首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Vein grafts are subject to increased tensile stress due to exposure to arterial blood pressure, which has been hypothesized to induce endothelial cell (EC) and smooth muscle cell (SMC) injury. This study was designed to verify this hypothesis and to develop a tissue engineering approach that can be used to prevent these pathological events. Two experimental models were created in rats to achieve these goals: (1) a nonengineered vein graft with increased tensile stress, which was created by grafting a jugular vein into the abdominal aorta using a conventional end-to-end anastomotic technique; and (2) an engineered vein graft with reduced tensile stress, which was created by restricting a vein graft into a cylindrical sheath constructed using a polytetrafluoroethylene membrane. The integrity of ECs in these models was examined by using a silver nitrate staining method, and the integrity of SMCs was assessed by using a fluorescein phalloidin-labeling technique. It was found that nonengineered vein grafts were associated with early EC denudation with a change in EC coverage from 100 percent in normal jugular veins to 36 +/- 10, 28 +/- 12, 18 +/- 9, 44 +/- 15, 80 +/- 13, and 97 +/- 6 percent at 1 and 6 hours and 1, 5, 10, and 30 days, respectively. Similarly, rapid SMC actin filament degradation was found during the early period with a change in SMC coverage from approximately 94 percent in normal jugular veins to 80 +/- 10, 41 +/- 17, 25 +/- 9, 51 +/- 15, 79 +/- 15, 98 +/- 2 percent at 1 and 6 hours and 1, 5, 10, and 30 days, respectively, in nonengineered vein grafts. In engineered vein grafts with reduced tensile stress, EC denudation and SMC actin filament degradation were prevented significantly. These results suggested that mechanical stretch due to increased tensile stress contributed to EC and SMC injury in experimental vein grafts, and these pathological events could be partially prevented when tensile stress was reduced by using a biomechanical engineering approach.  相似文献   

2.

Objective

Intimal hyperplasia (IH) is a clinical concern leading to failure of up to 50% of vein grafts and 10% of arterial grafts after 10 years with no known current treatment. Recent studies have shown that hypoxia differentially regulates proliferation of vein derived smooth muscle cells (V-SMC) compared to artery derived smooth muscle cells (A-SMC). The objective of this study is to evaluate the effect of hypoxia on cellular migration and the mechanisms underlying the differential effects of hypoxia on A-SMC and V-SMC migration.

Methods and Results

Hypoxic treatment (3–5% O2) of Smooth Muscle Cells (SMC) resulted in differential migration in scratch wound and electric cell substrate impedance sensing (ECIS) assays. Hypoxia led to greater migration compared to normoxia with venous derived wound closure (V-SMC 30.8% Normoxia to 67% Hypoxia) greater than arterial wound closure (A-SMC 6.2% Normoxia to 24.7% Hypoxia). Paracrine factors secreted by hypoxic endothelial cells induced more migration in SMC compared to factors secreted by normoxic endothelial cells. Migration of V-SMC was greater than A-SMC in the presence of paracrine factors. Neutralizing antibody to Vascular Endothelial Growth Factor Receptor -1 (VEGFR-1) completely inhibited V-SMC migration while there was only partial inhibition of A-SMC migration. A-SMC migration was completely inhibited by Platelet Derived Growth Factor BB (PDGF-BB) neutralizing antibody. p38 Mitogen Activated Protein kinase (p38 MAPK) inhibitor pre-incubation completely inhibited migration induced by paracrine factors in both A-SMC and V-SMC.

Conclusion

Our study determines that SMC migration under hypoxia occurs via both an autocrine and paracrine mechanism and is dependent on Vascular Endothelial Growth Factor-A (VEGF-A) in V-SMC and PDGF-BB in A-SMC. Migration of both A-SMC and V-SMC is inhibited by p38 MAPK inhibitor. These studies suggest that pharmacotherapeutic strategies directed at modulating p38 MAPK activity can be exploited to prevent IH in vascular grafts.  相似文献   

3.
We examined the arterial phenotype of mice lacking alpha(1)-integrin (alpha(1)(-/-)) at baseline and after 4 wk of ANG II or norepinephrine (NE) administration. Arterial mechanical properties were determined in the carotid artery (CA). Integrin expression, MAPK kinases, and focal adhesion kinase (FAK) were assessed in the aorta. No change in arterial pressure was observed in alpha(1)(-/-) mice. Elastic modulus-wall stress curves were similar in alpha(1)(-/-) and alpha(1)(+/+) animals, indicating no change in arterial stiffness. The rupture pressure was lower in alpha(1)(-/-) mice, demonstrating decreased mechanical strength. Lack of alpha(1)-integrin was accompanied by an increase in beta(1)-, alpha(v)-, and alpha(5)-integrins but no change in alpha(2)-integrin. ANG II increased medial cross-sectional area of the CA in alpha(1)(+/+), but not alpha(1)(-/-), mice, whereas equivalent pressor doses of NE did not produce a significant increase in either group. In alpha(1)(+/+) mice, ANG II induced alpha(1)-integrin expression and smooth muscle cell (SMC) hypertrophy in the CA in association with increased aortic expression of alpha-smooth muscle actin and smooth muscle myosin heavy chain and phosphorylation of ERK1/2, p38 MAPK, and FAK. ANG II did not induce SMC hypertrophy or phosphorylation of p38 MAPK and FAK in alpha(1)(-/-) mice. A functional anti-alpha(1)-integrin antibody inhibited in vitro the ANG II-induced phosphorylation of FAK and p38 MAPK. In conclusion, alpha(1)(-/-) mice exhibit a reduced mechanical strength at baseline and a lack of ANG II-induced SMC hypertrophy. These results emphasize the importance of alpha(1)beta(1)-integrin in p38 MAPK and FAK phosphorylation during vascular hypertrophy in response to ANG II.  相似文献   

4.
Liu B  Qu MJ  Qin KR  Li H  Li ZK  Shen BR  Jiang ZL 《Biophysical journal》2008,94(4):1497-1507
The arterial system is subjected to cyclic strain because of periodic alterations in blood pressure, but the effects of frequency of cyclic strain on arterial smooth muscle cells (SMCs) remain unclear. Here, we investigated the potential role of the cyclic strain frequency in regulating SMC alignment using an in vitro model. Aortic SMCs were subject to cyclic strain at one elongation but at various frequencies using a Flexercell Tension Plus system. It was found that the angle information entropy, the activation of integrin-β1, p38 MAPK, and F/G actin ratio of filaments were all changed in a frequency-dependent manner, which was consistent with SMC alignment under cyclic strain with various frequencies. A treatment with anti-integrin-β1 antibody, SB202190, or cytochalasin D inhibited the cyclic strain frequency-dependent SMC alignment. These observations suggested that the frequency of cyclic strain plays a role in regulating the alignment of vascular SMCs in an intact actin filament-dependent manner, and cyclic strain at 1.25 Hz was the most effective frequency influencing SMC alignment. Furthermore, integrin-β1 and p38 MAPK possibly mediated cyclic strain frequency-dependent SMC alignment.  相似文献   

5.
A marine Beggiatoa sp. was cultured in semi-solid agar with opposing oxygen-sulfide gradients. Growth pattern, breakage of filaments for multiplication, and movement directions of Beggiatoa filaments in the transparent agar were investigated by time-lapse video recording. The initial doubling time of cells was 15.7 +/- 1.3 h (mean +/- SD) at room temperature. Filaments grew up to an average length of 1.7 +/- 0.2 mm, but filaments of up to approximately 6 mm were also present. First breakages of filaments occurred approximately 19 h after inoculation, and time-lapse movies illustrated that a parent filament could break into several daughter filaments within a few hours. In >20% of the cases, filament breakage occurred at the tip of a former loop. As filament breakage is accomplished by the presence of sacrificial cells, loop formation and the presence of sacrificial cells must coincide. We hypothesize that sacrificial cells enhance the chance of loop formation by interrupting the communication between two parts of one filament. With communication interrupted, these two parts of one filament can randomly move toward each other forming the tip of a loop at the sacrificial cell.  相似文献   

6.
Caspase cleavage of key cytoskeletal proteins, including several intermediate filament proteins, triggers the dramatic disassembly of the cytoskeleton that characterizes apoptosis. Here we describe the muscle-specific intermediate filament protein desmin as a novel caspase substrate. Desmin is cleaved selectively at a conserved Asp residue in its L1-L2 linker domain (VEMD downward arrow M(264)) by caspase-6 in vitro and in myogenic cells undergoing apoptosis. We demonstrate that caspase cleavage of desmin at Asp(263) has important functional consequences, including the production of an amino-terminal cleavage product, N-desmin, which is unable to assemble into intermediate filaments, instead forming large intracellular aggregates. Moreover, N-desmin functions as a dominant-negative inhibitor of filament assembly, both for desmin and the structurally related intermediate filament protein vimentin. We also show that stable expression of a caspase cleavage-resistant desmin D263E mutant partially protects cells from tumor necrosis factor-alpha-induced apoptosis. Taken together, these results indicate that caspase proteolysis of desmin at Asp(263) produces a dominant-negative inhibitor of intermediate filaments and actively participates in the execution of apoptosis. In addition, these findings provide further evidence that the intermediate filament cytoskeleton has been targeted systematically for degradation during apoptosis.  相似文献   

7.
Porcine embryos produced in vitro have a small number of cells and low viability. The present study was conducted to examine the morphological characteristics and the relationship between actin filament organization and morphology of porcine embryos produced in vitro and in vivo. In vitro-derived embryos were produced by in vitro maturation, in vitro fertilization (IVF), and in vitro development. In vivo-derived embryos were collected from inseminated gilts on Days 2-6 after estrus. In experiment 1, in vitro-derived embryos (相似文献   

8.
Tensile stress and strain are known to induce vascular cell proliferation, a process that is physiologically counterbalanced by cell death. Here we investigate whether tensile stress and strain regulate vascular-cell death by using an end-to-end anastomosed rat vein graft model. In such a model, the circumferential tensile stress in the graft wall was increased by approximately 140 times immediately after surgery compared with that in the venous wall. This change was associated with an increase in the percentage of TUNEL-positive cells at 1, 6, 24, 120, 240, and 720h with two distinct peaks at 1 and 24h (10.1+/-3.5 and 14.4+/-3.2%, respectively) compared with that in control jugular veins (0.4+/-0.5 and 0.5+/-0.5% at 1 and 24h, respectively). When tensile stress and strain in the vein graft wall were reduced by using a biomechanical engineering approach, the rate of cell death was reduced significantly (3.6+/-1.1 and 1.6+/-0.5% at 1 and 24h, respectively). Furthermore, DEVD-CHO, a tetrapeptide aldehyde that inhibits the activity of caspase 3, significantly suppressed this event. These results suggest that a step increase in tensile stress and strain in experimental vein grafts induces rapid cell death, which is possibly mediated by cell death signaling mechanisms.  相似文献   

9.
Direct cell contact influences bone marrow mesenchymal stem cell fate   总被引:32,自引:0,他引:32  
Adult bone marrow-derived mesenchymal stem cells (MSC) can differentiate into various cell types of mesenchymal origin, but mechanisms regulating such cellular changes are unclear. We have conducted co-culture experiments to examine whether mesenchymal stem cell differentiation is influenced by indirect or direct contact with differentiated cells. Cultured adult mesenchymal stem cells showed some characteristics of synthetic state vascular smooth muscle cells (SMC). When co-cultured with vascular endothelial cells (EC) without cell contact, they exhibited abundant well-organised smooth muscle alpha-actin (alpha-actin) filaments. Direct co-culture with endothelial cells resulted in increased smooth muscle alpha-actin mRNA and protein, yet also comprehensive disruption of smooth muscle alpha-actin filament organisation. In order to assess whether these cell contact effects on mesenchymal stem cells were cell type specific, we also analysed direct co-cultures of mesenchymal stem cells with dermal fibroblasts. However, these experiments were characterised by the appearance of abundant spindle-shaped myofibroblast-like cells containing organised smooth muscle alpha-actin filaments. Thus, direct contact with distinct differentiated cells may be a critical determinant of mesenchymal stem cell fate in blood vessels and other connective tissues.  相似文献   

10.
Smooth muscle alpha-actin filaments are a defining feature of mesenchymal stem cells, and of mesenchyme-derived contractile smooth muscle cells, pericytes and myofibroblasts. Here, we show that adult bone marrow-derived mesenchymal stem cells express abundant cell surface platelet-derived growth factor receptor-alpha, having a high ratio to platelet-derived growth factor receptor-beta. Signaling through platelet-derived growth factor receptor-alpha increases smooth muscle alpha-actin filaments by activating RhoA, which results in Rho-associated kinase (ROCK)-dependent cofilin phosphorylation, enhancing smooth muscle alpha-actin filament polymerization, and also upregulates smooth muscle alpha-actin expression. In contrast, platelet-derived growth factor receptor-beta signaling strongly upregulates RhoE, which inhibits ROCK activity, promoting smooth muscle alpha-actin filament depolymerization. This study thus provides new insights into the distinct roles of platelet-derived growth factor receptor-alpha and -beta signaling in regulating the adult mesenchymal stem cell contractile cytoskeleton.  相似文献   

11.
The objective of this study was to determine the effect of phenotype on pulse pressure-induced signaling and growth of vascular smooth muscle cells in vitro. Using a perfused transcapillary culture system, cells were exposed to increases in pulsatile flow and hence pulse pressure and maintained for 72 h before cells were harvested. Cell proliferation was determined by cell number, DNA synthesis, and proliferating cell nuclear antigen expression. Mitogen-activated protein kinase (MAPK) levels were determined by immunoblot and kinase activity by phosphorylation of myelin basic protein. Cell phenotype was determined by immunoblot and immunocytofluorescence using antisera specific for the differentiation markers alpha-actin, myosin, calponin, osteopontin, and phospholamban. In cells that highly expressed these differentiation markers, there was a significant increase in cell growth in response to chronic increases in pulse pressure without a significant change in MAPK activity in these cells. In contrast, in cells that weakly expressed SMC differentiation markers, there was a significant decrease in cell growth concomitant with a significant decrease in MAPK signaling in these cells. We conclude that SMC phenotype dictates the growth response of SMC to mechanical force in vitro.  相似文献   

12.
M Mayr  C Li  Y Zou  U Huemer  Y Hu  Q Xu 《FASEB journal》2000,14(2):261-270
The present study was designed to investigate whether apoptosis occurs in early-stage vein grafts and to determine the mechanisms by which mechanical stress contributes to apoptosis in vascular smooth muscle cells (SMCs). Apoptosis in vessel walls of mouse vein grafts was confirmed by morphological changes and by terminal deoxynucleotidyl transferase-mediated dUTP-biotin nick end labeling (TUNEL). TUNEL(+) cells in vein grafts 1, 4, and 8 wk postoperatively was 13%, 29%, and 21%, respectively, and apoptosis occurred mainly in veins grafted to arteries, remaining unchanged in vein-to-vein grafts. When mouse, rat, and human arterial SMCs were cultured on a flexible membrane and subjected to cyclic strain stress, apoptosis was observed in a time- and strength-dependent manner. All three types of SMCs showed apoptotic death as confirmed by TUNEL, propidium iodide, and annexin V staining. To further study the signal pathways leading to apoptosis, activities of p38, a subfamily of mitogen-activated protein kinases (MAPKs), were determined. Mechanical stress resulted in p38 MAPK activation, reaching high levels within 8 min. SB 202190, a specific inhibitor for p38 MAPKs, prevented SMC apoptosis in response to mechanical stress. SMC lines stably transfected with a dominant negative rac, an upstream signal transducer, or overexpressing MAPK phosphatase-1, a negative regulator for MAPKs, completely inhibited mechanical stress stimulated p38 activation and abolished mechanical stress-induced apoptosis. Thus, we provide solid evidence that one of the earliest events in venous bypass grafts is apoptosis, in which mechanical stress-induced p38-MAPK activation is responsible for transducing signals leading to apoptosis.-Mayr, M., Li, C., Zou, Y., Huemer, U., Hu, Y., Xu, Q. Biomechanical stress-induced apoptosis in vein grafts involves p38 mitogen-activated protein kinases.  相似文献   

13.
Vascular smooth muscle cells (SMC) may be directly exposed to blood flow after an endothelial-denuding injury. It is not known whether direct exposure of SMC to shear stress reduces SMC turnover and contributes to the low rate of restenosis after most vascular interventions. This study examines if laminar shear stress inhibits SMC proliferation or stimulates apoptosis. Bovine aortic SMC were exposed to arterial magnitudes of laminar shear stress (11 dynes/cm(2)) for up to 24 h and compared to control SMC (0 dynes/cm(2)). SMC density was assessed by cell counting, DNA synthesis by (3)[H]-thymidine incorporation, and apoptosis by TUNEL staining. Akt, caspase, bax, and bcl-2 phosphorylation were assessed by Western blotting; caspase activity was also measured with an in vitro assay. Analysis of variance was used to compare groups. SMC exposed to laminar shear stress had a 38% decrease in cell number (n = 4, P = 0.03), 54% reduction in (3)[H]-thymidine incorporation (n = 3, P = 0.003), and 15-fold increase in TUNEL staining (n = 4, P < 0.0001). Akt phosphorylation was reduced by 67% (n = 3, P < 0.0001), whereas bax/bcl-2 phosphorylation was increased by 1.8-fold (n = 3, P = 0.01). Caspase-3 activity was increased threefold (n = 5, P = 0.03). Pretreatment of cells with ZVAD-fmk or wortmannin resulted in 42% increased cell retention (n = 3, P < 0.01) and a fourfold increase in apoptosis (n = 3, P < 0.04), respectively. Cells transduced with constitutively-active Akt had twofold decreased apoptosis (n = 3, P < 0.002). SMC exposed to laminar shear stress have decreased proliferation and increased apoptosis, mediated by the Akt pathway. These results suggest that augmentation of SMC apoptosis may be an alternative strategy to inhibit restenosis after vascular injury.  相似文献   

14.
The rate of filamentous actin (F-actin) depolymerization is proportional to the number of filaments depolarizing and changes in the rate are proportional to changes in filament number. To determine the number and length of actin filaments in polymorphonuclear leukocytes and the change in filament number and length that occurs during the increase in F-actin upon chemoattractant stimulation, the time course of cellular F-actin depolymerization in lysates of control and peptide-stimulated cells was examined. F-actin was quantified by the TRITC-labeled phalloidin staining of pelletable actin. Lysis in 1.2 M KCl and 10 microM DNase I minimized the effects of F-actin binding proteins and G-actin, respectively, on the kinetics of depolymerization. To determine filament number and length from a depolymerization time course, depolymerization kinetics must be limited by the actin monomer dissociation rate. Comparison of time courses of depolymerization in the presence (pointed ends free) or absence (barbed and pointed ends free) of cytochalasin suggested depolymerization occurred from both ends of the filament and that monomer dissociation was rate limiting. Control cells had 1.7 +/- 0.4 x 10(5) filaments with an average length of 0.29 +/- 0.09 microns. Chemo-attractant stimulation for 90 s at room temperature with 0.02 microM N-formylnorleucylleucylphenylalanine caused a twofold increase in F-actin and about a two-fold increase in the total number of actin filaments to 4.0 +/- 0.5 x 10(5) filaments with an average length of 0.27 +/- 0.07 microns. In both cases, most (approximately 80%) of the filaments were quite short (less than or equal to 0.18 micron). The length distributions of actin filaments in stimulated and control cells were similar.  相似文献   

15.
Bovine aortic smooth muscle cell (SMC) phenotype can be altered by physical forces. This has been demonstrated by cyclic strain-induced changes in proliferation and alignment. However, the intracellular coupling pathways remain ill defined. In the present study, we examined whether the p38 and S6 kinase pathway were involved in the mitogenic and morphological changes seen in SMCs exposed to cyclic strain. We seeded bovine aortic SMCs on silastic membranes that were deformed with 150-mmHg vacuum. Cyclic strain induced both alignment and proliferation of SMCs. SB202190, a specific inhibitor of p38, hindered SMC alignment, but not proliferation. Rapamycin, a specific inhibitor of the mTOR-S6 kinase pathway, attenuated strain-induced proliferation, but not alignment. Peak activation of p38 and S6 kinase was 351 +/- 76.9% at 5 min and 363 +/- 56.2% at 60 min compared with static control, respectively (P < 0.05). The results suggest that strain-induced SMC alignment is dependent on activation of p38, but not S6 kinase. Strain induced SMC proliferation is S6 kinase, but not p38 activation, dependent.  相似文献   

16.
In this study, we investigated the involvement of Akt and members of the mitogen-activated protein kinase (MAPK) superfamily, including ERK, JNK, and p38 MAPK, in gemcitabine-induced cytotoxicity in human pancreatic cancer cells. We found that gemcitabine induces apoptosis in PK-1 and PCI-43 human pancreatic cancer cell lines. Gemcitabine specifically activated p38 MAPK in a dose- and time-dependent manner. A selective p38 MAPK inhibitor, SB203580, significantly inhibited gemcitabine-induced apoptosis in both cell lines, suggesting that phosphorylation of p38 MAPK may play a key role in gemcitabine-induced apoptosis in pancreatic cancer cells. A selective JNK inhibitor, SP600125, failed to inhibit gemcitabine-induced apoptosis in both cell lines. MKK3/6, an upstream activator of p38 MAPK, was phosphorylated by gemcitabine, indicating that the MKK3/6-p38 MAPK signaling pathway is indeed involved in gemcitabine-induced apoptosis. Furthermore, gemcitabine-induced cleavage of the caspase substrate poly(ADP-ribose) polymerase was inhibited by pretreatment with SB203580, suggesting that activation of p38 MAPK by gemcitabine induces apoptosis through caspase signaling. These results together suggest that gemcitabine-induced apoptosis in human pancreatic cancer cells is mediated by the MKK3/6-p38 MAPK-caspase signaling pathway. Further, these results lead us to suggest that p38 MAPK should be investigated as a novel molecular target for human pancreatic cancer therapies.  相似文献   

17.

Background

Glutamate (Glu) is essential to central nervous system function; however excessive Glu release leads to neurodegenerative disease. Strategies to protect neurons are underdeveloped, in part due to a limited understanding of natural neuroprotective mechanisms, such as those present in the suprachiasmatic nucleus (SCN). This study tests the hypothesis that activation of ERK/MAPK provides essential protection to the SCN after exposure to excessive Glu using the SCN2.2 cells as a model.

Methodology

Immortalized SCN2.2 cells (derived from SCN) and GT1-7 cells (neurons from the neighboring hypothalamus) were treated with 10 mM Glu in the presence or absence of the ERK/MAPK inhibitor PD98059. Cell death was assessed by Live/Dead assay, MTS assay and TUNEL. Caspase 3 activity was also measured. Activation of MAPK family members was determined by immunoblot. Bcl2, neuritin and Bid mRNA (by quantitative-PCR) and protein levels (by immunoblot) were also measured.

Principal Findings

As expected Glu treatment increased caspase 3 activity and cell death in the GT1-7 cells, but Glu alone did not induce cell death or affect caspase 3 activity in the SCN2.2 cells. However, pretreatment with PD98059 increased caspase 3 activity and resulted in cell death after Glu treatment in SCN2.2 cells. This effect was dependent on NMDA receptor activation. Glu treatment in the SCN2.2 cells resulted in sustained activation of the anti-apoptotic pERK/MAPK, without affecting the pro-apoptotic p-p38/MAPK. In contrast, Glu exposure in GT1-7 cells caused an increase in p-p38/MAPK and a decrease in pERK/MAPK. Bcl2-protein increased in SCN2.2 cells following Glu treatment, but not in GT1-7 cells; bid mRNA and cleaved-Bid protein increased in GT1-7, but not SCN2.2 cells.

Conclusions

Facilitation of ERK activation and inhibition of caspase activation promotes resistance to Glu excitotoxicity in SCN2.2 cells.

Significance

Further research will explore ERK/MAPK as a key molecule in the prevention of neurodegenerative processes.  相似文献   

18.
19.
The role of p38 mitogen-activated protein kinase (MAPK) in apoptosis is a matter of debate. Here, we investigated the involvement of p38 MAPK in endothelial apoptosis induced by tumor necrosis factor alpha (TNF). We found that activation of p38 MAPK preceded activation of caspase-3, and the early phase of p38 MAPK stimulation did not depend on caspase activity, as shown by pretreatment with the caspase inhibitors z-Val-Ala-Asp(OMe)-fluoromethylketone (zVAD-fmk) and Boc-Asp(OMe)-fluoromethylketone (BAF). The p38 MAPK inhibitor SB203580 significantly attenuated TNF-induced apoptosis in endothelial cells, suggesting that p38 MAPK is essential for apoptotic signaling. Furthermore, we observed a time-dependent increase in active p38 MAPK in the mitochondrial subfraction of cells exposed to TNF. Notably, the level of Bcl-x(L) protein was reduced in cells undergoing TNF-induced apoptosis, and this reduction was prevented by treatment with SB203580. Immunoprecipitation experiments revealed p38 MAPK-dependent serine-threonine phosphorylation of Bcl-x(L) in TNF-treated cells. Exposure to lactacystin prevented both the downregulation of Bcl-x(L) and activation of caspase-3. Taken together, our results suggest that TNF-induced p38 MAPK-mediated phosphorylation of Bcl-x(L) in endothelial cells leads to degradation of Bcl-x(L) in proteasomes and subsequent induction of apoptosis.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号