首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Transposition of ampicillin Tn1 transposon is repressed under normal conditions and occurs with low frequency (10(-4) per cell). Treatment of Escherichia coli cells with 22 c+mytomycin C, nitrosoguanidine and UV light induced transposition of Tn1 into different replicons. The degree of induction depended upon the strain of bacteria and the replicon which the transposon was inserted into. Mutation recA did not influence spontaneous translocation of the transposon but fully repressed induction of transposition during the period of mutagen treatment. In the present paper, the connection of inducible transposition process with the recA and lexA inducible functions of E. coli is discussed.  相似文献   

2.
Excision of the prokaryotic transposon Tn10 is a host-mediated process that occurs in the absence of recA function or any transposon-encoded functions. To determine which host functions might play a role in transposon excision, we have isolated 40 mutants of E. coli K12, designated tex, which increase the frequency of Tn10 precise excision. Three of these mutations (texA) have been shown to qualitatively alter RecBC function. We show that 21 additional tex mutations with a mutator phenotype map to five genes previously identified as components of a methylation-directed pathway for repair of base pair mismatches: uvrD, mutH, mutL, mutS and dam. Previously identified alleles of these genes also have a Tex phenotype.--Several other E. coli mutations affecting related functions have been analyzed for their effects on Tn10 excision. Other mutations affecting the frequency of spontaneous mutations (mutT, polA, ung), different excision repair pathways (uvrA, uvrB) or the state of DNA methylation (dcm) have no effect on Tn10 excision. Mutations ssb-113 and mutD5, however, do increase Tn10 excision.--The products of the mismatch correction genes probably function in a coordinated way during DNA repair in vivo. Thus, mutations in these genes might also enhance transposon excision by a single general mechanism. Alternatively, since mutations in each gene have qualitatively and quantitatively different effects on transposon excision, defects in different mismatch repair genes may enhance excision by different mechanisms.  相似文献   

3.
We isolated a new recF mutant of Escherichia coli K-12 by insertion of transposon Tn5 into the recF gene. This recF400::Tn5 allele displayed the same phenotypic characteristics as the classic recF143 mutation. By using Mu d(Ap lac) fusions, the induction of nine SOS genes, including recA, umuC, dinA, dinB, dinD, dinF, recN, and sulA, by UV irradiation and nalidixic acid was examined. Induction of eight genes by the two agents was impaired by recF400::Tn5 to different extents. The ninth fused SOS gene, dinF, was no longer inducible by UV when combined with recF400::Tn5. The generally impaired SOS response in recF strains did not result from weak induction of recA protein synthesis, since a recA operator-constitutive mutation did not alleviate the inhibitory effect of the recF mutation. The results suggest that recF plays a regulatory role in the SOS response. It is proposed that this role is to optimize the signal usage by recA protein to become a protease.  相似文献   

4.
Postexcision transposition of the transposon Tn10 in Escherichia coli K12   总被引:2,自引:0,他引:2  
An experimental analysis of the fate of transposon Tn10 after excision from a proA::Tn10 site localized on the plasmid F' leads to the conclusions: 1. The precise excision is a progressive process. Its probability is estimated per time unit. 2. An excised Tn10 is always integrated into a different genetic locus. 2. An excised Tn10 is always integrated into a different genetic locus. 3. The kinetics of postexcision transposition are sometimes very slow. The excised transposon is inherited in one cell line in spite of cell multiplication. 4. The processes of excision and secondary insertion have no absolute requirement for the recA+ genotype but they are strongly enhanced in recA+ cells. 5. The kinetics of postexcision transposition are strongly dependent on the genetic site from which the transposon was excised. 6. The probability of postexcision transposition is fully determined by the probability of excision and depends on the genotype of the host and many other factors.  相似文献   

5.
Using site-specific mutagenesis in vitro we constructed a genetic system to detect mutants with altered rates of deletion formation between short repeated sequences in Escherichia coli. After in vivo mutagenesis with chemical mutagens and transposons, the system allowed the identification of mutants with either increased or decreased deletion frequencies. One mutational locus, termed mutR, that results in an increase in deletion formation, was studied in detail. The mutR gene maps at 38.5 min on the E. coli genetic map. Since the precise excision of many transposable elements is also mediated at short repeated sequences, we investigated the effects of the mutant alleles, as well as recA, on precise excision of the transposon Tn9. Neither mutR nor recA affect precise excision of the transposon Tn9, from three different insertions in lacI, whereas these alleles do affect other spontaneous deletions in the same system. These results indicate that deletion events leading to precise excision occur principally via a different pathway than other random spontaneous deletions. It is suggested that, whereas precise excision occurs predominantly via a pathway involving replication enzymes (for instance template strand slippage), deletions on an F'factor are stimulated by recombination enzymes.  相似文献   

6.
To localize the insertion sites for Tn7-like transposons Tn1824, Tn1825 and Tn1826 the EcoRI-cleaved fragments of E. coli recA+ and recA- strains chromosome carrying the transposons were hybridized. It was shown that transposition of Tn7-like elements takes place in the strictly defined region of E. coli chromosome, like it had been previously described for transposon Tn7.  相似文献   

7.
In order to elucidate the function of the IS1 insA gene derivatives of plasmid pUC19::Tn9' with insertions of synthetic oligonucleotides were obtained. The latter are equal or multiple of 9 b.p. in length and are located in the Pst1 site within each of the two IS1 copies of the Tn9' transposon. The insertions of the nine base oligonucleotides code for the neutral amino acids and do not shift the reading frame. One of the mutant transposon obtained - Tn9'/X was studied on the ability to form simple insertions and plasmid cointegrates. For this purpose the pUC19 derivatives carrying the wild type and mutant transposon were mobilized by conjugative plasmid pRP3.1. It was found that the damage of the insA gene does not influence the ability of transposon to form simple insertions and plasmid cointegrates in both recA - and rec+ cells of E. coli. However, the frequency of the cointegrate formation in the subsequent transposition of the mutant transposon from pRP3.1::Tn9'/X to pBR322 was by 10-20 times lower in comparison to the wild type transposon. Instable (dissociating) Tn9'/X-mediated plasmid cointegrates formed by interaction pUC19::Tn9'/X and pRP3.1 were obtained. It was shown that in the E. coli recA-cells such cointegrates dissociate, as a rule, "correctly", i.e. they segregate mainly plasmids of types pUC19::Tn9'/X and pUC19::IS1/X. The data obtained correspond with the notion that the gene insA product is not essential for transposition, but is, possibly, involved in the formation of the IS1-generated deletions.  相似文献   

8.
9.
Tn5 insertion mutations in the recN gene, and in what appears to be a new RecF pathway gene designated recO and mapping at approximately 55.4 min on the standard genetic map, were isolated by screening Tn5 insertion mutations that cotransduced with tyrA. The recO1504::Tn5 mutation decreased the frequency of recombination during Hfr-mediated crosses and increased the susceptibility to killing by UV irradiation and mitomycin C when present in a recB recC sbcB background, but only increased the sensitivity to killing by UV irradiation when present in an otherwise Rec+ background. The effects of these and other RecF pathway mutations on plasmid recombination were tested. Mutations in the recJ, recO, and ssb genes, when present in otherwise Rec+ E. coli strains, decreased the frequency of plasmid recombination, whereas the lexA3, recAo281, recN, and ruv mutations had no effect on plasmid recombination. Tn5 insertion mutations in the lexA gene increased the frequency of plasmid recombination. These data indicate that plasmid recombination events in wild-type Escherichia coli strains are catalyzed by a recombination pathway that is related to the RecF recombination pathway and that some component of this pathway besides the recA gene product is regulated by the lexA gene product.  相似文献   

10.
The conjugative transposon Tn916 (15 kilobases), originally identified in Streptococcus faecalis DS16, has been cloned as an intact element on the pBR322-derived vector pGL101 in Escherichia coli. The EcoRI F' (EcoRI F::Tn916) fragment of pAM211 (pAD1::Tn916) was cloned into the single EcoRI site of pGL101 to form the chimera, pAM120, by selecting for the expression of Tn916-encoded tetracycline resistance (Tcr). Interestingly, in the absence of continued selection for Tcr, Tn916 excised from pAM120 at high frequency. This excision event resulted in a plasmid species consisting of the pGL101 vector and a 2.7-kilobase restriction fragment comigrating with the EcoRI F fragment of pAD1 during agarose gel electrophoresis. Filter blot hybridization experiments showed the 2.7-kilobase fragment generated as a result of Tn916 excision to be homologous with the EcoRI F fragment of pAD1. Analogous results were obtained with another chimera, pAM170, generated by ligating the EcoRI D' (EcoRI D::Tn916) fragment of pAM210 (pAD1::Tn916) to EcoRI-digested pGL101. Comparison of the AluI and RsaI cleavage patterns of the EcoRI F fragment isolated after Tn916 excision with those from an EcoRI F fragment derived from pAD1 failed to detect any difference in the two fragments: data in support of a precise Tn916 excision event in E. coli. Subcloning experiments showed that an intact transposon was required for Tn916 excision and located the Tcr determinant near the single HindIII site on Tn916. Although excision occurred with high frequency in E. coli, Tn916 insertion into the E. coli chromosome was a much rarer event. Tcr transformants were not obtained when pAM120 DNA was used to transform a polA1 strain, E. coli C2368.  相似文献   

11.
The affect of mutations in chromosomal genes determining the realization of RecBC and RecF pathways of recombination in E. coli K12 on the frequency of transposon Tn5 precise excision from the genome of the conjugative plasmid pNM1 has been demonstrated. The pNM1 plasmid is a derivative of R100.1 and differs from the latter in the presence of Tn5 inactivating the tet gene of transposon Tn10.  相似文献   

12.
UV irradiation induced the precise excision of Tn10 inserted in met, trp or srl in a Salmonella typhimurium strain; mitomycin C was also found to induce the frequency of precise excision of Tn10 from srl or met. Precise excision of Tn10 was not increased by either UV or mitomycin C in a recA mutant. Similarly, a recA mutant derived from a uvrD strain showed a drastic reduction in the high spontaneous levels of precise excision of Tn10 of this strain. These results indicate that recA is involved in the increased precise excision of Tn10. In contrast to point mutations excision of Tn10 was found to be UV inducible in a top mutant.  相似文献   

13.
Interspecific complementation of an Escherichia coli recA mutant was used to identify recombinant plasmids within a genomic cosmid library derived from Neisseria gonorrhoeae that carry the gonococcal recA gene. These plasmids complement the E. coli recA mutation in both homologous recombination functions and resistance to DNA damaging agents. Subcloning, deletion mapping, and transposon Tn5 mutagenesis were used to localize the gonococcal gene responsible for suppression of the E. coli RecA- phenotype. Defined mutations in and near the cloned gonococcal recA gene were constructed in vitro and concurrently associated with a selectable genetic marker for N. gonorrhoeae and the mutated alleles were then reintroduced into the gonococcal chromosome by transformation-mediated marker rescue. This work resulted in the construction of two isogenic strains of N. gonorrhoeae, one of which expresses a reduced proficiency in homologous recombination activity and DNA repair function while the other displays an absolute deficiency in these capacities. These gonococcal mutants behaved similarly to recA mutants of other procaryotic species and displayed phenotypes consistent with the data obtained by heterospecific complementation in an E. coli recA host. The functional activities of the recA gene products of N. gonorrhoeae and E. coli appear to be highly conserved.  相似文献   

14.
Interspecific complementation of an Escherichia coli recA mutant with a Legionella pneumophila genomic library was used to identify a recombinant plasmid encoding the L. pneumophila recA gene. Recombinant E. coli strains harbouring the L. pneumophila recA gene were isolated by replica-plating bacterial colonies on medium containing methyl methanesulphonate (MMS). MMS-resistant clones were identified as encoding the L. pneumophila recA analogue by their ability to protect E. coli HB101 from UV exposure and promote homologous recombination. Subcloning of selected restriction fragments and Tn5 mutagenesis localized the recA gene to a 1.7 kb Bg/II-EcoRI fragment. Analysis of minicell preparations harbouring a 1.9 kb EcoRI fragment containing the recA coding segment revealed a single 37.5 kDa protein. Insertional inactivation of the cloned recA gene by Tn5 resulted in the disappearance of the 37.5 kDa protein, concomitant with the loss of RecA function. The L. pneumophila recA gene product did not promote induction of a lambda lysogen; instead, the presence of the heterologous recA gene caused a significant reduction in spontaneous and mitomycin-C-induced prophage induction in recA+ and recA E. coli backgrounds. Despite the lack of significant genetic homology between the L. pneumophila recA gene and the E. coli counterpart, the L. pneumophila RecA protein was nearly identical to that of E. coli in molecular mass, and the two proteins showed antigenic cross-reactivity. Western blot analysis of UV-treated L. pneumophila revealed a significant increase in RecA antigen in irradiated versus control cells, suggesting that the L. pneumophila recA gene is regulated in a manner similar to that of E. coli recA.  相似文献   

15.
The number of exconjugants having the transposon Tn5 excised precisely during the crosses of the Escherichia coli proA::Tn5 donor with the recipients F- rec+ or F- recA441 (tif) was 20-30 times higher for the crosses involving the latter recipient. The high recombinogenic activity is characteristic of the tif recipient. Precise excision from a tandem duplication is more efficient than from nonduplicated region of the genome. It is four orders higher, if a transposon is localized in an arm of a duplication. The effect is recA-dependent. The presented data permit us to suggest the participation of RecA protein (its synaptic function) in the formation of the intermediate "stem-loop" structure. The latter is predicted by the three mechanisms of transposon excision: "slippage", "correctional" and "recombinational". The latter two mechanisms were formulated in the paper. The experimental proof of the postexcision transposition presented in the paper, is a good support to the version of "recombinational" excision.  相似文献   

16.
Nagel R  Chan A 《Mutation research》2000,459(4):275-284
The precise excision of transposon Tn10 and a mini-Tn10 derivative, inserted in the gal or lac operons, was studied in dnaB252 and dnaE486 temperature-sensitive mutants of Escherichia coli. dnaB codes for a DNA replication helicase and dnaE for the alpha subunit of DNA polymerase III. Mutations in these genes were found to enhance, at the permissive temperature, the precise excision of both genetic elements. The increase factor was much more pronounced for the dnaB252 mutant with the transposons inserted in gal. The stimulated excision was only partially affected by a recA null mutation but was significantly reduced by introduction of recF null or ruvA mutations. A model involving template switching of the polymerase between the direct repeats flanking the transposons, on the same strand or between sister strands, could account for the observed results.  相似文献   

17.
HFETn5, HFETn9 and LFETn9 mutants of Escherichia coli K-12 have been isolated. The frequency of Tn5 precise excision from the chromosomal lac operon is increased 3-660-fold in nine HFETn5 mutants. The majority of these mutations have no influence on the efficiency of precise excision of transposon Tn9, though hfeTn5-04 and hfeTn5-06 mutations decrease excision efficiency 2-13-fold. The Tn9 transposon is excised in HFETn9 mutant about 20-fold more efficiently than in the wild type strain. This mutation does not stimulate excision of Tn5 and Tn10. LfeTn9 mutation decreases excision frequency of Tn9 11-17-fold, but has no effect on Tn5 excision and increases that of Tn10 about 20-fold. The differences in genetic control and mechanisms of excision of the transposons with long and short inverted repeats are discussed.  相似文献   

18.
Abstract The generalized transducing phage P1 grew well on heterozygous Escherichia coli carrying recA srlC 300::Tn 10 on the chromosome and recA + on a pBR322-derived plasmid. Because of the close linkage of Tn 10 to recA mutations, including recA 1, recA 13, recA 56, recA deletion and recA allele of E. coli BNG30, the latter can be moved to other strains in transductional crosses for selective resistance to tetracycline.  相似文献   

19.
The availability of a technique for site-directed mutagenesis by gene replacement provides a powerful tool for genetic analysis in any bacterial species. We report here a general technique for gene replacement in Pseudomonas aeruginosa. Genes on fragments of cloned P. aeruginosa DNA, altered by transposon mutagenesis, can be transduced into a recipient strain and can replace homologous genes in the P. aeruginosa genome. In this study we applied this technique to the construction of recA mutants of P. aeruginosa. A cloned segment of P. aeruginosa FRD1 DNA was isolated which encoded a protein analogous to the recA gene product of Escherichia coli. The P. aeruginosa recA gene was able to complement several defects associated with recA mutation in E. coli. Transposon Tn1 and Tn501 insertions in the cloned recA gene of P. aeruginosa were used to generate chromosomal recA mutants by gene replacement. These recA strains of P. aeruginosa were more sensitive to UV irradiation and methyl methane sulfonate and showed reduced recombination proficiency compared with the wild type. Also examined was the effect of recA mutations on the expression of alginate, a virulence trait. Alginate is a capsulelike polysaccharide associated with certain pulmonary infections, and its expression is typically unstable. The genetic mechanism responsible for the instability of alginate biosynthesis was shown to be recA independent.  相似文献   

20.
The nitrogen fixation of Lignobacter K17 is plasmid mediated. Nif plasmid was transferred from Lignobacter to other bacterial species and the transposon Tn9 was inserted into it. The molecular weight of this plasmid designated pUCS101, is of 19.8 Mdal. In this study we constructed in vitro a hybrid plasmid (pUCS110) by ligating HindIII digests of pUCS101 nif:: Tn9 and of RP4. Next it was proved that pUCS110 is able to complement the total deletion of the nif region in Klebsiella pneumoniae. The 50 Mdal plasmid pUCS110 was not maintained stably in Escherichia coli recA+ as in E. coli recA-. After being transferred to K. pneumoniae, pUCS110 showed a tendency to generate plasmids of various size from 2.8 to 78 Mdal. Bacteria harbouring plasmids of various size classes were more resistant to chloramphenicol than K. pneumoniae (pUCS110). Altered cleavage patterns were found in derivatives of pUCS110. The obtained results suggest that translocation of the transposon Tn9 can be responsible for the instability of pUCS110.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号