首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Glycosylphosphatidylinositol (GPI)-anchored glycoproteins have diverse intrinsic functions in yeasts, and they also have different uses in vitro. The GPI-modified cell wall proteins GCW21, GCW51, and GCW61 of Pichia pastoris were chosen as anchoring proteins to construct co-expression strains in P. pastoris GS115. The hydrolytic activity and the amount of Candida antarctica lipase B (CALB) displayed on cell surface increased significantly following optimization of the fusion gene dosage and combination of the homogeneous or heterogeneous cell wall proteins. Maximum CALB hydrolytic activity was achieved at 4920 U/g dry cell weight in strain GS115/CALB-GCW (51 + 51 + 61 + 61) after 120 h of methanol induction. Changes in structural morphology and the properties of the cell surfaces caused by co-expression of fusion proteins were observed by transmission electron microscopy (TEM) and on plates containing cell-wall-destabilizing reagent. Our results suggested that both the outer and inner cell layers were significantly altered by overexpression of GPI-modified cell wall proteins. Interestingly, quantitative analysis of the inner layer components showed an increase in β-1,3-glucan, but no obvious changes in chitin in the strains overexpressing GPI-modified cell wall proteins.  相似文献   

2.

Objectives

To develop a new vector for constitutive expression in Pichia pastoris based on the endogenous glycolytic PGK1 promoter.

Results

P. pastoris plasmids bearing at least 415 bp of PGK1 promoter sequences can be used to drive plasmid integration by addition at this locus without affecting cell growth. Based on this result, a new P. pastoris integrative vector, pPICK2, was constructed bearing some features that facilitate protein production in this yeast: a ~620 bp PGK1 promoter fragment with three options of restriction sites for plasmid linearization prior to yeast transformation: a codon-optimized α-factor secretion signal, a new polylinker, and the kan marker for vector propagation in bacteria and selection of yeast transformants.

Conclusions

A new constitutive vector for P. pastoris represents an alternative platform for recombinant protein production and metabolic engineering purposes.
  相似文献   

3.

Background

The methanol-regulated AOX1 promoter (PAOX1) is the most widely used promoter in the production of recombinant proteins in the methylotrophic yeast Pichia pastoris. However, as the tight regulation and methanol dependence of PAOX1 restricts its application, it is necessary to develop a flexible induction system to avoid the problems of methanol without losing the advantages of PAOX1. The availability of synthetic biology tools enables researchers to reprogram the cellular behaviour of P. pastoris to achieve this goal.

Results

The characteristics of PAOX1 are highly related to the expression profile of methanol expression regulator 1 (Mxr1). In this study, we applied a biologically inspired strategy to reprogram regulatory networks in P. pastoris. A reprogrammed P. pastoris was constructed by inserting a synthetic positive feedback circuit of Mxr1 driven by a weak AOX2 promoter (PAOX2). This novel approach enhanced PAOX1 efficiency by providing extra Mxr1 and generated switchable Mxr1 expression to allow PAOX1 to be induced under glycerol starvation or carbon-free conditions. Additionally, the inhibitory effect of glycerol on PAOX1 was retained because the synthetic circuit was not activated in response to glycerol. Using green fluorescent protein as a demonstration, this reprogrammed P. pastoris strain displayed stronger fluorescence intensity than non-reprogrammed cells under both methanol induction and glycerol starvation. Moreover, with single-chain variable fragment (scFv) as the model protein, increases in extracellular scFv productivity of 98 and 269% were observed in Mxr1-reprogrammed cells under methanol induction and glycerol starvation, respectively, compared to productivity in non-reprogrammed cells under methanol induction.

Conclusions

We successfully demonstrate that the synthetic positive feedback circuit of Mxr1 enhances recombinant protein production efficiency in P. pastoris and create a methanol-free induction system to eliminate the potential risks of methanol.
  相似文献   

4.
5.
Recombinant Crocodylus siamensis hemoglobin (cHb) has been constructed and expressed using Escherichia coli as the expression system in conjunction with a trigger factor from the Cold-shock system as the fusion protein. While successful processing as soluble protein in E. coli was achieved, the net yields of active protein from downstream purification processes remained still unsatisfactory. In this study, cHb was constructed and expressed in the eukaryotic expression system Pichia pastoris. The results showed that cHb was excreted from P. pastoris as a soluble protein after 72 h at 25 °C. The amino acid sequence of recombinant cHb was confirmed using LC–MS/MS. Indeed, the characteristic of Hb was investigated by external heme incorporation. The UV–Vis profile showed a specific pattern of the absorption at 415 nm, indicating the recombinant cHb was formed complex with heme, resulting in active oxyhemoglobin (OxyHb). This result suggests that the heme molecules were fully combined with heme binding site of the recombinant cHb, thus producing characteristic red color for the OxyHb at 540 and 580 nm. The results revealed that the recombinant cHb was prosperously produced in P. pastoris and exhibited a property as protein–ligand binding. Thus, our work described herein offers a great potential to be applied for further studies of heme-containing protein expression. It represents further pleasing option for protein production and purification on a large scale, which is important for determination and characterization of the authenticity features of cHb proteins.  相似文献   

6.
A new approach is described to quantify the number of enzyme molecules, such as Candia antarctica lipase B, that are displayed on the cell surface of Pichia pastoris. Enhanced green fluorescent protein (EGFP) and Candida antarctica lipase B (CALB) were fused and displayed on the surface of P. pastoris by linking to the anchor flocculation functional domain of FLO1p from Saccharomyces cerevisiae. Confocal laser scanning microscopy, flow cytometry, and fluorescence spectrophotometry were used to monitor the fluorescence intensity of fused EGFP. Combined with the corresponding protein concentration detected in the medium, a standard curve describing the relationship between the fusion protein concentration and fluorescence intensity were obtained and could be used to number CALB displayed on the cell surface. The results showed that approx. 104 molecules of CALB molecules were immobilized on the single P. pastoris cell wall based on FS anchor system.  相似文献   

7.
For the enhancement of lipase stability in organic solvent containing reaction, live immobilization method, using Bacillus subtilis spore as a display vehicle was attempted. Bacillus subtilis coat protein cotE was used as an anchoring motif for the display of lipA and lipB of Bacillus subtilis. Using this motif, lipolytic enzyme Lipase A and Lipase B were functionally displayed on the surface of Bacillus subtilis spore. Purified spore displaying CotE-LipB fusion protein showed higher lipolytic activity compared to that of CotE-LipA fusion protein. The surface localization of Lipase B was verified with flow cytometry and protease accessibility experiment. Spore displayed lipase retained its activity against acetone and benzene which completely deactivated free soluble lipase in the same reaction condition.  相似文献   

8.
9.
10.
Pichia pastoris strains carrying 1, 6, 12, and 18 copies of the porcine insulin precursor (PIP) gene, were employed to investigate the effects of sorbitol co-feeding with methanol on the physiology of the strains. Multicopy clones of the methylotrophic yeast were generated to vary the PIP gene dosage and recombinant proteins. Elevated gene dosage increased levels of the recombinant PIP protein when methanol served as the sole carbon and energy source i.e., an increase of 1.9% for a strain carrying 1 copy, 42.6% for a strain carrying 6 copies, 34.7% for a strain carrying 12 copies and 80.9% for a strain carrying 18 copies, respectively (using sorbitol co-feeding with methanol during the induction phase). However, it had no significant influence on a lower gene dosage strain (1 copy), but this approach affirmed enhancement in cell growth and PIP production for higher gene dosage strain (6, 12, and 18 copies) via using sorbitol co-feeding with methanol. Additionally, the co-feeding strategy could hold vital importance for recombinant protein production by a multi-copy P. pastoris system.  相似文献   

11.
The endoglucanase gene endo753 from Aspergillus flavus NRRL3357 strains was cloned, and the recombinant Endo753 was displayed on the cell surface of Saccharomyces cerevisiae EBY100 strain by the C-terminal fusion using Aga2p protein as anchor attachment tag. The results of indirect immunofluorescence and Western blot confirmed the expression and localization of Endo753 on the yeast cell surface. The hydrolytic activity test of the whole-cell enzyme revealed that Endo753 immobilized on the yeast cell surface had high endoglucanase activity. The functional characterization of the whole-cell enzyme was investigated, and the whole-cell enzyme displayed the maximum activity at pH 8 and 50 °C. The enzyme was stable in a pH range of 7.0–10.0. Furthermore, the whole-cell enzyme displayed high thermostability below 50 °C and moderate stability between 50 and 70 °C. These properties make endo753 a good candidate in bioethanol production from lignocellulosic materials after displaying on the yeast cell surface.  相似文献   

12.

Objectives

To improve the stability and sweetness of the sweet-tasting protein, monellin, by using site-directed mutagenesis and a Pichia pastoris expression system with a GAPDH constitutive promoter.

Results

Both wild-type and E2 N mutant of single-chain monellin gene were cloned into the PGAPZαA vector and expressed in Pichia pastoris. The majority of the secreted recombinant protein, at 0.15 g/l supernatant, was monellin. This was purified by Sephadex G50 chromatography. The sweetness threshold of wild-type and E2 N were 30 μg/ml and 20 μg/ml, respectively. Compared with the proteins expressed in Escherichia coli, the thermostability of both proteins was improved. The N-terminal sequence is determinative for the sweetness of the proteins expressed in yeast strains.

Conclusions

Site-directed mutagenesis, modification of the N-terminus of monellin, and without the need of methanol induction in P. pastoris expression system, indicate the possibility for large-scale production of this sweet-tasting protein.
  相似文献   

13.
14.

Objective

To achieve secreted expression of the truncated capsid protein from porcine circovirus type 2 (PCV2) in Pichia pastoris.

Results

A truncated cap gene (tcap) with a deleted N-terminal nuclear localization signal was optimized and synthesized. Effective secreted expression was achieved in P. pastoris GS115. The high-productive recombinant strain for tCap was grown in a 5 l bioreactor and the productivity of tCap in supernatant reached 250 μg/ml. Furthermore, serum antibody test demonstrated that adjuvant-assisting tCap induced a significant increase of specific PCV2-Cap antibody over time in mice and a similar antibody level in pigs compared with a commercial Cap-based subunit vaccine.

Conclusion

This work establishes a secreted expression strategy in P. pastoris for the production of PCV2 Cap with superior bioactivity, and this strategy might provide potential uses in developing Cap-based subunit vaccine in the future.
  相似文献   

15.
The technology of the yeast cell surface display, which appeared 20 years ago and was based on the displaying of target proteins on the cell surface via fusion to an abundant cell wall protein finds broad application in basic and applied research. The main advantage of the cell surface display on the basis of eukaryotic microorganisms—yeast—is the opportunity for correct modification of mammalian proteins. The cell surface display is an important tool for the analysis and understanding of protein function and protein–protein interactions and for the screening of novel clones from peptide and protein libraries. This technology makes it possible to obtain cells with novel abilities, such as catalytic functions and affinity binding to valuable ligands, including rare and heavy metals. It provides the chance to use yeast in biotechnology and in bioremediation and biomonitoring of the environment. The review considers the methods of obtaining a cell surface display on the basis of the yeasts Saccharomyces cerevisiae, Pichia pastoris, and Yarrowia lipolytica, the properties of anchor proteins, and the main fields of yeast display technology.  相似文献   

16.
17.

Objective

To clone monoamine oxidase N, that catalyses the selective oxidative deamination or deracemisation of amines into imines, in Pichia pastoris and prove the importance of choosing the proper expression system for its recombinant production.

Results

Monoamine oxidase, originating from Aspergillus niger and subjected to directed evolution (MAO-N D5), was cloned and expressed in Pichia pastoris CBS7435 MutS strain for the first time. Various transformants were screened at microscale level. The production of the clone expressing the most active enzyme was scaled-up to a 1.5 l fermenter and preparation of MAO-N D5 as a crude enzyme extract was optimised. The obstacles in the production of the enzyme in both expression systems, Escherichia coli and P. pastoris, are discussed and demonstrated.

Conclusions

There was an improvement in specific productivity, which was 83 times higher in P. pastoris, clearly proving the importance of choosing the right expression host system for the specific enzymes.
  相似文献   

18.

Objectives

To evaluate different codon optimization parameters on the Saccharomyces cerevisiae-derived mating factor α prepro-leader sequence (MFLS) to improve Candida antarctica lipase B (CAL-B) secretory production in Pichia pastoris.

Results

Codon optimization based on the individual codon usage (ICU) and codon context (CC) design parameters enhanced secretory production of CAL-B to 7 U/ml and 12 U/ml, respectively. Only 3 U/ml was obtained with the wild type sequence while the sequence optimized using both ICU and CC objectives showed intermediate performance of 10 U/ml. These results clearly show that CC is the most relevant parameter for the codon optimization of MFLS in P. pastoris, and there is no synergistic effect achieved by considering both ICU and CC together.

Conclusion

The CC optimized MFLS increased secretory protein production of CAL-B in P. pastoris by fourfold.
  相似文献   

19.

Objective

To produce a therapeutic protein (endostatin) by fusion with two fragments of the carboxyl-terminal peptide (CTP) of the human chorionic gonadotropin β-subunit in Pichia pastoris.

Results

Two CTP sequences were fused to the C-terminal of human endostatin, and the fusion protein (endo-CTP) was expressed by P. pastoris. Endo-CTP inhibited proliferation of endothelial cells with an IC50 of 7 μg ml?1, and 30 % of cells were annexin V-positive after treatment with 20 μg endo-CTP ml?1 for 48 h. Migration of endothelial cells was inhibited by endo-CTP in a concentration-dependent manner. The half-life of endo-CTP in Sprague–Dawley rats was much longer than that of its commercial counterpart (Endostar).

Conclusion

A long-acting endostatin can be produced using CTP technology.
  相似文献   

20.
Two alternative cell-surface display systems were developed in Pichia pastoris using the α-agglutinin and Flo1p (FS) anchor systems, respectively. Both the anchor cell wall proteins were obtained originally from Saccharomyces cerevisiae. Candida antarctica lipase B (CALB) was displayed functionally on the cell surface of P. pastoris using the anchor proteins α-agglutinin and FS. The activity of CALB displayed on P. pastoris was tenfold higher than that of S. cerevisiae. The hydrolytic and synthetic activities of CALB fused with α-agglutinin and FS anchored on P. pastoris were investigated. The hydrolytic activities of both lipases displayed on yeast cells surface were more than 200 U/g dry cell after 120 h of culture (200 and 270 U/g dry cell, respectively). However, the synthetic activity of CALB fused with α-agglutinin on P. pastoris was threefold higher than that of the FS fusion protein when applied to the synthesis of ethyl caproate. Similarly, the CALB displayed on P. pastoris using α-agglutinin had a higher catalytic efficiency with respect to the synthesis of other short-chain flavor esters than that displayed using the FS anchor. Interestingly, for some short-chain esters, the synthetic activity of displaying CALB fused with α-agglutinin on P. pastoris was even higher than that of the commercial CALB Novozyme 435.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号