首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
The cardiac neural crest (CNC) plays a central role in development of the thymus gland and cardiovascular system. Through morphological and histological characterization of embryos homozygous for the Del(7)Tyr(c-112K) and Del(7)Tyr(c-3H) albino deletions, we identified abnormalities that are consistent with aberrant development of tissues requiring CNC contributions. The defects include incompletely penetrant heart and great vessel patterning defects and hypoplastic thymus glands. The CNC phenotype is complemented by the partially overlapping deletion Del(7)Tyr(c-23DVT). Combined, these results suggest that a functional region necessary for development of CNC derived tissues is located between the Del(7)Tyr(c-23DVT) and Del(7)Tyr(c-112K) distal deletion breakpoints. This interval encompasses a functional region previously identified as important for juvenile survival (juvenile development and fertility, jdf). Using deletion mapping, we localized the Frizzled4 (Fzd4) gene to the jdf/thymus and cardiac development intervals.  相似文献   

2.
V S Baranov 《Genetika》1985,21(10):1685-1692
Developmental profiles of mouse embryos with deletions, duplications of nullisomy for the proximal part AB of chromosome 17, including genes of the T-t complex, were studied in mice with marker translocations Rb (16.17)7Bnr or T(16;17)43H and heterozygous for lethal t12 mutation. The embryos t12t12 and t12t12-(Dp17CDE; Dl16) were shown to be eliminated at the morula stage; embryos t12+, t12+ + or t12t12+ survive during preimplantation and early postimplantation stages: t12 embryos (hemizygous for all genes of the 17AB region, including all t-alleles) have quite normal cleavage, blastulation and implantation, but die soon thereafter. The embryos with nullisomy 17AB combined with deletion 17CDE survive up to the morula stage. These data are in line with previously proposed hypothetical mechanism for mutual activation of homologous chromosomes and their segments during initial stages of embryogenesis in mice. The system of marker chromosomes Rb7Bnr and T43H in combination with various alleles of the T complex might be recommended as a useful tool in analysis of primary developmental effects of different t-alleles in mice.  相似文献   

3.
4.
Although the occurrence of bladder cancer is common, the molecular events underlying the pathogenesis of this cancer remain ill-defined. A loss of heterozygosity (LOH) at specific chromosomal loci may predispose individuals to the development of bladder cancer but this has not been examined in detail. Furthermore, the role that deletion or inactivation of putative tumour suppressor genes might play in the genesis of bladder cancer has not been established. In this study, allelic deletion analysis on the short arm of chromosome 17 of patients with primary bladder tumours failed to show deletion at 17p13 (0/7), a region known to contain the p53 tumour suppressor gene. Chromosome 11p15 showed allelic deletion at the IGF2 locus (2/7: 29%) and the PTH locus (1/11: 9%). However, no deletion was observed at the CALCA locus (0/6). LOH at 11p13, a region containing the Wilm's tumour suppressor gene (WT1), was also studied. Analysis of LOH at 11p13 showed deletion at the CAT locus (13/18: 72%), the J/D11S414 locus (5/15: 33%), the WT1 locus (7/14: 50%) and the FSHB locus (6/16: 38%). The significance of these findings is discussed.  相似文献   

5.
Wu M  Rinchik EM  Johnson DK 《Genomics》2000,67(2):228-231
l71Rl, a locus that maps just proximal to the pink-eyed dilution (p) locus in mouse chromosome 7, was initially identified as being required for early post-implantation survival. We define further the null phenotype of l71Rl as peri-implantation lethal, with homozygous mutant embryos degenerating between embryonic day 4.5 (E4.5) and E5. 5. We constructed an integrated deletion/physical map covering a 1. 82-Mb chromosomal segment extending proximally from p. This map defines the minimum critical interval for l71Rl as an 80- to 300-kb region. This sequence-ready deletion/physical map should enable the cloning and characterization of the l71Rl gene(s).  相似文献   

6.
Chromosome deletion complexes in model organisms serve as valuable genetic tools for the functional and physical annotation of complex genomes. Among their many roles, deletions can serve as mapping tools for simple or quantitative trait loci (QTLs), genetic reagents for regional mutagenesis experiments, and, in the case of mice, models of human contiguous gene deletion syndromes. Deletions also are uniquely suited for identifying regions of the genome containing haploinsufficient or imprinted loci. Here we describe the creation of new deletions at the proximal end of mouse Chromosome (Chr) 17 by using the technique of ES cell irradiation and the extensive molecular characterization of these and previously isolated deletions that, in total, cover much of the mouse t complex. The deletions are arranged in five overlapping complexes that collectively span about 25 Mbp. Furthermore, we have integrated each of the deletion complexes with physical data from public and private mouse genome sequences, and our own genetic data, to resolve some discrepancies. These deletions will be useful for characterizing several phenomena related to the t complex and t haplotypes, including transmission ratio distortion, male infertility, and the collection of t haplotype embryonic lethal mutations. The deletions will also be useful for mapping other loci of interest on proximal Chr 17, including T-associated sex reversal ( Tas) and head-tilt ( het). The new deletions have thus far been used to localize the recently identified t haplolethal ( Thl1) locus to an approximately 1.3-Mbp interval.  相似文献   

7.
A spontaneous morphological mutation characterized by a short and kinky tail (Tail-short Shionogi: Tss) was observed in a BALB/cMs mouse breeding colony. The inheritance mode of the Tss mutation is semi-dominant, and homozygotes (Tss/Tss) are probably embryonic lethal. The viability of the Tss/+ heterozygotes appear to be influenced by the mating partner: 47.1% of the (BALB/cMs-Tss/+ x C57BL/6J)F1 embryos were the mutant phenotype, whereas there were no (BALB/cMs-Tss/+ x A/J)F1 embryos with the mutant phenotype. The Tss locus was mapped by linkage analysis between microsatellite markers D11Mit128 and D11Mit256 on mouse Chromosome 11. These results suggest that the Tss mutation is a new allele on the Tail-short (Ts) locus.  相似文献   

8.
Genetic and developmental analysis of an X-linked vital locus vnd was undertaken. Embryos hemizygous for the original allele vnd did not hatch and exhibited a disorganized ventral nervous system (VNS). The mutation maps in the region 1B6-7 to 1B9-10, a subregion of an area previously shown to be essential to normal neural development. In this paper, we report isolation of five new alleles at the locus vnd. Genetic complementation analysis of all mutations at the vnd locus, with lethal alleles at adjacent loci, indicates that all lesions at the locus vnd affect only one vital gene function in the region. Four of the five alleles are embryonic lethal; one allele is subvital and behaves like an hypomorphic mutation. Hemizygous embryos for three of the four embryonic lethal alleles were inspected in histological sections; all exhibited disorganized VNS similar to the original allele. The developmental analysis in gynandromorphic genetic mosaics shows that (1) vnd+ gene function is not essential in most imaginal-disc cell derivatives, (2) only about 30% of the mosaic zygotes survive as adults, (3) mosaic zygotes with mutant tissue close to the head cuticle are least likely to survive, and (4) mutant tissue in the thoracic ganglion in the adult is not necessarily lethal. The mosaic data are consistent with the vnd+ gene function being necessary in neural cells derived from the anterioventral region of the blastoderm.  相似文献   

9.
Lyon MF  Schimenti JC  Evans EP 《Genetics》2000,155(2):793-801
Previously a deletion in mouse chromosome 17, T(22H), was shown to behave like a t allele of the t complex distorter gene Tcd1, and this was attributed to deletion of this locus. Seven further deletions are studied here, with the aim of narrowing the critical region in which Tcd1 must lie. One deletion, T(30H), together with three others, T(31H), T(33H), and T(36H), which extended more proximally, caused male sterility when heterozygous with a complete t haplotype and also enhanced transmission ratio of the partial t haplotype t(6), and this was attributed to deletion of the Tcd1 locus. The deletions T(29H), T(32H), and T(34H) that extended less proximally than T(30H) permitted male fertility when opposite a complete t haplotype. These results enabled narrowing of the critical interval for Tcd1 to between the markers D17Mit164 and D17Leh48. In addition, T(29H) and T(32H) enhanced the transmission ratio of t(6), but significantly less so than T(30H). T(34H) had no effect on transmission ratio. These results could be explained by a new distorter located between the breakpoints of T(29H) and T(34H) (between T and D17Leh66E). It is suggested that the original distorter Tcd1 in fact consists of two loci: Tcd1a, lying between D17Mit164 and D17Leh48, and Tcd1b, lying between T and D17Leh66E.  相似文献   

10.
The lethal nonagouti (a(x)) mutation is a hypomorphic allele of the agouti coat color locus which, when homozygous, also leads to embryonic death around the time of implantation. To understand the molecular basis of these phenotypes, we identified and cloned a deletion breakpoint junction present in the ax chromosome. Long range restriction mapping demonstrated a simple deletion of approximately 100 kb, which does not affect agouti coding sequences, but begins only 4 kb 3' of the last exon, and thus may affect coat color by removing an agouti 3' enhancer. The Ahcy gene, which codes for the enzyme S-adenosylhomocysteine hydrolase (SAHase), is contained within a 20 kb region within the a(x) deletion. SAHase RNA and protein were detectable in early blastocysts and in embryonic stem cells, respectively, and analysis of embryos derived from an a(x)/a x a(x)/a embryo intercross indicated that a(x)/a embryos die between the late blastocyst and early implantation stages. Treatment of cultured embryos with an SAHase inhibitor, 3-deazaaristeromycin, or with metabolites that can result in elevated levels of cellular SAH, resulted in an inhibition of inner cell mass development, suggesting that loss of SAHase activity in a(x)/a(x) embryos is sufficient to explain their death around the time of implantation.  相似文献   

11.
V S Baranov 《Genetika》1983,19(2):246-254
Peculiarities of the early development of mice embryos with structural aberrations of chromosome 17 were studied in mice heterozygous for reciprocal translocations T (16; 17) 43H and T (9; 17) 138Ca. Deficiency for the distal part of chromosome 17 corresponding to the E-region (Df 17 E1-E5), as well as deficiency for its most proximal part, the AB region (Df 17 A1-A-3, B) carrying all genes of complex T-locus, does not block cleavage, blastulation and implantation but severely affects immediate postimplantation development and causes embryonic death during early neurulation. Deficiency for the middle part of chromosome 17, including Giemsa-positive band 17C and the most of Giemsa-negative band D, becomes evident just after a few cleavage divisions and all these embryos die at the morula stage (8-16 blastomeres). It has been concluded that genes of the CD region in chromosome 17 are of major importance for genetic control of the early development in laboratory mice. The possible causes for early embryonic death are discussed in connection with the genetic map of chromosome 17 and a hypothesis of mutual activation of homologous autosomes and their segments at initial stages of embryogenesis is suggested.  相似文献   

12.
The albino deletion complex in the mouse represents 37 overlapping chromosomal deficiencies that have been arranged into at least twelve complementation groups. Many of the deletions cover regions of chromosome 7 that contain genes necessary for early embryonic development. The work reported here concentrates on two of these deletions (c6H, c11DSD), both of which were known to be lethal around the time of gastrulation when homozygous. A detailed embryological analysis has revealed distinct differences in the lethal phenotype associated with the c6H and c11DSD deletions. c6H homozygous embryos are grossly abnormal at day 7.5 of gestation, whereas c11DSD homozygous embryos appear abnormal at day 8.5 of gestation. There is no development of the extraembryonic ectoderm in c6H homozygotes, whereas extensive development of this tissue type occurs in c11DSD homozygotes. The visceral endoderm is abnormally shaped and the parietal endoderm appears to be overproduced in c6H homozygotes; these structures are not affected in c11DSD homozygotes. The embryonic ectoderm is runted in both types of embryo and it is not possible to obtain homozygous embryo-derived stem-cell lines for either deletion. Mesoderm formation occurs in the c11DSD but not in the c6H homozygotes. The c11DSD deletion chromosome complements the c6H chromosome in that the lethal phenotype of the compound heterozygote is similar to that of the c11DSD homozygote. These results suggest that a gene(s) necessary for normal development of the extraembryonic ectoderm is present in the c11DSD but deficient in the c6H deletion chromosome.  相似文献   

13.
14.
New alleles of brachyury (Tkt1, Tkt4) were induced in the mouse complete tw5 haplotype by ethylnitrosourea (ENU). Like the original brachyury (T) mutation, the new alleles cause a short-tailed phenotype in heterozygotes, and interact with the t complex tail interaction factor (tct) in trans to cause phenotypically tailless mice. Because ENU is mainly a point mutagen, it is important to determine that the new alleles are homozygous embryonic lethal mutations like the original T allele, and to characterize their embryonic lethal phenotype. Moreover, the Tkt1 mutation maps to an inverted position relative to quaking (qk) in t haplotypes as compared with its position on normal chromosome 17. The Tkt1 allele was separated from the resident tw5 lethal gene, tclw5, by recombination, allowing embryology studies to be performed. Embryological analyses show that the Tkt1 allele is nearly identical to the classic T allele. At 9 and 10 days of development, homozygous Tkt1/Tkt1 embryos are grossly abnormal with properties including 1) irregular, disorganized somite pairs, 2) a shortened posterior end of the embryo, 3) an irregular neural tube, and 4) an abnormal notochord. In addition, 10 day-old abnormal embryos have anterior limb buds that point dorsally rather than ventrally, and are smaller than normal littermates. We conclude that the Tkt1 mutation is a valuable allele for both mapping and molecular characterization of the brachyury locus.  相似文献   

15.
We report a new mutation at the albino locus in SELH/Bc mice. The mutation arose spontaneously in a male mouse that appeared to be a somatic and germ line mosaic for a new albino (c) allele, provisionally named cBc. The mutation is a recessive lethal, causing embryonic death soon after implantation. We have shown that there is no detectable activity of the Mod-2 allele in cis with the mutation and conclude that the mutation is probably a deletion that includes the c locus, the Mod-2 locus, the intervening 2 cM, and at least one locus essential for postimplantation embryonic survival, either proximal to the c locus or distal to the Mod-2 locus. This new mutation is similar to most previously reported spontaneous mutations at the albino locus in that it arose in a somatic and germ line mosaic mutant animal but differs from them in that it is an embryonic lethal when homozygous and is apparently a deletion. SELH/Bc mice appear to have a high mutation rate. This lethal albino mutation that appears to be a postmeiotic deletion should be useful in the search for the mechanism of mutagenesis in SELH/Bc mice. It may also be useful in mapping essential genes in the c-locus region.  相似文献   

16.
The albino-deletion complex consists of more than 37 deletions that remove an area of mouse chromosome 7 including the albino coat-color locus. Previous genetic and embryological studies with five of these deletions (C11DSD, c5FR60Hg, c4FR60Hd, c2YPSj, c6H) defined at least two genes required for normal development of the embryonic and extraembryonic ectoderm of early postimplantation embryos. A molecular genetic analysis of this region has been initiated using palb18, a genomic clone that defines the D7TM18 locus that maps to a region of chromosome 7 removed by the c11DSD deletion but not by the c5FR60Hg, c4FR60Hd, c2YPSj, or c6H deletions. palb18 was obtained by chromosomal microdissection and microcloning of the wild-type albino region. A genomic clone isolated with palb18 contains a repeat sequence localized primarily to the proximal region of the five deletions. The repeat sequence hybridizes differentially to the five deletion DNAs. The patterns of hybridization associated with these DNAs were used to define the order of the proximal breakpoints as centromere-c11DSD-c2YPSj-(c5FR60Hg-c4FR60Hd)- c6H. This order was confirmed by isolation of additional single-copy sequences. The molecular probes described here should allow for identification and isolation of the deletion breakpoints and thus provide immediate access to the distal side of the deletions where the genes affecting the development of the embryonic and extraembryonic ectoderm are located.  相似文献   

17.
Two classes of genes are the targets of mutations involved in human tumorigenesis: oncogenes, the activation of which leads to growth stimulation, and tumor suppressor genes, which become tumorigenic through loss of function, often through allelic deletion. To obtain evidence for a role for tumor suppressor genes in thyroid tumorigenesis, we examined DNA from 80 thyroid neoplasms for loss of heterozygosity in multiple chromosomal loci using 19 polymorphic genomic probes. None of the informative thyroid tumors studied had allelic loss detected with probes for chromosome 2q (D2S44), 3p (D3F15S2, D3S32), 3q (D3S46), 4p (D4S125), 6p (D6S40), 8q (D8S39), 9q (D9S7), 12p (D12S14), 13q (D13S52), 17p (D17S30), or 18q (D18S10). One of eight of the follicular adenomas had a 10q deletion detected with marker D10S15, and one of 26 had a 10q deletion detected with D10S25. One of two of the follicular carcinomas had an 11p deletion in the H-ras locus. The most significant findings were on chromosome 11q13, the site containing the putative gene predisposing to multiple endocrine neoplasia type I. Four of 27 follicular adenomas had loss of heterozygosity for probes in this region. Allelic deletions were detected with the following probes: D11S149, PYGM, D11S146, and INT2. None of 13 informative papillary carcinomas and none of two follicular carcinomas had loss of heterozygosity detectable with these 11q13 markers. Allelic loss is a relatively infrequent event in human thyroid tumors. Deletions of chromosome 11q13 are present in about 14% of follicular, but not papillary, neoplasms.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

18.
Wines ME  Shi Y  Lindor M  Holdener BC 《Genomics》2000,68(3):322-329
The mesoderm development (mesd) functional interval is essential for primitive streak formation and mesoderm induction. Mesd is defined by overlapping albino (c) deletions on chromosome 7. We have constructed a bacterial artificial chromosome (BAC) contig that spans the mesd functional region. BAC end-sequence identifies three segments that recognize novel expressed sequences. Localization of the proximal breakpoints from Del(7)Tyr(c-3YPSd) and Del(7)Tyr(c-112K) within the contig defines a deletion interval of 310-350 kb that is essential for mesd function. Importantly, using BAC transgene rescue, we define a 75-kb mesd critical region containing at least one expressed sequence.  相似文献   

19.
A candidate tumor suppressor gene (TSG) site at 12q22 characterized by a high frequency of loss of heterozygosity (LOH) and a homozygous deletion has previously been reported in human male germ cell tumors (GCTs). In a detailed deletion mapping analysis of 67 normal-tumor DNAs utilizing 20 polymorphic markers mapped to 12q22–q24, we identified the limits of the minimal region of deletion at 12q22 between D12S377 (proximal) and D12S296 (distal). We have constructed a YAC contig map of a 3-cM region of this band between the proximal marker D12S101 and the distal marker D12S346, which contained the minimal region of deletion in GCTs. The map is composed of 53 overlapping YACs and 3 cosmids onto which 25 polymorphic and nonpolymorphic sequence-tagged sites (STSs) were placed in a unique order. The size of the minimal region of deletion was approximately 2 Mb from overlapping, nonchimeric YACs that spanned the region. We also developed a radiation hybrid (RH) map of the region between D12S101 and D12S346 containing 17 loci. The consensus order developed by RH mapping is in good agreement with the YAC STS-content map order. The RH map estimated the distance between D12S101 and D12S346 to be 246 cR8000and the minimal region of deletion to be 141 cR8000. In addition, four genes that were previously mapped to 12q22 have been excluded as candidate genes. The leads gained from the deletion mapping and physical maps should expedite the isolation and characterization of the TSG at 12q22.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号