首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Upregulated expression of eN has been found in the highly invasive human melanoma cell lines but neither in melanocytes nor in primary tumor cells. Membrane proteins associated with cell adhesion and metastasis: α5-, β1-, β3-integrins, and CD44 were elevated gradually in accordance with increasing metastatic potential. αv-integrin was seen mostly in aggressive melanomas. The expression of eN correlated with a number of metastasis-related markers and thus may have a function in the process. eN activity went parallel with its amount in all cells. Concanavalin A strongly inhibited the enzyme in a noncompetitive way. Clustering of eN protein in overexpressing cells by ConA-treatment increased the enzyme association with the heavy cytoskeletal complexes. A similar shift towards cytoskeletal fractions took also place with other membrane proteins coexpressed with eN. This ConA-induced association may reflect a putative interaction of eN with physiological ligand, that upon interaction, aggregates protein components of lipid rafts and triggers signaling pathway that may be intrinsically involved in cell-stroma adhesion.  相似文献   

2.
Tenascin C is expressed in invasive human solid tumors; however its specific role in cancer biology remains obscure. Previously, we have found that ecto-5'-nucleotidase (eN) is a marker of ER (-) breast carcinoma and elevated expression correlates with invasive mesenchymal cell phenotype. To investigate for the potential relationship between eN and protein components of the extracellular matrix (ECM) we measured adenosine generation from AMP in cells incubated with soluble ECM proteins. We found that tenascin C was the only ECM component that strongly inhibited ecto-5'-nucleotidase (eN) activity in situ and adenosine generation from AMP (75% inhibition, p < 0.01). The inhibition was comparable to that induced by concanavalin A, a well-defined and strong inhibitor of eN. Resin immobilized tenascin C, but not collagen, and only weakly fibronectin, specifically and quantitatively bound cell-extracted eN. We further developed breast cancer cell line with reduced eN expression and tested changes in cell adhesion on different ECM. Breast cancer cells expressing reduced eN attached 56% weaker (p < 0.05) to immobilized tenascin C. This difference was not detected with other ECM proteins. Finally, control breast cancer cells migrated slower on tenascin C when compared with clone with reduced eN expression. These data suggest that eN is a novel and specific receptor for tenascin C and that the interaction between these proteins may influence cell adhesion and migration and also lead to decreased generation of local adenosine.  相似文献   

3.
We have examined functions of the cytoplasmic domain of E-selectin, an inducible endothelial transmembrane protein, especially its ability to associate with the cytoskeleton during leukocyte adhesion. Confocal microscopy of interleukin-1 beta (IL-1 beta)-activated human umbilical vein endothelial cells (HUVEC) visualized clustering of E-selectin molecules in the vicinity of leukocyte-endothelial cell attachment sites. A detergent based extraction and Western blotting procedure demonstrated an association of E-selectin with the insoluble (cytoskeletal) fraction of endothelial monolayers that correlated with adhesion of leukocytes via an E-selectin-dependent mechanism. A mutant form of E-selectin lacking the cytoplasmic domain (tailless E-selectin) was expressed in COS-7 cell and supported leukocyte attachment (in a nonstatic adhesion assay) in a fashion similar to the native E-selectin molecule, but failed to become associated with the cytoskeletal fraction. To identify the cytoskeletal components that associate with the cytoplasmic domain of E-selectin, paramagnetic beads coated with the adhesion-blocking anti-E-selectin monoclonal antibody H18/7 were incubated with IL-1 beta-activated HUVEC, and then subjected to detergent extraction and magnetic separation. Certain actin-associated proteins, including alpha-actinin, vinculin, filamin, paxillin, as well as focal adhesion kinase (FAK), were copurified by this procedure, however talin was not. When a mechanical stress was applied to H18/7- coated ferromagnetic beads bound to the surface of IL-1 beta-activated HUVEC, using a magnetical twisting cytometer, the observed resistance to the applied stress was inhibited by cytochalasin D, thus demonstrating transmembrane cytoskeletal mechanical linkage. COS-7 cells transfected with the tailless E-selectin failed to show resistance to the twisting stress. Taken together, these data indicate that leukocyte adhesion to cytokine-activated HUVEC induces transmembrane cytoskeletal linkage of E-selectin through its cytoplasmic domain, a process which may have important implications for cell-cell signaling as well as mechanical anchoring during leukocyte- endothelial adhesive interactions.  相似文献   

4.
Integrins are found in adhesion structures, which link the extracellular matrix to cytoskeletal proteins. Here, we attempt to further define the distribution of beta1 integrins in the context of their association with matrix proteins and other cell surface molecules relevant to the endocytic process. We find that beta1 integrins colocalize with fibronectin in fibrillar adhesion structures. A fraction of caveolin is also organized along these adhesion structures. The extracellular matrix protein laminin is not concentrated in these structures. The alpha4beta1 integrin exhibits a distinct distribution from other beta1 integrins after cells have adhered for 1 h to extracellular matrix proteins but is localized in adhesion structures after 24 h of adhesion. There are differences between the fibronectin receptors: alpha5beta1 integrins colocalize with adaptor protein-2 in coated pits, while alpha4beta1 integrins do not. This parallels our earlier observation that of the two laminin receptors, alpha1beta1 and alpha6beta1, only alpha1beta1 integrins colocalize with adaptor protein-2 in coated pits. Calcium chelation or inhibition of mitogen-activated protein kinase kinase, protein kinase C, or src did not affect localization of alpha1beta1 and alpha5beta1 integrins in coated pits. Likewise, the integrity of coated-pit structures or adhesion structures is not required for integrin and adaptor protein-2 colocalization. This suggests a robust and possibly constitutive interaction between these integrins and coated pits.  相似文献   

5.
Integrins are alpha/beta heterodimeric cell surface receptors devoid of enzymatic activity. Signal transduction therefore requires the association of cytosolic and cytoskeletal proteins with the integrin subunit intracellular regions. This association is initiated upon ligand binding to the integrin receptor and includes clustering of the integrins and recruitment of focal adhesion-associated proteins. Whether integrin clustering is solely dependent on ligand binding to the integrin extracellular parts or involves also interactions between the intracellular tails of integrins is so far unknown. To investigate intracellular events in integrin clustering, we have used peptides corresponding to the integrin beta1 cytoplasmic region. Loading of cells with the peptides results in a decreased cell adhesion and in an inhibition of cell spreading in agreement with the previously reported dominant negative effect of the beta1 integrin cytoplasmic tail on integrin clustering. Direct protein-protein interaction studies by surface plasmon resonance demonstrate that integrin beta1 cytoplasmic peptides self-associate in contrast to integrin beta3 cytoplasmic tails. Size exclusion chromatography and SDS-PAGE analysis of the peptides further show that the integrin beta1 cytoplasmic parts form oligomers and that they assume alpha helical conformation to the extent of about 13% and that this fraction is increased upon aggregation. Thus self-association of the integrin beta1 subunit cytoplasmic regions may be central to beta1 integrin clustering.  相似文献   

6.
The 14-3-3 proteins associate with many cellular proteins that participate in the regulation of various cellular events including apoptosis, the cell cycle, spreading, and migration. We have previously described that 14-3-3beta binds the beta1-integrin and overexpression of 14-3-3beta promoted increased cell spreading and migration (Han et al. [2001] Oncogene 20: 346-357). In this study, we find that mutation of Ser 60 of 14-3-3beta, outside of the amphipathic groove which is involved in 14-3-3 protein interactions with other ligands, abolished its interaction with integrin. Surprisingly, this mutant retained its ability to promote cell spreading, suggesting that 14-3-3beta interaction with the beta1-integrin is not required for its regulation of cell adhesion. We next showed that mutations of several critical residues in the amphipathic groove did not affect 14-3-3beta interaction with the beta1-integrin. As expected, these mutants disrupted their association with the phosphoserine dependent ligands Raf and Cas. Analysis of the groove mutant LF (mutation of Arg129Tyr130 to Leu and Phe) indicated that, unlike wild type 14-3-3beta, it could not stimulate cell spreading or migration, suggesting that a functional amphipathic groove is required for 14-3-3 regulation of cell adhesion and migration. Consistent with this, cells expressing the LF mutant exhibited a delay in F-actin organization compared to cells expressing wild type or the S60A mutant (Ser 60 to Ala mutation) upon cell adhesion to fibronectin (FN). Taken together, these studies identified a novel binding site on 14-3-3 for integrin beta1 and showed that a functional amphipathic groove, rather than its interaction with integrin beta1, is required for 14-3-3 regulation of cell spreading and migration.  相似文献   

7.
Integrin adhesion receptors have been implicated in bidirectional signal transduction. The dynamic regulation of integrin affinity and avidity as well as post-ligand effects involved in outside-in signaling depends on the interaction of integrins with cytoskeletal and signaling proteins. In this study, we attempted to identify cytoplasmic binding partners of alpha(1)beta(1) integrin. We were able to show that cell adhesion to alpha(1)beta(1)-specific substrates results in the association of phospholipase Cgamma (PLCgamma) with the alpha(1)beta(1) integrin independent of PLCgamma tyrosine phosphorylation. Using peptide-binding assays, the membrane proximal sequences within the alpha(1)beta(1) integrin subunits were identified as binding sites for PLCgamma. In particular, the conserved sequence of beta(1) subunit binds the enzyme very efficiently. Because purified PLCgamma also binds the integrin peptides, binding seems to be direct. Inhibition of PLC by leads to reduced cell adhesion on alpha(1)beta(1)-specific substrates. Cells lacking the conserved domain of the alpha(1) subunit fail to respond to the PLC inhibition, indicating that this domain is necessary for PLC-dependent adhesion modulation of alpha(1)beta(1) integrin.  相似文献   

8.
Cell adhesion is dependent on many factors, including the repertoire of extracellular matrix (ECM) proteins and their receptors, e.g. integrins, synthesized by the cell, the composition of the ECM adsorbed to the surface, and the intrinsic chemistry of the surface. Factors that govern bone cell, i.e. osteoblast, adhesion and ECM elaboration significantly influence its re-modeling into mature bone, and ultimately its ability to integrate with biomaterials used for orthopedic prostheses. In this study, we have investigated how treatment with bone morphogenetic protein-2 (BMP-2), a member of the transforming growth factor-beta (TGF-beta) superfamily that promotes ectopic bone formation, modulates the organization and expression of osteoblastic cell proteins. Specifically, we analyzed how BMP-2 treatment affects cytoskeletal components, ECM, and alpha 5 and beta 1 integrin receptor subunits in osteoblastic cells plated on Ti6A14V, a titanium alloy widely used for orthopedic implants that interacts with bone cells in vitro and in vivo. Osteoblastic cells were pre-treated with BMP-2 for 12 h prior to plating; BMP-2 treatment stimulated adhesion and proliferation of osteoblastic cells and this adhesive advantage was reflected in enhanced long-term matrix mineralization in the BMP-2 pretreated cultures. Confocal laser scanning microscopic analysis of BMP-2 treated cells showed that enhanced cytoskeletal organization and focal contact formation occurred. These changes were accompanied by a concomitant increase in the spatial organization of fibronectin, whereas vitronectin, collagen type I, osteopontin, and osteocalcin showed little change. The changes in ECM organization correlated with increased fibronectin, alpha 5 and beta 1 integrin subunit, and focal adhesion kinase (p125FAK) expression, as well as increased p125FAK phosphorylation. By confocal microscopy, the alpha 5 integrin subunit was more concentrated in lamellipodia after BMP-2 treatment. These results demonstrate that BMP-2 significantly altered osteoblastic cytoskeletal and ECM organization and enhanced expression of fibronectin and of specific integrin receptor subunits, with concomitant changes in the levels and phosphorylation of p125FAK. These effects may contribute to downstream cellular responses important for bone cell function, and growth.  相似文献   

9.
The macrophage colony stimulating factor (M-CSF) and alpha(v)beta(3) integrins play critical roles in osteoclast function. This study examines M-CSF- and adhesion-induced signaling in prefusion osteoclasts (pOCs) derived from Src-deficient and wild-type mice. Src-deficient cells attach to but do not spread on vitronectin (Vn)-coated surfaces and, contrary to wild-type cells, their adhesion does not lead to tyrosine phosphorylation of molecules activated by adhesion, including PYK2, p130(Cas), paxillin, and PLC-gamma. However, in response to M-CSF, Src(-/-) pOCs spread and migrate on Vn in an alpha(v)beta(3)-dependent manner. Involvement of PLC-gamma activation is suggested by using a PLC inhibitor, U73122, which blocks both adhesion- and M-CSF-mediated cell spreading. Furthermore, in Src(-/-) pOCs M-CSF, together with filamentous actin, causes recruitment of beta(3) integrin and PLC-gamma to adhesion contacts and induces stable association of beta(3) integrin with PLC-gamma, phosphatidylinositol 3-kinase, and PYK2. Moreover, direct interaction of PYK2 and PLC-gamma can be induced by either adhesion or M-CSF, suggesting that this interaction may enable the formation of integrin-associated complexes. Furthermore, this study suggests that in pOCs PLC-gamma is a common downstream mediator for adhesion and growth factor signals. M-CSF-initiated signaling modulates the alpha(v)beta(3) integrin-mediated cytoskeletal reorganization in prefusion osteoclasts in the absence of c-Src, possibly via PLC-gamma.  相似文献   

10.
The ability of cancer cells to invade neighboring tissues is crucial for cell dissemination and tumor metastasis. It is generally assumed that cell adhesion to extracellular matrix proteins is an important stage of cancer progression. Hence, adhesion of cancer cells under in vitro conditions to proteins adsorbed on a substratum surface has been studied to provide a better understanding of cell-protein interaction mechanisms. A protein, adsorbed in an appropriate conformation on a substratum surface, creates a biologically active layer that regulates such cell functions as adhesion, spreading, proliferation and migration. In our study, we examined the interaction of PC-3 cells under in vitro conditions with fibronectin adsorbed on sulfonated polystyrene surfaces of a defined chemical composition and topography. We investigated cell adhesion to fibronectin and cell spreading. Using automatic, sequential microscopic image registration, we are the first to present observations of the dynamics of PC-3 cell spreading and the cell shape during this process. Our results show that cell adhesion and the shape of spreading cells strongly depend on the time interaction with fibronectin. The analysis of images of cytoskeletal protein distribution in the cell region near the cell-substratum interface revealed that induction of a signal cascade took place, which led to the reorganization of the cytoskeletal proteins and the activation of focal adhesion kinase (FAK).  相似文献   

11.
Platelet adhesion to fibrinogen through integrin alpha(IIb)beta(3) triggers actin rearrangements and cell spreading. Mice deficient in the SLP-76 adapter molecule bleed excessively, and their platelets spread poorly on fibrinogen. Here we used human platelets and a Chinese hamster ovary (CHO) cell expression system to better define the role of SLP-76 in alpha(IIb)beta(3) signaling. CHO cell adhesion to fibrinogen required alpha(IIb)beta(3) and stimulated tyrosine phosphorylation of SLP-76. SLP-76 phosphorylation required coexpression of Syk tyrosine kinase and stimulated association of SLP-76 with the adapter, Nck, and with the Rac exchange factor, Vav1. SLP-76 expression increased lamellipodia formation induced by Syk and Vav1 in adherent CHO cells (p < 0.001). Although lamellipodia formation requires Rac, SLP-76 functioned downstream of Rac by potentiating adhesion-dependent activation of PAK kinase (p < 0.001), a Rac effector that associates with Nck. In platelets, adhesion to fibrinogen stimulated the association of SLP-76 with the SLAP-130 adapter and with VASP, a SLAP-130 binding partner implicated in actin reorganization. Furthermore, SLAP-130 colocalized with VASP at the periphery of spread platelets. Thus, SLP-76 functions to relay signals from alpha(IIb)beta(3) to effectors of cytoskeletal reorganization. Therefore, deficient recruitment of specific adapters and effectors to sites of adhesion may explain the integrin phenotype of SLP-76(-/-) platelets.  相似文献   

12.
The integrin alpha 6 beta 4 is a major component of hemidesmosomes, in which it is linked to intermediate filaments. Its presence in these structures is dependent on the beta 4 cytoplasmic domain but it is not known whether beta 4 interacts directly with keratin filaments or by interaction with other proteins. In this study, we have investigated the interaction of GST-cyto beta 4A fusion proteins with cellular proteins and demonstrate that a fragment of beta 4A, consisting of the two pairs of fibronectin type III repeats, separated by the connecting segment, forms a specific complex containing a 500-kDa protein that comigrates with HD1, a hemidesmosomal plaque protein. A similar protein was also bound by a glutathione S-transferase fusion protein containing the cytoplasmic domain of a variant beta 4 subunit (beta 4B), in which a stretch of 53 amino acids is inserted in the connecting segment. Subsequent immunoblot analysis revealed that the 500-kDa protein is in fact HD1. In COS-7 cells, which do not express alpha 6 beta 4 or the hemidesmosomal components BP230 and BP180, HD1 is associated with the cytoskeleton, but after transfecting the cells with cDNAs for human alpha 6 and beta 4, it was, instead, colocalized with alpha 6 beta 4 at the basal side of the cells. The organization of the vimentin, keratin, actin, and tubulin cytoskeletal networks was not affected by the expression of alpha 6 beta 4 in COS-7 cells. The localization of HD1 at the basal side of the cells depends on the same region of beta 4 that forms a complex containing HD1 in vitro, since the expression of alpha 6 with a mutant beta 4 subunit that lacks the four fibronectin type III repeats and the connecting segment did not alter the distribution of HD1. The results indicate that for association of alpha 6 beta 4 with HD1, the cytoplasmic domain of beta 4 is essential. We suggest that this association may be crucial for hemidesmosome assembly.  相似文献   

13.
14.
The murine X-linked gene Chisel (Csl/Smpx) encodes a 9-kDa protein that associates in heart and skeletal muscle cells with the costameric cytoskeleton, implicated in maintaining muscle integrity and responses to biomechanical stress. After expression in C2C12 myoblasts, MYC epitope-tagged Csl co-localized with actin networks at peripheral membranes, and with focal adhesion proteins vinculin, paxillin, integrin beta1, and the small GTPase Rac1. Csl could be co-immunoprecipitated with vinculin from extracts of C2C12 cells and native muscle. MYC-Csl induced cell spreading and lamellipodia formation in C2C12 cells at the expense of filopodia, suggestive of modulation of Rac1 activity. Lamellipodia formation was indeed Rac1-dependent, and in MYC-Csl cells replated on fibronectin, Rac1 activity was increased relative to controls. Expression of MYC-Csl led to an increased association between vinculin and p34, a subunit of the Arp2/3 actin nucleation complex, a Rac1-dependent event. Induced cell spreading was also dependent upon p38 kinases that act downstream of Rac1 to control the actin capping activity of heat shock protein 27. Our data suggest that Csl localizes to the costameric cytoskeleton of muscle cells through an association with focal adhesion proteins, where it may participate in regulation of cytoskeletal dynamics through the Rac1-p38 pathway.  相似文献   

15.
Previous findings suggest that the antioxidant-iron chelator green tea polyphenol (-)-epigallocatechin-3-gallate (EGCG) may have a neurorescue impact in aging and neurodegenerative diseases to retard or even reverse the accelerated rate of neuronal degeneration. The present study sought a deeper elucidation of the molecular neurorescue activity of EGCG in a progressive neurotoxic model of long-term serum deprivation of human SH-SY5Y neuroblastoma cells. In this model, proteomic analysis revealed that EGCG (0.1-1 microM) affected the expression levels of diverse proteins, including proteins related to cytoskeletal components, metabolism, heat shock, and binding. EGCG induced the levels of cytoskeletal proteins, such as beta tubulin IV and tropomyosin 3, playing a role in facilitating cell assembly. In accordance, EGCG increased the levels of the binding protein 14-3-3 gamma, involved in cytoskeletal regulation and signal transduction pathways in neurons. Additionally, EGCG decreased protein levels and mRNA expression of the beta subunit of the enzyme prolyl 4-hydroxylase, which belongs to a family of iron-oxygen sensors of hypoxia-inducible factor (HIF) prolyl hydroxylases that negatively regulate the stability and degradation of several proteins involved in cell survival and differentiation. Accordingly, EGCG decreased protein levels of two molecular chaperones that were associated with HIF regulation, the immunoglobulin-heavy-chain binding protein and the heat shock protein 90 beta. Thus, the present study sheds some light on the antioxidative-iron chelating activities of EGCG underlying its neuroprotective/neurorescue mechanism of action, further suggesting a potential neurodegenerative-modifying effect for EGCG.  相似文献   

16.
We report a selective, differential stimulus-dependent enrichment of the actin-associated protein alpha-actinin and of isoforms of the signaling enzyme protein kinase C (PKC) in the neutrophil cytoskeleton. Chemotactic peptide, activators of PKC, and cell adhesion all induce a significant increase in the amount of cytoskeletal alpha-actinin and actin. Increased association of PKCbetaI and betaII with the cytoskeletal fraction of stimulated cells was also observed, with phorbol ester being more effective than chemotactic peptide. A fraction of phosphatase 2A was constitutively associated with the cytoskeleton independent of cell activation. None of the stimuli promoted association of vinculin or myosin II with the cytoskeleton. Phosphatase inhibitors okadaic acid and calyculin A prevented increases in cytoskeletal actin, alpha-actinin, and PKCbetaII induced by phorbol ester, suggesting the requirement for phosphatase activity in these events. Increases in cytoskeletal alpha-actinin and PKCbetaII showed differing sensitivity to agents that prevent actin polymerization (cytochalasin D, latrunculin A). Latrunculin A (1 microM) completely blocked PMA-induced increases in cytoskeletal alpha-actinin but reduced cytoskeletal recruitment of PKCbetaII only by 16%. Higher concentrations of latrunculin A (4 microM), which almost abolished the cytoskeletal actin pool, reduced cytoskeletal PKCbetaII by 43%. In conclusion, a selective enrichment of cytoskeletal and signaling proteins in the cytoskeleton of human neutrophils is induced by specific stimuli.  相似文献   

17.
Src family protein tyrosine kinases (SFKs) play important roles downstream of integrin adhesion receptors, and they are necessary for the generation of "outside-in signals" that regulate cytoskeletal organization, cell motility and gene expression in response to cell adhesion. One relatively under-explored facet of this relationship is the possible physical interaction of integrins with SFKs. Recently, it has been established that beta3 integrins and c-Src can interact directly, and this pool of c-Src is activated by cell adhesion to initiate outside-in signaling in platelets, osteoclasts and cells of the vasculature. Here, the biochemical basis for and biological significance of this integrin-SFK interaction is summarized, and I propose a general mechanism for initiation of outside-in integrin signaling.  相似文献   

18.
The cytoskeletal changes that alter cellular morphogenesis and motility depend upon a complex interplay among molecules that regulate actin, myosin, and other cytoskeletal components. The Rho family of GTP binding proteins are important upstream mediators of cytoskeletal organization. Gem and Rad are members of another family of small GTP binding proteins (the Rad, Gem, and Kir family) for which biochemical functions have been mostly unknown. Here we show that Gem and Rad interface with the Rho pathway through association with the Rho effectors, Rho kinase (ROK) alpha and beta. Gem binds ROKbeta independently of RhoA in the ROKbeta coiled-coil region adjacent to the Rho binding domain. Expression of Gem inhibited ROKbeta-mediated phosphorylation of myosin light chain and myosin phosphatase, but not LIM kinase, suggesting that Gem acts by modifying the substrate specificity of ROKbeta. Gem or Rad expression led to cell flattening and neurite extension in N1E-115 neuroblastoma cells. In interference assays, Gem opposed ROKbeta- and Rad opposed ROKalpha-mediated cell rounding and neurite retraction. Gem did not oppose cell rounding initiated by ROKbeta containing a deletion of the Gem binding region, demonstrating that Gem binding to ROKbeta is required for the effects observed. In epithelial or fibroblastic cells, Gem or Rad expression resulted in stress fiber and focal adhesion disassembly. In addition, Gem reverted the anchorage-independent growth and invasiveness of Dbl-transformed fibroblasts. These results identify physiological roles for Gem and Rad in cytoskeletal regulation mediated by ROK.  相似文献   

19.
An early step in activation of leukocyte adhesion is a release of integrins from cytoskeletal constraints on their diffusion, leading to rearrangement and, consequently, increased avidity. Static adhesion assays using purified ligand as a substrate have demonstrated that very low doses of cytochalasin D disconnect beta2-integrins from their cytoskeletal links, allowing rearrangement and activating adhesion. The adhesion process in blood vessels is poorly simulated by these assays, however, for two reasons: leukocyte adhesion to endothelium 1), occurs in the presence of blood flow and 2), involves the simultaneous interactions of multiple sets of adhesion molecules. We investigated the effect of cytochalasin D, at concentrations that increase integrin diffusion but do not alter leukocyte shape and surface features, on adhesion of leukocytes to endothelial cells under flow. Cytochalasin D increased the number of rolling cells, the number of firmly adherent cells, and the duration of both rolling and firm adhesion. These effects required endothelial cell expression of ICAM-1, the ligand for leukocyte beta2-integrins. The beta2-integrin-ICAM-1 interaction alone was not sufficient, however. Experiments using purified substrates demonstrated that avidity effects on activation of adhesion under flow require functional cooperativity between integrins and other adhesion receptors.  相似文献   

20.
Cell adhesion is characterized by an integrin-mediated ligand binding event followed by reorganization of the actin-cytoskeleton leading to cell spreading and/or migration. In this report we examine the role of integrin alpha v beta 3 in mediating cell attachment to vitronectin or a RGD-containing peptide in the presence of cytochalasin B to prevent actin polymerization. Under these conditions cell attachment to a RGD-containing peptide can be dissociated by excess soluble ligand whereas cells attached to vitronectin cannot. These results suggest that alpha v beta 3-mediated cell attachment to vitronectin results in a highly stabilized interaction that is independent of the actin-cytoskeleton. To investigate the molecular nature of this interaction alpha v beta 3 was purified to homogeneity, and its binding properties toward various ligands were measured in a solid-phase receptor assay. The data indicate that alpha v beta 3 binds to vitronectin or fibronectin in a nondissociable manner whereas a RGD-containing peptide derived from vitronectin binds specifically but is completely dissociable with a Kd of 9.4 x 10(-7) M. Moreover, chemical modification of alpha v beta 3 with limited glutaraldehyde treatment allowed vitronectin to bind in a RGD-dependent and dissociable manner, suggesting that receptor conformational changes or specific amino acid residues proximal to the ligand binding site(s) are involved in the stabilization event. Thus, in the absence of cytoskeletal proteins or other cellular components, integrin alpha v beta 3-ligand binding involves recognition of the RGD sequence leading to a highly stabilized protein-protein association.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号