首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Septins, a conserved family of GTPases, are heteropolymeric filament-forming proteins that associate with the cell membrane and cytoskeleton and serve essential functions in cell division and morphogenesis. Their roles in fungal cell wall chitin deposition, septation, cytokinesis, and sporulation have been well established and they have recently been implicated in tissue invasion and virulence in Candida albicans. Septins have never been investigated in the human pathogenic fungus, Aspergillus fumigatus, which is a leading cause of death in immunocompromised patients. Here we localize all the five septins (AspA–E) from A. fumigatus for the first time, and show that each of the five septins exhibit varied patterns of distribution. Interestingly AspE, which is unique to filamentous fungi, and AspD, belonging to the CDC10 class of septins, localized prominently to tubular structures which were dependent on actin and microtubule networks. Localization of AspD and AspE has never been reported in filamentous fungi. Taken together these results suggest that septins in A. fumigatus might have unique functions in morphogenesis and pathogenicity.  相似文献   

2.
Septins are a group of GTP‐binding proteins that are multi‐functional, with a well‐known role in cytokinesis in animals and fungi. Although the functions of septins have been thoroughly studied in opisthokonts (fungi and animals), the function and evolution of plant/algal septins are not as well characterized. Here we describe septin localization and expression in the green algae Nannochloris bacillaris and Marvania geminata. The present data suggest that septins localize at the division site when cytokinesis occurs. In addition, we show that septin homologs may be found only in green algae, but not in other major plant lineages, such as land plants, red algae and glaucophytes. We also found other septin homolog‐possessing organisms among the diatoms, Rhizaria and cryptomonad/haptophyte lineages. Our study reveals the potential role of algal septins in cytokinesis and/or cell elongation, and confirms that septin genes appear to have been lost in the Plantae lineage, except in some green algae.  相似文献   

3.
Septins are GTP-binding proteins that form filaments and higher-order structures on the cell cortex of eukaryotic cells and associate with actin and microtubule cytoskeletal networks. When assembled, septins coordinate cell division and contribute to cell polarity maintenance and membrane remodeling. These functions manifest themselves via scaffolding of cytosolic proteins and cytoskeletal networks to specific locations on membranes and by forming diffusional barriers that restrict lateral diffusion of proteins embedded in membranes. Notably, many neurodegenerative diseases and cancers have been characterized as having misregulated septins, suggesting that their functions are relevant to diverse diseases. Despite the importance of septins, little is known about what features of the plasma membrane influence septin recruitment and alternatively, how septins influence plasma membrane properties. Septins have been localized to the cell cortex at the base of cilia, the mother-bud neck of yeast, and branch points of filamentous fungi and dendritic spines, in cleavage furrows, and in retracting membrane protrusions in mammalian cells. These sites all possess some degree of curvature and are likely composed of distinct lipid pools. Depending on the context, septins may act alone or in concert with other cytoskeletal elements to influence and sense membrane properties. The degree to which septins react to and/or induce changes in shape and lipid composition are discussed here. As septins are an essential player in basic biology and disease, understanding the interplay between septins and the plasma membrane is critical and may yield new and unexpected functions.  相似文献   

4.
Eukaryotic cells develop asymmetric shapes suited for specific physiological functions. Morphogenesis of polarized domains and structures requires the amplification of molecular asymmetries by scaffold proteins and regulatory feedback loops. Small monomeric GTPases signal polarity, but how their downstream effectors and targets are spatially co-ordinated to break cell symmetry is poorly understood. Septins comprise a novel family of GTPases that polymerize into non-polar filamentous structures which scaffold and restrict protein localization. Recent studies show that septins demarcate distinct plasma membrane domains and cytoskeletal tracks, enabling the formation of intracellular asymmetries. Here, we review these findings and discuss emerging mechanisms by which septins promote cell asymmetry in fungi and animals.  相似文献   

5.
Septins are conserved GTPases that form filaments and are required for cell division. During interphase, septin filaments associate with cellular membrane and cytoskeleton networks, yet the functional significance of these associations have, to our knowledge, remained unknown. We recently discovered that different septins, SEPT2 and SEPT11, regulate the InlB-mediated entry of Listeria monocytogenes into host cells. Here we address the role of SEPT2 and SEPT11 in the InlB-Met interactions underlying Listeria invasion to explore how septins modulate surface receptor function. We observed that differences in InlB-mediated Listeria entry correlated with differences in Met surface expression caused by septin depletion. Using atomic force microscopy on living cells, we show that septin depletion significantly reduced the unbinding force of InlB-Met interaction and the viscosity of membrane tethers at locations where the InlB-Met interaction occurs. Strikingly, the same order of difference was observed for cells in which the actin cytoskeleton was disrupted. Consistent with a proposed role of septins in association with the actin cytoskeleton, we show that cell elasticity is decreased upon septin or actin inactivation. Septins are therefore likely to participate in anchorage of the Met receptor to the actin cytoskeleton, and represent a critical determinant in surface receptor function.  相似文献   

6.
Neuronal morphogenesis is guided by outside-in signals and inside-out mechanisms, which require spatiotemporal precision. How the intracellular mechanisms of neuronal morphogenesis are spatiotemporally controlled is not well understood. Septins comprise a unique GTPase module, which consists of complexes with differential localizations and functions. Septins demarcate distinct membrane domains in neural precursor cells, orienting the axis of cell division and the sites of neurite formation. By controlling the localization of membrane and cytoskeletal proteins, septins promote axon-dendrite formation and polarity. Furthermore, septins modulate vesicle exocytosis at pre-synaptic terminals, and stabilize dendritic spines and post-synaptic densities in a phospho-regulatable manner. We posit that neuronal septins are topologically and functionally specialized for the spatiotemporal regulation of neuronal morphogenesis and plasticity.  相似文献   

7.
Septins belong to a family of conserved GTP-binding proteins found in majority of eukaryotic species except for higher plants. Septins form nonpolar complexes that further polymerize into filaments and associate with cell membranes, thus comprising newly acknowledged cytoskeletal system. Septins participate in a variety of cell processes and contribute to various pathophysiological states, including tumorigenesis and neurodegeneration. Here, we review the structural and functional properties of septins and the regulation of their dynamics with special emphasis on the role of septin filaments as a cytoskeletal system and its interaction with actin and microtubule cytoskeletons. We also discuss how septins compartmentalize the cell by forming local protein-anchoring scaffolds and by providing barriers for the lateral diffusion of the membrane proteins.  相似文献   

8.
Septins are GTP-binding proteins that form ordered, rod-like multimeric complexes and polymerize into filaments, but how such supramolecular structure is related to septin function was unclear. In Saccharomyces cerevisiae, four septins form an apolar hetero-octamer (Cdc11-Cdc12-Cdc3-Cdc10-Cdc10-Cdc3-Cdc12-Cdc11) that associates end-to-end to form filaments. We show that septin filament assembly displays previously unanticipated plasticity. Cells lacking Cdc10 or Cdc11 are able to divide because the now-exposed subunits (Cdc3 or Cdc12, respectively) retain an ability to homodimerize via their so-called G interface, thereby allowing for filament assembly. In such cdc10Δ and cdc11Δ cells, the remaining septins, like wild-type complexes, localize to the cortex at the bud neck and compartmentalize nonseptin factors, consistent with a diffusion barrier composed of continuous filaments in intimate contact with the plasma membrane. Conversely, Cdc10 or Cdc11 mutants that cannot self-associate, but "cap" Cdc3 or Cdc12, respectively, prevent filament formation, block cortical localization, and kill cells.  相似文献   

9.

Background  

Septins are cytoskeletal GTPase proteins first discovered in the fungus Saccharomyces cerevisiae where they organize the septum and link nuclear division with cell division. More recently septins have been found in animals where they are important in processes ranging from actin and microtubule organization to embryonic patterning and where defects in septins have been implicated in human disease. Previous studies suggested that many animal septins fell into independent evolutionary groups, confounding cross-kingdom comparison.  相似文献   

10.
Septins: the fourth component of the cytoskeleton   总被引:1,自引:0,他引:1  
Septins belong to a family of proteins that is highly conserved in eukaryotes and is increasingly recognized as a novel component of the cytoskeleton. All septins are GTP-binding proteins that form hetero-oligomeric complexes and higher-order structures, including filaments and rings. Recent studies have provided structural information about the different levels of septin organization; however, the crucial structural determinants and factors responsible for septin assembly remain unclear. Investigations on the molecular functions of septins have highlighted their roles as scaffolds for protein recruitment and as diffusion barriers for subcellular compartmentalization in numerous biological processes, including cell division and host-microorganism interactions.  相似文献   

11.
Septins are a conserved family of eukaryotic GTP-binding, filament-forming proteins. In Saccharomyces cerevisiae, five septins (Cdc3p, Cdc10p, Cdc11p, Cdc12p, and Shs1p) form a complex and colocalize to the incipient bud site and as a collar of filaments at the neck of budded cells. Septins serve as a scaffold to localize septin-associated proteins involved in diverse processes and as a barrier to diffusion of membrane-associated proteins. Little is known about the role of nucleotide binding in septin function. Here, we show that Cdc3p, Cdc10p, Cdc11p, and Cdc12p all bind GTP and that P-loop and G4 motif mutations affect nucleotide binding and result in temperature-sensitive defects in septin localization and function. Two-hybrid, in vitro, and in vivo analyses show that for all four septins nucleotide binding is important in septin-septin interactions and complex formation. In the absence of complete complexes, septins do not localize to the cortex, suggesting septin localization factors interact only with complete complexes. When both complete and partial complexes are present, septins localize to the cortex but do not form a collar, perhaps because of an inability to form filaments. We find no evidence that nucleotide binding is specifically involved in the interaction of septins with septin-associated proteins.  相似文献   

12.
Septins comprise a conserved family of proteins that are found primarily in fungi and animals. These GTP-binding proteins have several roles during cell division, cytoskeletal organization and membrane-remodelling events. One factor that is crucial for their functions is the ordered assembly of individual septins into oligomeric core complexes that, in turn, form higher-order structures such as filaments, rings and gauzes. The molecular details of these interactions and the mechanism by which septin-complex assembly is regulated have remained elusive. Recently, the first detailed structural views of the septin core have emerged, and these, along with studies of septin dynamics in vivo, have provided new insight into septin-complex assembly and septin function in vivo.  相似文献   

13.
Septins are a family of conserved GTP-binding proteins that function in cytokinesis in fungi and animals. In budding yeast, septins form scaffolds for assembly of the actomyosin contractile ring at the cleavage plane, a role that does not appear to be conserved in other organisms. The septins form an hourglass-shaped collar at the mother-bud neck, which splits into two rings flanking the division plane at cytokinesis. A recent study(1) demonstrates that these two septin rings constitute diffusion barriers that create a cytokinetic compartment to retain cortical cytokinetic factors in proximity to the cleavage plane.  相似文献   

14.
Septins are filamentous GTPases that associate with cell membranes and the cytoskeleton and play essential roles in cell division and cellular morphogenesis. Septins are implicated in many human diseases including cancer and neuropathies. Small molecules that reversibly perturb septin organization and function would be valuable tools for dissecting septin functions and could be used for therapeutic treatment of septin-related diseases. Forchlorfenuron (FCF) is a plant cytokinin previously shown to disrupt septin localization in budding yeast. However, it is unknown whether FCF directly targets septins and whether it affects septin organization and functions in mammalian cells. Here, we show that FCF alters septin assembly in vitro without affecting either actin or tubulin polymerization. In live mammalian cells, FCF dampens septin dynamics and induces the assembly of abnormally large septin structures. FCF has a low level of cytotoxicity, and these effects are reversed upon FCF washout. Significantly, FCF treatment induces mitotic and cell migration defects that phenocopy the effects of septin depletion by small interfering RNA. We conclude that FCF is a promising tool to study mammalian septin organization and functions.  相似文献   

15.
16.
Septins are GTP-binding proteins that polymerize into heteromeric filaments and form microscopic bundles or ring structures in vitro and in vivo. Because of these properties and their ability to associate with membrane, F-actin, and microtubules, septins have been generally regarded as cytoskeletal components [1, 2]. Septins are known to play roles in cytokinesis, in membrane trafficking, and as structural scaffolds; however, their function in neurons is poorly understood. Many members of the septin family, including Septin 7 (Sept7), were found by mass-spectrometry analysis of postsynaptic density (PSD) fractions of the brain [3, 4], suggesting a possible postsynaptic function of septins in neurons. We report that Sept7 is localized at the base of dendritic protrusions and at dendritic branch points in cultured hippocampal neurons--a distribution reminiscent of septin localization in the bud neck of budding yeast. Overexpression of Sept7 increased dendrite branching and the density of dendritic protrusions, whereas RNA interference (RNAi)-mediated knockdown of Sept7 led to reduced dendrite arborization and a greater proportion of immature protrusions. These data suggest that Sept7 is critical for spine morphogenesis and dendrite development during neuronal maturation.  相似文献   

17.
Septins are a conserved eukaryotic family of GTP-binding filament-forming proteins with functions in cytokinesis and other processes. In the budding yeast Saccharomyces cerevisiae, septins initially localize to the presumptive bud site and then to the cortex of the mother-bud neck as an hourglass structure. During cytokinesis, the septin hourglass splits and single septin rings partition with each of the resulting cells. Septins are thought to function in diverse processes in S. cerevisiae, mainly by acting as a scaffold to direct the neck localization of septin-associated proteins.  相似文献   

18.
During division, certain cellular contents can be distributed unequallydaughter cells with different fates have different needs. Septins are proteins that participate in the establishment and maintenance of asymmetry during cell morphogenesis, thereby contributing to the unequal partitioning of cellular contents during division. The septins themselves provide a paradigm for studying how elaborate multi-component structures are assembled, dynamically modified, and segregated through each cell division cycle and during development. Here we review our current understanding of the supramolecular organization of septins, the function of septins in cellular compartmentalization, and the mechanisms that control assembly, dynamics, and inheritance of higher-order septin structures, with particular emphasis on recent findings made in budding yeast (Saccharomyces cerevisiae).  相似文献   

19.
Heart growth in the embryo is achieved by division of differentiated cardiomyocytes. Around birth, cardiomyocytes stop dividing and heart growth occurs only by volume increase of the individual cells. Cardiomyocytes seem to lose their capacity for cytokinesis at this developmental stage. Septins are GTP-binding proteins that have been shown to be involved in cytokinesis from yeast to vertebrates. We wanted to determine whether septin expression patterns can be correlated to the cessation of cytokinesis during heart development. We found significant levels of expression only for SEPT2, SEPT6, SEPT7 and SEPT9 in heart, in a developmentally regulated fashion, with high levels in the embryonic heart, downregulation around birth and no detectable expression in the adult. In dividing embryonic cardiomyocytes, all septins localize to the cleavage furrow. We used drugs to probe for the functional interactions of SEPT2 in dividing embryonic cardiomyocytes. Differences in the effects on subcellular septin localization in cardiomyocytes were observed, depending whether a Rho kinase (ROCK) inhibitor was used or whether actin and myosin were targeted directly. Our data show a tight correlation of high levels of septin expression and the ability to undergo cytokinesis in cardiomyocytes. In addition, we were able to dissect the different contributions of ROCK signaling and the actomyosin cytoskeleton to septin localization to the contractile ring using cardiomyocytes as an experimental system.  相似文献   

20.
Septins are cytoskeletal GTP-binding proteins involved in processes characterized by active membrane movement, such as cytokinesis, vesicle trafficking and exocytosis. Most septins are expressed ubiquitously, however, some septins accumulate in particular tissues. The ubiquitous SEPT11 also shows high expression levels in the central nervous system and in platelets. Here, SEPT11 is involved in vesicle trafficking and may play a role in synaptic connectivity. Interestingly, mice that harbor a homozygous Sept11 null mutation, die in utero. From day 11.5 post coitum onwards, development of homozygous embryos seems to be retarded and the embryos from day 13.5 onwards were dead.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号