However, a significant concentration-dependent increase in inositol (1,3,4,5)-tetrakisphosphate (Ins (1,3,4,5)P4) was seen during the whole stimulating period. The role of internal Ca2+, Ins (1,4,5)P3, and Ins (1,3,4,5)P4 on the outward current was also examined by the addition of these substances directly to the cytoplasm. Internal application of Ca2+ increased the amplitude and duration of the histamine-induced current whereas internal EGTA suppressed the outward current. Internal Ins (1,4,5)P3 did not affect the histamine-induced K+ current, Ins (1,3,4,5)P4 inhibited the outward current, and the combination of Ins (1,3,4,5)P4 and Ca2+ abolished this response. The noradrenaline response evoked under normal conditions is not reflected by a change in transmembrane current or a change in Ins (1,3,4,5)P4 but is associated with an increase in Ins (1,4,5)P3 and internal Ca2+. Stimulation of alpha 1-adrenoceptors, however, also evoked an outward current after the addition of Ins (1,3,4,5)P4 intracellularly. It is concluded that K+ channels, carrying the histamine outward current, are activated from the combined action of internal Ca2+ and Ins (1,3,4,5)P4.  相似文献   

6.
We previously demonstrated that cortisol regulated alpha(1)-adrenoceptor-mediated contractions differentially in nonpregnant and pregnant uterine arteries. Given that chronic hypoxia during pregnancy has profound effects on maternal uterine artery reactivity, the present study investigated the effects of chronic hypoxia on cortisol-mediated regulation of uterine artery contractions. Pregnant (day 30) and nonpregnant ewes were divided between normoxic control and chronically hypoxic [maintained at high altitude (3,820 m), arterial Po(2): 60 mmHg for 110 days] groups. Uterine arteries were isolated and contractions measured. In hypoxic animals, cortisol (10 ng/ml for 24 h) increased norepinephrine-induced contractions in pregnant, but not in nonpregnant, uterine arteries. The 11beta-hydroxysteroid dehydrogenase inhibitor carbenoxolone did not change cortisol effects in nonpregnant uterine arteries, but abolished it in pregnant uterine arteries by increasing norepinephrine pD(2) (-log EC(50)) in control tissues. The dissociation constant of norepinephrine-alpha(1)-adrenoceptors was not changed by cortisol in nonpregnant, but decreased in pregnant uterine arteries. There were no differences in the density of glucocorticoid receptors between normoxic and hypoxic tissues. Cortisol inhibited the norepinephrine-induced increase in Ca(2+) concentrations in nonpregnant arteries, but potentiated it in pregnant arteries. In addition, cortisol attenuated phorbol 12,13-dibutyrate-induced contractions in normoxic nonpregnant and pregnant uterine arteries, but had no effect on the contractions in hypoxic arteries. The results suggest that cortisol differentially regulates alpha(1)-adrenoceptor- and PKC-mediated contractions in uterine arteries. Chronic hypoxia suppresses uterine artery sensitivity to cortisol, which may play an important role in the adaptation of uterine vascular tone and blood flow in response to chronic stress of hypoxia during pregnancy.  相似文献   

7.
The sulphydryl reagent thimerosal (50 microM) released Ca2+ from a non-mitochondrial intracellular Ca2+ pool in a dose-dependent manner in permeabilized insulin-secreting RINm5F cells. This release was reversed after addition of the reducing agent dithiothreitol. Ca2+ was released from an Ins(1,4,5)P3-insensitive pool, since release was observed even after depletion of the Ins(1,4,5)P3-sensitive pool by a supramaximal dose of Ins(2,4,5)P3 or thapsigargin. The Ins(1,4,5)P3-sensitive pool remained essentially unaltered by thimerosal. Thimerosal-induced Ca2+ release was potentiated by caffeine. These findings suggest the existence of Ca(2+)-induced Ca2+ release also in insulin-secreting cells.  相似文献   

8.
Inositol phosphate (InsP) responses to receptor activation are assumed to involve phospholipase C cleavage of phosphatidylinositol 4,5-bisphosphate to generate Ins(1,4,5)P(3). However, in [(3)H]inositol-labeled rat neonatal cardiomyocytes (NCM) both initial and sustained [(3)H]InsP responses to alpha(1)-adrenergic receptor stimulation with norepinephrine (100 microM) were insensitive to the phosphatidylinositol 4,5-bisphosphate-binding agent neomycin (5 mM). Introduction of 300 microM unlabeled Ins(1,4, 5)P(3) into guanosine 5'-3-O-(thio)triphosphate (GTPgammaS)-stimulated, permeabilized [(3)H]inositol-labeled NCM increased [(3)H]Ins(1,4,5)P(3) slightly but did not significantly reduce levels of its metabolites [(3)H]Ins(1,4)P(2) and [(3)H]Ins(4)P, suggesting that these [(3)H]InsPs are not formed principally from [(3)H]Ins(1,4,5)P(3). In contrast, the calcium ionophore A23187 (10 microM) provoked [(3)H]InsP responses in intact NCM which were sensitive to neomycin, and elevation of free calcium in permeabilized NCM led to [(3)H]InsP responses characterized by marked increases in [(3)H]Ins(1,4,5)P(3) (2.9 +/- 0.2% of total [(3)H]InsPs after 20 min of high Ca(2+) treatment in comparison to 0. 21 +/- 0.05% of total [(3)H]InsPs accumulated after 20 min of GTPgammaS stimulation). These data provide evidence that Ins(1,4, 5)P(3) generation is not a major contributor to G protein-coupled InsP responses in NCM, but that substantial Ins(1,4,5)P(3) generation occurs under conditions of Ca(2+) overload. Thus in NCM, Ca(2+)-induced Ins(1,4,5)P(3) generation has the potential to worsen Ca(2+) overload and thereby aggravate Ca(2+)-induced electrophysiological perturbations.  相似文献   

9.
We have studied the Ca(2+)-dependence and wortmannin-sensitivity of the initial inositol 1,4,5-trisphosphate (Ins(1,4,5)P(3)) response induced by activation of either histamine or muscarinic receptors in smooth muscle from guinea pig urinary bladder. Activation of H(1) receptors with histamine (100 microM) produced a significant elevation in Ins(1,4,5)P(3) levels with only 5s stimulation and in the presence of external Ca(2+). However, this response was abolished fully by either the prolonged absence of external Ca(2+) or the depletion of internal Ca(2+) stores with thapsigargin (100nM) or ryanodine (10 microM). In contrast, the same conditions only slightly reduced the initial Ins(1,4,5)P(3) response induced by carbachol. The prolonged incubation of smooth muscle in 10 microM wortmannin to inhibit type III PI 4-kinase abolished both the early histamine-evoked Ins(1,4,5)P(3) and Ca(2+) responses. Conversely, wortmannin did not alter Ca(2+) release induced by carbachol, despite a partial reduction of its Ins(1,4,5)P(3) response. Collectively, these data indicate that the detectable histamine-induced increase in Ins(1,4,5)P(3) is more the consequence of Ca(2+) release from internal stores than a direct activation of phospholipase C by H(1) receptors. In addition, the effect of wortmannin implies the existence of a Ca(2+)-dependent amplification loop for the histamine-induced Ins(1,4,5)P(3) response in smooth muscle.  相似文献   

10.
Protein kinase C (PKC) plays an important role in the regulation of uterine artery contractility and its adaptation to pregnancy. The present study tested the hypothesis that PKC differentially regulates alpha(1)-adrenoceptor-mediated contractions of uterine arteries isolated from nonpregnant (NPUA) and near-term pregnant (PUA) sheep. Phenylephrine-induced contractions of NPUA and PUA sheep were determined in the absence or presence of the PKC activator phorbol 12,13-dibutyrate (PDBu). In NPUA sheep, PDBu produced a concentration-dependent potentiation of phenylephrine-induced contractions and shifted the dose-response curve to the left. In contrast, in PUA sheep, PDBu significantly inhibited phenylephrine-induced contractions and decreased their maximum response. Simultaneous measurement of contractions and intracellular free Ca(2+) concentrations ([Ca(2+)](i)) in the same tissues revealed that PDBu inhibited phenylephrine-induced [Ca(2+)](i) and contractions in PUA sheep. In NPUA sheep, PDBu increased phenylephrine-induced contractions without changing [Ca(2+)](i). Western blot analysis showed six PKC isozymes, alpha, beta(I), beta(II), delta, epsilon, and zeta, in uterine arteries, among which beta(I), beta(II), and zeta isozymes were significantly increased in PUA sheep. In contrast, PKC-alpha was decreased in PUA sheep. In addition, analysis of subcellular distribution revealed a significant decrease in the particulate-to-cytosolic ratio of PKC-epsilon in PUA compared with that in NPUA sheep. The results suggest that pregnancy induces a reversal of PKC regulatory role on alpha(1)-adrenoceptor-mediated contractions from a potentiation in NPUA sheep to an inhibition in PUA sheep. The differential expression of PKC isozymes and their subcellular distribution in uterine arteries appears to play an important role in the regulation of Ca(2+) mobilization and Ca(2+) sensitivity in alpha(1)-adrenoceptor-mediated contractions and their adaptation to pregnancy.  相似文献   

11.
Functionally separate intracellular Ca2+ stores in smooth muscle   总被引:8,自引:0,他引:8  
In smooth muscle, release via the inositol 1,4,5-trisphosphate (Ins(1,4,5)P(3)R) and ryanodine receptors (RyR) on the sarcoplasmic reticulum (SR) controls oscillatory and steady-state cytosolic Ca(2+) concentrations ([Ca(2+)](c)). The interplay between the two receptors, itself determined by their organization on the SR, establishes the time course and spatial arrangement of the Ca(2+) signal. Whether or not the receptors are co-localized or distanced from each other on the same store or whether they exist on separate stores will significantly affect the Ca(2+) signal produced by the SR. To date these matters remain unresolved. The functional arrangement of the RyR and Ins(1,4,5)P(3)R on the SR has now been examined in isolated single voltage-clamped colonic myocytes. Depletion of the ryanodine-sensitive store, by repeated application of caffeine, in the presence of ryanodine, abolished the response to Ins(1,4,5)P(3), suggesting that Ins(1,4,5)P(3)R and RyR share a common Ca(2+) store. Ca(2+) release from the Ins(1,4,5)P(3)R did not activate Ca(2+)-induced Ca(2+) release at the RyR. Depletion of the Ins(1,4,5)P(3)-sensitive store, by the removal of external Ca(2+), on the other hand, caused only a small decrease ( approximately 26%) in caffeine-evoked Ca(2+) transients, suggesting that not all RyR exist on the common store shared with Ins(1,4,5)P(3)R. Dependence of the stores on external Ca(2+) for replenishment also differed; removal of external Ca(2+) depleted the Ins(1,4,5)P(3)-sensitive store but caused only a slight reduction in caffeine-evoked transients mediated at RyR. Different mechanisms are presumably responsible for the refilling of each store. Refilling of both Ins(1,4,5)P(3)-sensitive and caffeine-sensitive Ca(2+) stores was inhibited by each of the SR Ca(2+) ATPase inhibitors thapsigargin and cyclopiazonic acid. These results may be explained by the existence of two functionally distinct Ca(2+) stores; the first expressing only RyR and refilled from [Ca(2+)](c), the second expressing both Ins(1,4,5)P(3)R and RyR and dependent upon external Ca(2+) for refilling.  相似文献   

12.
Using the low-affinity fluorescent Ca(2+) indicators, Mag-Fura-2 and Mag-Fura Red, we studied light- and InsP(3)-induced Ca(2+) release in permeabilized microvillar photoreceptors of the medicinal leech, Hirudo medicinalis. Two major components of the phosphoinositide signaling pathway, phospholipase-C and the InsP(3) receptor, were characterized immunologically and appropriately localized in photoreceptors. Whereas phospholipase-C was abudantly expressed in photoreceptive microvilli, InsP(3) receptors were found mostly in submicrovillar endoplasmic reticulum (SER). Permeabilization of the peripheral plasma membrane with saponin allowed direct measurements of luminal free Ca(2+) concentration (Ca(L)) changes. Confocal Ca(2+) imaging using Mag-Fura Red demonstrated that Ins(1,4,5)P(3) mobilizes Ca(2+) from SER. As detected with Mag-Fura-2, a brief 50ms light flash activated rapid Ca(2+) depletion of SER, followed by an effective refilling within 1min of dark adaptation after the light flash. Sensitivity to Ins(1,4,5)P(3) of the Ca(2+) release from SER in leech photoreceptors was accompanied by irreversible uncoupling of phototransduction from Ca(2+) release. Depletion of Ca(2+) stores was induced by Ins(1,4,5)P(3)(EC(50)= 4.75 microM) and the hyper-potent agonist adenophostin A (EC(50)/40nM) while the stereoisomer L-myo Ins(1,4,5)P(3) was totally inactive. Ins(1,4,5)P(3)- or adenophostin A-induced Ca(2+) release was inhibited by 0.1-1mg/ml heparin. The Ca(2+) pump inhibitors, cyclopiazonic acid and thapsigargin, in the presence of Ins(1,4,5)P(3), completely depleted Ca(2+) stores in leech photoreceptors.  相似文献   

13.
Inositol trisphosphate, calcium and muscle contraction   总被引:13,自引:0,他引:13  
The identity of organelles storing intracellular calcium and the role of Ins(1,4,5)P3 in muscle have been explored with, respectively, electron probe X-ray microanalysis (EPMA) and laser photolysis of 'caged' compounds. The participation of G-protein(s) in the release of intracellular Ca2+ was determined in saponin-permeabilized smooth muscle. The sarcoplasmic reticulum (SR) is identified as the major source of activator Ca2+ in both smooth and striated muscle; similar (EPMA) studies suggest that the endoplasmic reticulum is the major Ca2+ storage site in non-muscle cells. In none of the cell types did mitochondria play a significant, physiological role in the regulation of cytoplasmic Ca2+. The latency of guinea pig portal vein smooth muscle contraction following photolytic release of phenylephrine, an alpha 1-agonist, is 1.5 +/- 0.26 s at 20 degrees C and 0.6 +/- 0.18 s at 30 degrees C; the latency of contraction after photolytic release of Ins(1,4,5)P3 from caged Ins(1,4,5)P3 is 0.5 +/- 0.12 s at 20 degrees C. The long latency of alpha 1-adrenergic Ca2+ release and its temperature dependence are consistent with a process mediated by G-protein-coupled activation of phosphatidylinositol 4,5 bisphosphate (PtdIns(4,5)P2) hydrolysis. GTP gamma S, a non-hydrolysable analogue of GTP, causes Ca2+ release and contraction in permeabilized smooth muscle. Ins(1,4,5)P3 has an additive effect during the late, but not the early, phase of GTP gamma S action, and GTP gamma S can cause Ca2+ release and contraction of permeabilized smooth muscles refractory to Ins(1,4,5)P3. These results suggest that activation of G protein(s) can release Ca2+ by, at least, two G-protein-regulated mechanisms: one mediated by Ins(1,4,5)P3 and the other Ins(1,4,5)P3-independent. The low Ins(1,4,5)P3 5-phosphatase activity and the slow time-course (seconds) of the contractile response to Ins(1,4,5)P3 released with laser flash photolysis from caged Ins(1,4,5)P3 in frog skeletal muscle suggest that Ins(1,4,5)P3 is unlikely to be the physiological messenger of excitation-contraction coupling of striated muscle. In contrast, in smooth muscle the high Ins(1,4,5)P3-5-phosphatase activity and the rate of force development after photolytic release of Ins(1,4,5)P3 are compatible with a physiological role of Ins(1,4,5)P3 as a messenger of pharmacomechanical coupling.  相似文献   

14.
Cellular signaling mediated by inositol (1,4,5)trisphosphate (Ins(1, 4,5)P(3)) results in oscillatory intracellular calcium (Ca(2+)) release. Because the amplitude of the Ca(2+) spikes is relatively invariant, the extent of the agonist-mediated effects must reside in their ability to regulate the oscillating frequency. Using electroporation techniques, we show that Ins(1,4,5)P(3), Ins(1,3,4, 5)P(4), and Ins(1,3,4,6)P(4) cause a rapid intracellular Ca(2+) release in resting HeLa cells and a transient increase in the frequency of ongoing Ca(2+) oscillations stimulated by histamine. Two poorly metabolizable analogs of Ins(1,4,5)P(3), Ins(2,4,5)P(3), and 2,3-dideoxy-Ins(1,4,5)P(3), gave a single Ca(2+) spike and failed to alter the frequency of ongoing oscillations. Complete inhibition of Ins(1,4,5)P(3) 3-kinase (IP3K) by either adriamycin or its specific antibody blocked Ca(2+) oscillations. Partial inhibition of IP3K causes a significant reduction in frequency. Taken together, our results indicate that Ins(1,3,4,5)P(4) is the frequency regulator in vivo, and IP3K, which phosphorylates Ins(1,4, 5)P(3) to Ins(1,3,4,5)P(4), plays a major regulatory role in intracellular Ca(2+) oscillations.  相似文献   

15.
The proposed Ca(2+)-signaling actions of inositol 1,3,4,5-tetrakisphosphate (Ins(1,3,4,5)P4), formed by phosphorylation of the primary Ca(2+)-mobilizing messenger, inositol 1,4,5-trisphosphate (Ins(1,4,5)P3), were analyzed in NIH 3T3 and CCL39 fibroblasts transfected with rat brain Ins(1,4,5)P3 3-kinase. In such kinase-transfected cells, the conversion of Ins(1,4,5)P3 to Ins(1,3,4,5)P4 during agonist stimulation was greatly increased, with a concomitant reduction in Ins(1,4,5)P3 levels and attenuation of both the cytoplasmic Ca2+ increase and the Ca2+ influx response. This reduction in Ca2+ signaling was observed during activation of receptors coupled to guanine nucleotide-binding proteins (thrombin and bradykinin), as well as with those possessing tyrosine kinase activity. Single-cell Ca2+ measurements in CCL39 cells revealed that the smaller averaged Ca2+ response of enzyme-transfected cells was due to a marked increase in the number of cells expressing small and slow Ca2+ increases, in contrast to the predominantly large and rapid Ca2+ responses of vector-transfected controls. There was no evidence that high Ins(1,3,4,5)P4 levels promote Ca2+ mobilization, Ca2+ entry, or Ca2+ sequestration. These data indicate that Ins(1,4,5)P3 is the major determinant of the agonist-induced Ca2+ signal in fibroblasts and that Ins(1,3,4,5)P4 does not appear to contribute significantly to this process. Instead, Ins(1,4,5)P3 3-kinase may serve as a negative regulator of the Ca(2+)-phosphoinositide signal transduction mechanism.  相似文献   

16.
D-Myo-inositol 1,4,5-trisphosphate (Ins[1,4-,5]P3) inhibits rat heart sarcolemmal Ca(2+)-ATPase activity (T. H. Kuo, Biochem. Biophys. Res. Commun. 152: 1111, 1988). We have studied the effect and mechanism of action of Ins(1,4,5)P3 and related inositol phosphates on human red cell membrane Ca(2+)-ATPase (EC 3.6.1.3) activity in vitro. At 10(-6) M, Ins(1,4,5)P3 and D-myo-inositol 4,5-bisphosphate (Ins[4,5]P2) inhibited human erythrocyte membrane Ca(2+)-ATPase activity in vitro by 42 and 31%, respectively. D-Myo-inositol 1,3,4,5-tetrakisphosphate, D-myo-inositol 1,4-bisphosphate, and D-myo-inositol 1-phosphate were not inhibitory. Enzyme inhibition by Ins(1,4,5)P3 was blocked by heparin. Exogenous purified calmodulin also stimulated red cell membrane Ca(2+)-ATPase activity; this stimulation was inhibited by Ins(1,4,5)P3. Ins(4,5)P2 and Ins(1,4,5)P3, but not Ins(1,4)P2, inhibited the binding of [125I]calmodulin to red cell membranes. Thus, specific inositol phosphates reduce plasma membrane Ca(2+)-ATPase activity and enhancement of the latter in vitro by purified calmodulin. The mechanism of these effects may in part relate to inhibition by inositol phosphates of binding of calmodulin to erythrocyte membranes.  相似文献   

17.
Woodcock EA  Mitchell CJ  Biden TJ 《FEBS letters》2003,546(2-3):325-328
Phospholipase C (PLC) activation in neonatal rat ventricular cardiomyocytes (NRVM) generates inositol(1,4,5)trisphosphate (Ins(1,4,5)P(3)) in response to elevations in Ca(2+) or inositol(1,4)bisphosphate in response to G protein stimulation. Overexpression of PLCdelta(1) increased total [(3)H]inositol phosphate (InsP) content and elevated [(3)H]Ins(1,4,5)P(3), but failed to increase [(3)H]InsP responses to the Ca(2+) ionophore A23187. Antisense PLCdelta(1) expression reduced endogenous PLCdelta(1) content but did not decrease the A23187 response. In permeabilized NRVM, [(3)H]InsP responses to elevated Ca(2+) were not inhibited by Ins(1,4,5)P(3), even at concentrations 1000-fold greater than required for selective inhibition of PLCdelta(1). Taken together these data provide evidence that PLCdelta(1) does not mediate the InsP response to elevated Ca(2+) in NRVM.  相似文献   

18.
The design and synthesis of dimeric versions of the intracellular signaling molecule d-myo-inositol 1,4,5-trisphosphate [Ins(1,4,5)P(3)] are reported. Ins(1,4,5)P(3) dimers in a range of sizes were constructed by conjugation of a partially protected 2-O-(2-aminoethyl)-Ins(1,4,5)P(3) intermediate with activated oligo- and poly(ethylene glycol) (PEG) tethers, to give benzyl-protected dimers with amide or carbamate linkages. After deprotection, the resulting water-soluble Ins(1,4,5)P(3) dimers were purified by ion-exchange chromatography. The interaction of the Ins(1,4,5)P(3) dimers with tetrameric Ins(1,4,5)P(3) receptors was explored, using equilibrium [(3)H]Ins(1,4,5)P(3)-binding to membranes from cerebellum, and (45)Ca(2+)-release from permeabilized hepatocytes. The results showed that dimers, even when they incorporate large PEG tethers, interact potently with Ins(1,4,5)P(3) receptors, and that the shorter dimers are more potent than Ins(1,4,5)P(3) itself. A very small dimer, consisting of two Ins(1,4,5)P(3) motifs joined by a short N,N'-diethylurea spacer, was synthesized. Preliminary studies of (45)Ca(2+) release from the intracellular stores of permeabilized hepatocytes showed this shortest dimer to be almost as potent as adenophostin A, the most potent Ins(1,4,5)P(3) receptor ligand known. Possible interpretations of this result are considered in relation to the recently disclosed X-ray crystal structure of the type 1 Ins(1,4,5)P(3) receptor core binding domain.  相似文献   

19.
Ca(2+) within intracellular stores (luminal Ca(2+)) is believed to play a role in regulating Ca(2+) release into the cytosol via the inositol (1,4,5)-trisphosphate (Ins(1,4,5)P(3))-gated Ca(2+) channel (or Ins(1,4,5)P(3) receptor). To investigate this, we incorporated purified Type 1 Ins(1,4,5)P(3) receptor from rat cerebellum into planar lipid bilayers and monitored effects at altered luminal [Ca(2+)] using K(+) as the current carrier. At a high luminal [Ca(2+)] and in the presence of optimal [Ins(1,4,5)P(3)] and cytosolic [Ca(2+)], a short burst of Ins(1,4,5)P(3) receptor channel activity was followed by complete inactivation. Lowering the luminal [Ca(2+)] caused the channel to reactivate indefinitely. At luminal [Ca(2+)], reflecting a partially empty store, channel activity did not inactivate. The addition of cytosolic ATP to a channel inactivated by high luminal [Ca(2+)] caused reactivation. We provide evidence that luminal Ca(2+) is exerting its effects via a direct interaction with the luminal face of the receptor. Activation of the receptor by ATP may act as a device by which cytosolic Ca(2+) overload is prevented when the energy state of the cell is compromised.  相似文献   

20.
Connexins are membrane proteins that assemble into gap-junction channels and are responsible for direct, electrical and metabolic coupling between connected cells. Here we describe an investigation of the properties of a recombinantly expressed recessive mutant of connexin 26 (Cx26), the V84L mutant, associated with deafness. Unlike other Cx26 mutations, V84L affects neither intracellular sorting nor electrical coupling, but specifically reduces permeability to the Ca(2+)-mobilizing messenger inositol 1,4,5-trisphosphate (Ins(1,4,5)P(3)). Both the permeability to Lucifer Yellow and the unitary channel conductance of V84L-mutant channels are indistinguishable from those of the wild-type Cx26. Injection of Ins(1,4,5)P(3) into supporting cells of the rat organ of Corti, which abundantly express Cx26, ensues in a regenerative wave of Ca(2+) throughout the tissue. Blocking the gap junction communication abolishes wave propagation. We propose that the V84L mutation reduces metabolic coupling mediated by Ins(1,4,5)P(3) to an extent sufficient to impair the propagation of Ca(2+) waves and the formation of a functional syncytium. Our data provide the first demonstration of a specific defect of metabolic coupling and offer a mechanistic explanation for the pathogenesis of an inherited human disease.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号