首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
To assess the lethal doses of gamma radiation and corresponding apoptotic response in new established human melanoma cell lines we exposed exponentially growing cultures to 8-100 Gy gamma radiation. The apoptosis and cell survival were determined by trypan blue exclusion, terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling (TUNEL) reaction, agarose gel electrophoresis, colony forming assay, and long-term survival assay. The maximal DNA fragmentation 3 days after irradiation was observed in cultures irradiated with 20 Gy (36.9% TUNEL positive cells). The cultures irradiated with 50 and 100 Gy contained 18.7% and 16.4% TUNEL positive cells, respectively. Cultures exposed to 8 and 20 Gy gamma radiation recovered by week 3-4. Lethally irradiated (50 and 100 Gy) cultures which contained less apoptotic cells by day 3 died by week 5. A detectable increase in melanoma cell pigmentation after irradiation was also observed. The survival of human melanoma cell cultures after exposure to gamma radiation does not correlate with the level of apoptotic cells by day 3. At high radiation doses (> 50 Gy) when the radiation induced cell pigmentation is not inhibited the processes of apoptotic DNA fragmentation might be preferentially inactivated.  相似文献   

2.
In experiments with (CBA x C57BL/6)F1 mice, the effect of radiation on rosette formation between thymus macrophages (Th-MPh) and thymocytes (Thc) was studied on days 1, 4, 12, 30, and 60 following gamma irradiation with doses of 0.5, 2, 4, and 8 Gy. The influence of supernatants of thymus epithelial cells (EC) on the rosette formation was estimated. Gamma irradiation with doses of above 2 Gy was shown to cause a dose-dependent inhibition of rosette formation of Th-MPh with Thc in vitro. Recovery of rosette-forming ability of Th-MPh was observed on day 60 of the experiment. Two types of rosette-forming Th-MPh were identified: RFMPhII with low rate of binding to Thc and RFMPhII with high rate of binding to Thc. Radiation affects mainly the RFMPhII content. With radiation doses of 4 and 8 Gy no complete restoration of RFMPhI was observed on day 60. The total population of rosette-forming Th-MPh was restored on day 60 mainly due to cells with low rate of rosette formation. The EC supernatant promoted rosette formation of exposed Th-MPh with Thc. The effect was maximum at early times following irradiation of Th-MPh with a dose of 4 Gy.  相似文献   

3.
4.
Adaptive response (AR) and bystander effect are two important phenomena involved in biological responses to low doses of ionizing radiation (IR). Furthermore, there is a strong interest in better understanding the biological effects of high-LET radiation. We previously demonstrated the ability of low doses of X-rays to induce an AR to challenging heavy-ion radiation [8]. In this study, we assessed in vitro the ability of priming low doses (0.01Gy) of heavy-ion radiation to induce a similar AR to a subsequent challenging dose (1-4Gy) of high-LET IR (carbon-ion: 20 and 40keV/μm, neon-ion: 150keV/μm) in TK6, AHH-1 and NH32 cells. Our results showed that low doses of high-LET radiation can induce an AR characterized by lower mutation frequencies at hypoxanthine-guanine phosphoribosyl transferase locus and faster DNA repair kinetics, in cells expressing p53.  相似文献   

5.
A G Savinov 《Radiobiologiia》1986,26(4):482-487
Opposite changes occur in the intensity of UV-fluorescence (UVF) in irradiated (0.1 Gy and 5.0 Gy) HeLa cells. The radiometric study has demonstrated that there is a correlation between the number of tryptophan-containing proteins and UVF intensity in nonirradiated and irradiated (5.0 Gy) cells during culture growth. Such a correlation was absent in cells exposed to 0.1 Gy radiation. Low radiation doses (0.1 Gy) have maximum action on cytoplasm membrane fluorescence. Low-level radiation changes the intensity of the ANS probe fluorescence connected with cell membranes, and the intensity of the cell protein UVF. High radiation doses increase and low doses decrease the probe fluorescence.  相似文献   

6.
An increase of resistance to radiation damage of human lymphocytes previously exposed to low doses of ionizing radiation from incorporated tritiated thymidine was observed by G. Olivieri et al. in 1984. The phenomenon was named adaptive response and its occurrence was reported by others for many animal and plant cells. In this research we studied the adaptive response of spleen colony formation at different time after previous irradiation of mice with low doses of 60Co gamma rays. Our results suggest that the pretreatments protect spleen colony-formatting units (CFU-S) from the second damaging radiation dose of 1.5 Gy during long time (as many as one month).  相似文献   

7.
Individuals can be exposed to high doses (more than 5Gy) during radiation accidents. It is, of course, helpful to the physician to have biological indicators also for such high doses. The problem with most cytogenetic indicators is, that the response levels off at doses starting around 5-7Gy of low LET radiation and that the dose-response curve even declines after doses exceeding about 10Gy. Thus, it may be difficult to decide, whether the dose was, for example, 8 or 14Gy. We studied how the micronucleus assay can be used to give information also in the high dose range. It turned out that micronucleus frequency itself cannot be used for the estimation of doses exceeding about 5-7Gy. There are, however, at least three other endpoints that can be determined in the cytochalasin B assay that can assist the decision in the high dose range: (1) the number of mononucleated cells; (2) the ratio of tri- to tetranucleated cells; (3) the average micronucleus frequency in micronucleus positive binucleated cells.  相似文献   

8.
Energetic protons are the most abundant particle type in space and can pose serious health risks to astronauts during long-duration missions. The health effects of proton exposure are also a concern for cancer patients undergoing radiation treatment with accelerated protons. To investigate the damage induced by energetic protons in vivo to radiosensitive organs, 6-week-old BALB/c male mice were subjected to 250 MeV proton radiation at whole-body doses of 0.1, 1, and 2 Gy. The gastrointestinal (GI) tract of each exposed animal was dissected 4 h post-irradiation, and the isolated small intestinal tissue was analyzed for histopathological and gene expression changes. Histopathologic observation of the tissue using standard hematoxylin and eosin (H&E) staining methods to screen for morphologic changes showed a marked increase in apoptotic lesions for even the lowest dose of 0.1 Gy, similar to X- or γ rays. The percentage of apoptotic cells increased dose-dependently, but the dose response appeared supralinear, indicating hypersensitivity at low doses. A significant decrease in surviving crypts and mucosal surface area, as well as in cell proliferation, was also observed in irradiated mice. Gene expression analysis of 84 genes involved in the apoptotic process showed that most of the genes affected by protons were common between the low (0.1 Gy) and high (1 and 2 Gy) doses. However, the genes that were distinctively responsive to the low or high doses suggest that high doses of protons may cause apoptosis in the small intestine by direct damage to the DNA, whereas low doses of protons may trigger apoptosis through a different stress response mechanism.  相似文献   

9.
It is believed that any dose of ionizing radiation may damage cells and that the mutated cells could develop into cancer cells. Additionally, results of research performed over the past century on the effects of low doses of ionizing radiation on biological organisms show beneficial health effects, called hormesis. Much less is known about the cellular response to low doses of ionizing radiation, such as those typical for medical diagnostic procedures, normal occupational exposures or cosmic-ray exposures at flight altitudes. Extrapolating from the effects observed at higher doses to predict changes in cells after low-dose exposure is problematic. We examined the biological effects of low doses (0.01–0.3 Gy) of γ-radiation on the membrane characteristics of erythrocytes of albino rats and carried out osmotic fragility tests and Fourier transform infrared spectroscopy (FTIR). Our results indicate that the lowest three doses in the investigated radiation range, i.e., 0.01, 0.025 and 0.05 Gy, resulted in positive effects on the erythrocyte membranes, while a dose of 0.1 Gy appeared to represent the limiting threshold dose of those positive effects. Doses higher than 0.1 Gy were associated with the denaturation of erythrocyte proteins.  相似文献   

10.
DNA damage responses at low radiation doses   总被引:2,自引:0,他引:2  
Increased cell killing after exposure to low acute doses of X rays (0-0.5 Gy) has been demonstrated in cells of a number of human tumor cell lines. The mechanisms underlying this effect have been assumed to be related to a threshold dose above which DNA repair efficiency or fidelity increases. We have used cells of two radioresistant human tumor cell lines, one that shows increased sensitivity to low radiation doses (T98G) and one that does not (U373), to investigate the DNA damage response at low doses in detail and to establish whether there is a discontinuous dose response or threshold in activation of any important mediators of this response. In the two cell lines studied, we found a sensitive, linear dose response in early signaling and transduction pathways between doses of 0.1 and 2 Gy with no evidence of a threshold dose. We demonstrate that ATM-dependent signaling events to downstream targets including TP53, CHK1 and CHK2 occur after doses as low as 0.2 Gy and that these events promote an effective damage response. Using chemical inhibition of specific DNA repair enzymes, we show that inhibition of DNA-PK-dependent end joining has relatively little effect at low (<1 Gy) doses in hyper-radiosensitive cells and that at these doses the influence of RAD51-mediated repair events may increase, based on high levels of RAD51/BRCA2 repair foci. These data do not support a threshold model for activation of DNA repair in hyper-radiosensitive cells but do suggest that the balance of repair enzyme activity may change at low doses.  相似文献   

11.
Partial desiccation treatment was applied to improve plant regeneration response in irradiated in vitro cultures. Embryogenic callus cultures of sugarcane cv. Co-671 were exposed to different doses of gamma radiation (0–80 Gy) and radiation effect was evaluated in terms of post-irradiation callus recovery, growth and regeneration of plants. Proliferative capacity of cultures was inversely correlated with radiation dose as the percentage surviving cultures or white proliferating clumps (WPC) decreased as the radiation dose increased up to 80 Gy. LD50 was found to be around 20–30 Gy and at higher doses, poor regeneration frequency was observed after 4–6 weeks of post-irradiation culture. To stimulate regeneration response, irradiated cultures were subjected to partial desiccation for 6 h and the treatment resulted in enhanced plant regeneration response. The study suggests that partial desiccation treatment can be useful in stimulating regeneration response of irradiated in vitro cultures.  相似文献   

12.
The response of human erythrocytes to X-rays in the dose range from 40 Gy to 600 Gy was determined on the basis of changes in the activities of AChE and ATPase. The Na,K-ATPase activity increased above the control value at doses below 200 Gy, while at the doses higher than 200 Gy, it decreased, reaching 96% of the control value at a dose of 600 Gy. In the range of doses up to 200 Gy, the AChE activity, expressed as Vmax, did not change. At higher doses, it fell drastically, reaching 33% of the control value at a dose of 600 Gy. Simultaneously, the enzyme substrate affinity decreased at 200 Gy, and then started to increase at lower values of Vmax. The obtained results suggest that under appropriate conditions, low doses of radiation may have the opposite effects to high doses.  相似文献   

13.
Acute emesis response to harmful doses of X-rays on frogs (Rana porosa porosa) was examined. Results showed that the number of radioemesis events following exposure to 0.85 Gy was slightly higher than in the sham control animals. The increase in emesis action became more pronounced when the total dose of radiation was raised to 2.5 Gy. Only 1 frog out of a total of 12 did not show vomiting following radiation, while no response was observed in sham control animals. Note that animals in which the low dose rate of radiation was applied to whole body did not display any changes in the emesis response relative to control animals. The present studies, and those by others, showed that a brief dose of X-rays prior to a second exposure to a sub-lethal dose might induce a tolerance to radiation. An additional experiment was conducted to examine whether a small conditioning dose could induce a depression of radioemesis (tolerance) following an exposure to high dose X-ray. With prior exposure to 0.3 Gy, only 1 frog out of a total of 5 frogs vomited as a result of radiation exposure. Suppression of the emetic response became significant when the pre-radiation dose was decreased to 0.1 Gy. On the contrary, increasing the small conditioning dose to 0.5 Gy resulted in a remarkable rise of radiation-induced emesis. This results indicate that exposure to the smaller dose of X-rays elicits a tolerance effect to toxic dose level of radiation.  相似文献   

14.
Friend erythroleukemia cells require high doses (15 Gy) of ionizing radiation to display a reduced rate of proliferation and an increased number of dead cells. Since ionizing radiation can activate several signaling pathways at the plasma membrane which can lead to the nuclear translocation of a number of proteins, we looked at the intranuclear signaling system activated by Protein Kinases C, being this family of enzymes involved in the regulation of cell growth and death. Our results show an early and dose-dependent increased activity of zeta and epsilon isoforms, although PKC zeta is the only isoform significantly active and translocated into the nuclear compartment upon low (1.5 Gy) and high (15 Gy) radiation doses. These observations are concomitant and consistent with an increase in the anti-apoptotic protein Bcl-2 level upon both radiation doses. Our results point at the involvement of the PKC pathway in the survival response to ionizing radiation of this peculiar cell line, offering PKC zeta for consideration as a possible target of pharmacological treatments aimed at amplifying the effect of such a genotoxic agent.  相似文献   

15.
16.
Effect of low-dose radiation on repair of DNA and chromosome damage   总被引:1,自引:0,他引:1  
In this report results of studies on the effect of different doses of low LET (linear energy transfer) radiations on the unscheduled DNA synthesis (UDS) and DNA polymerase activity as well as the induction of adaptive response in bone marrow cells (BMC) by low dose radiation were presented. It was found that whole-body irradiation (WBI) with X-ray doses above 0.5 Gy caused a dose-dependent depression of both UD5 and DNA polymerase activity, while low dose radiation below 250 mGy could stimulate the DNA repair synthesis and the enzyme activity. WBI of mice with low doses of X-rays in the range of 2-100 mGy at a dose rate of 57.3 mGy per minute induced an adaptive response in the BMC expressed as a reduction of chromosome aberrations following a second exposure to a larger dose (0.65 mGy). It was demonstrated that the magnitude of the adaptive response seemed to be inversely related to the induction dose. The possibility of induction of adaptive response in GO phase of the cell cycle and the possibility of a second induction of the adaptive response were discussed.  相似文献   

17.
In our previous study, using the micronucleus (MN) assay, a hyper-radiosensitivity (HRS)-like phenomenon was observed after single low doses for fibroblasts from two and keratinocytes from four of the 40 patients studied. In this paper, we report the response of primary keratinocytes from 23 and fibroblasts from 21 of these cancer patients to multiple low-dose irradiations and answer the question regarding whether the patients with an HRS-like response after single low doses also demonstrate chromosomal hypersensitivity after multiple low doses. The cells were irradiated with three doses of 0.25 Gy separated by 4-h intervals, and MN induction was compared with that after the same total dose given as a single fraction of 0.75 Gy. Similarly, the effect of three doses of 0.5 Gy was compared with that of a single dose of 1.5 Gy. For fibroblasts from two and keratinocytes from four patients who demonstrated a single-dose HRS-like response, a significant inverse effect of fractionation (greater MN induction after three doses of 0.25 Gy than after a single dose of 0.75 Gy) was observed, which suggests a repeated hypersensitive response after each dose of 0.25 Gy. Such an effect was not seen for the cells from 19 patients who were single-dose HRS-like negative. In conclusion, an inverse fractionation effect for MN induction that was observed in fibroblasts from two and keratinocytes from four patients after three doses of 0.25 Gy (but not 3 x 0.5 Gy) reflects the chromosomal hyper-radiosensitivity seen in the same patients in response to single low doses.  相似文献   

18.
Apoptosis in HeLa Hep2 cells is induced by low-dose,low-dose-rate radiation   总被引:5,自引:0,他引:5  
Radioimmunotherapy with radiolabeled antibodies may cause inhibition of the growth of epithelial tumors, despite low total radiation doses and comparatively low radiosensitivity of epithelial tumor cells. The induction of apoptosis by low-dose radiation, such as delivered in radioimmunotherapy, was investigated in vitro in human HeLa Hep2 carcinoma cells. The cultured cells were exposed to defined radiation doses from a (60)Co radiation therapy source. The radiation source delivered 0.80 +/- 0.032 (mean +/- SD) Gy/min and the cells were given total doses of 1, 2, 5, 10 and 15 Gy. Using fluorescein-labeled Annexin V, followed by flow cytometry and DNA ladder analysis, apoptotic cells were detected and quantified. Radiation doses below 2 Gy did not cause any significant increase in apoptosis. Compared to control cells, apoptosis was pronounced after 5-10 Gy irradiation and was correlated to the radiation dose, with up to 42 +/- 3.5% of the cells examined displaying apoptosis. Clonogenic assays confirmed significantly decreased viability of the cells in the interval 2 to 10 Gy with low-dose-rate radiation, 60 +/- 2% compared to 2 +/- 2%. Lethal effects on the tumor cells were also evaluated by an assay of the cytotoxic effects of the release of (51)Cr. Significant cytotoxicity, with up to 64 +/- 6% dead cells, was observed at 5 Gy. Similar results were obtained when the dose rate was reduced to 0.072 +/- 0.003 Gy/min (mean +/- SD). In the case of the (137)Cs source, the dose rate could be reduced to 0.045 Gy/h, a level comparable to radioimmunotherapy, which induced significant apoptosis, and was most pronounced at 72-168 h postirradiation. It can be concluded that in vitro low-dose and low-dose-rate radiation induces apoptosis in epithelial HeLa Hep2 cells and thus may explain a mechanism by which pronounced inhibition of growth of HeLa Hep2 tumors at doses used in radioimmunotherapy has been obtained previously.  相似文献   

19.
The biological effects of high charge and energy (HZE) particle exposures are of interest in space radiation protection of astronauts and cosmonauts, and estimating secondary cancer risks for patients undergoing Hadron therapy for primary cancers. The large number of particles types and energies that makeup primary or secondary radiation in HZE particle exposures precludes tumor induction studies in animal models for all but a few particle types and energies, thus leading to the use of surrogate endpoints to investigate the details of the radiation quality dependence of relative biological effectiveness (RBE) factors. In this report we make detailed RBE predictions of the charge number and energy dependence of RBE’s using a parametric track structure model to represent experimental results for the low dose response for chromosomal exchanges in normal human lymphocyte and fibroblast cells with comparison to published data for neoplastic transformation and gene mutation. RBE’s are evaluated against acute doses of γ-rays for doses near 1 Gy. Models that assume linear or non-targeted effects at low dose are considered. Modest values of RBE (<10) are found for simple exchanges using a linear dose response model, however in the non-targeted effects model for fibroblast cells large RBE values (>10) are predicted at low doses <0.1 Gy. The radiation quality dependence of RBE’s against the effects of acute doses γ-rays found for neoplastic transformation and gene mutation studies are similar to those found for simple exchanges if a linear response is assumed at low HZE particle doses. Comparisons of the resulting model parameters to those used in the NASA radiation quality factor function are discussed.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号