首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Highly regulated programs for airway epithelial cell proliferation and differentiation during development and repair are often disrupted in disease. These processes have been studied in mouse models; however, it is difficult to isolate and identify epithelial cell-specific responses in vivo. To investigate these processes in vitro, we characterized a model for primary culture of mouse tracheal epithelial cells. Small numbers of cells seeded at low density (7.5 x 10(4) cells/cm2) rapidly proliferated and became polarized. Subsequently, supplemented media and air-liquid interface conditions resulted in development of highly differentiated epithelia composed of ciliated and nonciliated cells with gene expression characteristic of native airways. Genetically altered or injured mouse tracheal epithelial cells also reflected in vivo patterns of airway epithelial cell gene expression. Passage of cells resulted in continued proliferation but limited differentiation after the first passage, suggesting that transit-amplifying cell populations were present but with independent programs for proliferation and differentiation. This approach provides a high-fidelity in vitro model for evaluation of gene regulation and expression in mouse airway epithelial cells.  相似文献   

2.
BACKGROUND: The epidermis is maintained throughout adult life by pluripotential stem cells that give rise, via daughter cells of restricted self-renewal capacity and high differentiation probability (transit-amplifying cells), to interfollicular epidermis, hair follicles, and sebaceous glands. In vivo, transit-amplifying cells are actively cycling, whereas stem cells divide infrequently. Experiments with cultured human keratinocytes suggest that c-Myc promotes epidermal-stem cell differentiation. However, Myc is a potent oncogene that suppresses differentiation and causes reversible neoplasia when expressed in the differentiating epidermal layers of transgenic mice. To investigate the effects of c-Myc on the stem cell compartment in vivo, we targetted c-MycER to the basal layer of transgenic mouse epidermis. RESULTS: The activation of c-Myc by the application of 4-hydroxy-tamoxifen caused progressive and irreversible changes in adult epidermis. Proliferation was stimulated, but interfollicular keratinocytes still underwent normal terminal differentiation. Hair follicles were abnormal, and sebaceous differentiation was stimulated at the expense of hair differentiation. The activation of c-Myc by a single application of 4-hydroxy-tamoxifen was as effective as continuous treatment in stimulating proliferation and sebocyte differentiation, and the c-Myc-induced phenotype continued to develop even after the grafting of treated skin to an untreated recipient. CONCLUSIONS: We propose that transient activation of c-Myc drives keratinocytes from the stem to the transit-amplifying compartment and thereby stimulates proliferation and differentiation along the epidermal and sebaceous lineages. The ability, demonstrated here for the first time, to manipulate exit from the stem cell compartment in vivo will facilitate further investigations of the relationship between stem cells and cancer.  相似文献   

3.
Hair follicle stem cells play important roles in maintaining homeostasis and skin tissue self-renewal. Transit-amplifying cells represent the transition of cells from hair follicle stem cells into differentiated epidermal cells. Thus far, the signaling pathway and the molecular biological mechanism that regulate the proliferation and differentiation of hair follicle stem cells remain unclear. In this paper, we studied the relationship between β-catenin and c-myc during the process of the differentiation of hair follicle stem cells into transit-amplifying cells. Based on our results, the expression of β-catenin can activate the nuclear gene c-myc and regulate the expression of transit-amplifying cell markers K15, K19, a6-integrin and β1-integrin, indicating that β-catenin is involved in the transformation process from hair follicle stem cells to transit-amplifying cells and suggesting that β-catenin plays an important biological role in the induction of this differentiation process.  相似文献   

4.
We have discovered a third bovine desmocollin gene, DSC3, and studied expression of all three desmocollin genes, DSC1, 2, and 3, by Northern blotting, RT-PCR and in situ hybridization. DSC1 is strongly expressed in epidermis and tongue papillae, showing a "skin"-type pattern resembling that previously described for keratins 1 and 10. Expression is absent from the epidermal basal layer but appears in the immediate suprabasal layers and continues uniformly to the lower granular layer. In tongue epithelium, expression is suprabasal and strictly localized to papillae, being absent from interpapillary regions. In other epithelial low level DSC1 expression is detectable only by RT-PCR. The distribution of Dsc1 glycoproteins, detected by an isoform-specific monoclonal antibody, closely reflects mRNA distribution in epidermis and tongue. DSC2 is ubiquitously expressed in epithelia and cardiac muscle. In stratified epithelia, expression appears immediately suprabasal, continuing weakly to the lower granular layer in epidermis and to just above half epithelial thickness in interpapillary tongue, oesophageal, and rumenal epithelia. DSC3 expression is restricted to the basal and immediately suprabasal layers in stratified epithelia. In deep rete ridges DSC expression strikingly resembles the distribution of stem, transit-amplifying, and terminally differentiating cells described by others. DSC3 expression is strongly basal, DSC2 is strong in 5-10 suprabasal layers, and then weakens to be superseded by strong DSC1. These results suggest that desmocollin isoform expression has important functional consequences in epithelial proliferation, stratification, and differentiation. The data also provide a standard for nomenclature of the desmocollins.  相似文献   

5.
Monolayer cultures of human foreskin and ectocervical epithelial cells were infected with retroviral vectors expressing HPV16 oncogenes, selected for G418 resistance, and cultured organotypically so that they reformed the fully differentiated, stratified squamous tissues from which they were originally derived. Expression of HPV16 E7 prevented cell cycle withdrawal in the suprabasal layers of these stratified cultures but had no effect on terminal differentiation. Cultures expressing E7 alone and those coexpressing E6 and E7 were identical in terms of suprabasal proliferation and terminal differentiation, but they differed in expression of the endogenous tumor suppressor protein p53. Immunohistochemically detectable p53 protein localized to the proliferative compartment in normal and E7-containing cultures but was undetectable in those cultures which coexpressed E6 and E7. This result suggests that E7-induced suprabasal proliferation is independent of the steady-state level of p53.  相似文献   

6.
7.
The proneural gene Ascl1 promotes formation of both neurons and oligodendrocytes from neural stem cells (NSCs), but it remains to be analyzed how its different functions are coordinated. It was previously shown that Ascl1 enhances proliferation of NSCs when its expression oscillates but induces differentiation into transit-amplifying precursor cells and neurons when its expression is up-regulated and sustained. By time-lapse imaging and immunohistological analyses, we found that Ascl1 expression oscillated in proliferating oligodendrocyte precursor cells (OPCs) at lower levels than in transit-amplifying precursor cells and was repressed when OPCs differentiated into mature oligodendrocytes. Induction of sustained overexpression of Ascl1 reduced oligodendrocyte differentiation and promoted neuronal differentiation. These results suggest that oscillatory expression of Ascl1 plays an important role in proliferating OPCs during oligodendrocyte formation.  相似文献   

8.
9.
Using suppressive subtractive hybridization, we have identified a novel gene, which we named early epithelial differentiation associated (EEDA), which is uniquely associated with an early stage of stratified epithelial differentiation. In epidermis, esophageal epithelium, and tongue epithelium, EEDA mRNA, and antigen was abundant in suprabasal cells, but was barely detectable in more differentiated cells. Consistent with the limbal location of corneal epithelial stem cells, EEDA was expressed in basal corneal epithelial cells that are out of the stem cell compartment, as well as the suprabasal corneal epithelial cells. The strongest EEDA expression occurred in suprabasal precortical cells of mouse, bovine, and human anagen follicles. Developmental studies showed that the appearance of EEDA in embryonic mouse epidermis (E 15.5) coincided with morphological keratinization. Interestingly, EEDA expression is turned off when epithelia were perturbed by wounding and by cultivation under both low and high Ca2+ conditions. Our results indicate that EEDA is involved in the early stages of normal epithelial differentiation, and that EEDA is important for the "normal" differentiation pathway in a wide range of stratified epithelia.  相似文献   

10.
It was our objective to obtain an insight into the details and dynamics of the cell proliferative changes following minor barrier disruption, the mechanisms of recovery, and their regulation. Hair of the dorsal area of DBA2-mice was removed and the epidermis was tape stripped. Tritiated thymidine was injected into groups of mice at daily intervals thereafter. Labelling and nuclear densities were measured at several time intervals later in the various epidermal strata to characterize cell production and cell fluxes through the tissue. A dramatic proliferative response was observed at 24 h when the labelling density increased more than sixfold in the basal layer. Labelled cells rapidly appeared in suprabasal layers within a few hours in large quantities while this process took over 2 days in normal skin. Some cycling cells were also found in the suprabasal layer (pulse labelling at 24 h) in contrast with the controls. The cellular flux through the suprabasal layers was drastically (20-fold) increased and the transit time was shortened. Although the nuclear density in the basal layer showed only moderate changes it increased four-fold in the suprabasal layer within 5 days. A kinetic model analysis suggested that the cell cycle time of proliferative cells dropped from a normal value of about 200 h to less than 12 h post tape strip. After 7 days, the proliferative activation still persisted, even though at 3 days post tape strip the stratum corneum had been re-established. Hence, a mild mechanical alteration with removal of some parts of the cornified layer in mouse backskin epidermis triggers a huge proliferative response with massive overproduction of cells that lasts at least 7 days. Our findings suggest that the re-establishment of the cornified layer does not immediately shut down cell proliferation and that more complex, slower (long-term) regulatory processes are involved.  相似文献   

11.
We have previously shown that a basic 64-kilodalton (no. 3 in the catalog of Moll et al.) and an acidic 55-kilodalton (no. 12) keratin are characteristic of suprabasal cell layers in cultured rabbit corneal epithelial colonies, and therefore may be regarded as markers for an advanced stage of corneal epithelial differentiation. Moreover, using an AE5 mouse monoclonal antibody, we showed that the 64-kilodalton keratin marker is expressed suprabasally in limbal epithelium but uniformly (basal layer included) in central corneal epithelium, suggesting that corneal basal cells are in a more differentiated state than limbal basal cells. In conjunction with previous data implicating the centripetal migration of corneal epithelial cells, our data support a model of corneal epithelial maturation in which corneal epithelial stem cells are located in the limbus, the transitional zone between the cornea and conjunctiva. In the present study, we analyzed the expression of the 64-kilodalton keratin in developing human corneal epithelium by immunohistochemical staining. At 8 weeks of gestation, the presumptive corneal epithelium is composed of a single layer of cuboidal cells with an overlying periderm; neither of these cell layers is AE5 positive. At 12-13 weeks of gestation, some superficial cells of the three- to four-layered epithelium become AE5 positive, providing the earliest sign of overt corneal epithelial differentiation. At 36 weeks, although the epithelium is morphologically mature (four to six layers), AE5 produces a suprabasal staining pattern, this being in contrast to the adult epithelium which exhibits uniform staining.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

12.
By incubating multilayered primary cultures of human epidermal keratinocytes in a low calcium medium, the suprabasal layers can be stripped off leaving a basal cell monolayer. When this monolayer is refed normal calcium medium a reproducible series of cell kinetic, morphological and biochemical changes take place resulting in the regeneration of a multilayered tissue. The stripping procedure seems to induce the selective proliferation of a cohort of basal cells that is committed to vertical migration and rapid terminal differentiation. In contrast, when the basal cells are allowed to regenerate in the presence of the strong mitogen, cholera toxin, lateral growth and continued proliferation are favoured at the expense of the capacity of the cells to differentiate. Repeated stripping of the same cultures disclosed a considerable heterogeneity in the capacity of the basal cells to regenerate the suprabasal layers. The number of times the basal cells could restore the suprabasal layers after repeated stripping varied from four to nine times. A negative correlation between donor age and regenerative capacity was observed. The experiments with repeated stripping of the same cultures also showed that the capacity to proliferate and to restore the multilayering was fully retained for at least four cycles of stripping-regeneration, whereas the capacity to terminally differentiate was rapidly lost. It is suggested that the present system of regenerating epidermal tissue cultures may serve as an experimental model for the study of epidermal tissue homeostasis and cellular aging.  相似文献   

13.
14.
A fundamental question in neurobiology is how the balance between proliferation and differentiation of neuronal precursors is maintained to ensure that the proper number of brain neurons is generated. Substantial evidence implicates DYRK1A (dual specificity tyrosine-phosphorylation-regulated kinase 1A) as a candidate gene responsible for altered neuronal development and brain abnormalities in Down syndrome. Recent findings support the hypothesis that DYRK1A is involved in cell cycle control. Nonetheless, how DYRK1A contributes to neuronal cell cycle regulation and thereby affects neurogenesis remains poorly understood. In the present study we have investigated the mechanisms by which DYRK1A affects cell cycle regulation and neuronal differentiation in a human cell model, mouse neurons, and mouse brain. Dependent on its kinase activity and correlated with the dosage of overexpression, DYRK1A blocked proliferation of SH-SY5Y neuroblastoma cells within 24 h and arrested the cells in G1 phase. Sustained overexpression of DYRK1A induced G0 cell cycle exit and neuronal differentiation. Furthermore, we provide evidence that DYRK1A modulated protein stability of cell cycle-regulatory proteins. DYRK1A reduced cellular Cyclin D1 levels by phosphorylation on Thr286, which is known to induce proteasomal degradation. In addition, DYRK1A phosphorylated p27Kip1 on Ser10, resulting in protein stabilization. Inhibition of DYRK1A kinase activity reduced p27Kip1 Ser10 phosphorylation in cultured hippocampal neurons and in embryonic mouse brain. In aggregate, these results suggest a novel mechanism by which overexpression of DYRK1A may promote premature neuronal differentiation and contribute to altered brain development in Down syndrome.  相似文献   

15.
CD5 is a 67-kDa glycoprotein expressed on the cell surface membrane of all T lymphocytes and on a small proportion of B lymphocytes. The physiologic role of this Ag is still unknown. Structural and functional studies of CD5 suggest that it might act as a receptor for a positive signal. CD5-specific mAb augment CD3- or mitogen-induced T cell proliferation, IL-2 secretion, and IL-2R expression and induce a rise in intracellular [Ca2+]. In this report, we describe the purification of mouse CD5 protein (mCD5) and its use as a probe to search for the ligand of CD5. We demonstrate that mCD5 specifically interacts with the mouse B cell differentiation Ag CD72/Lyb-2. Three serologically defined allelic forms of mouse CD72/Lyb-2 can all interact with mCD5. We further show that mCD5 can interact with human CD72/Lyb-2, and similarly, that human CD5 can interact with mouse CD72/Lyb-2. These studies may have major implications for the mechanisms of T-B cell communication.  相似文献   

16.
Epidermal calcium-binding protein (ECaBP) is present in the cells of the basal layer of the epidermis and other stratified epithelia. Since the basal layer compartment contains at least two types of cells: slow-cycling, poorly-differentiated, and actively proliferating, more differentiated cells, it was of interest to determine whether they both contained ECaBP. Basal and nearly suprabasal layer keratinocytes from newborn rat epidermis were fractionated into three fractions on the basis of cell size, using low-gravity sedimentation. The cell differentiation in each subgroup was estimated by cell size, morphology, cell cycle stage, RNA/DNA content, and the presence of specific keratins. The presence of ECaBP in these fractions was detected by immunocytochemistry and immunoblotting. Double staining with ECaBP antibodies and propidium iodide followed by flow cytometry was used to correlate ECaBP production and the stage of cell cycle. The relative cell size, measured by the light scattering was used to study the relationship between cell size and ECaBP production. The results show that small keratinocytes with low DNA and RNA content (G0 cells) do not express ECaBP. ECaBP was found only in intermediate size basal keratinocytes with higher DNA and RNA contents, corresponding to actively proliferating S phase cells. Large keratinocytes, which express suprabasal keratin and have low DNA and high RNA content, cease to express ECaBP. ECaBP may, therefore, be a useful marker for assessing the movement of cells from poorly differentiated reserve compartment towards proliferation and further differentiation in both physiological and pathological situations.  相似文献   

17.
18.
Transforming growth factor-beta 1 (TGF beta 1) is a potent inhibitor of epithelial cell proliferation and its effects on growth and differentiation have been extensively characterized in cultured keratinocytes. We used two TGF beta 1-specific polyclonal antibodies (anti-LC and anti-CC) to determine the presence of TGF beta 1 peptide in keratinocytes in sections of normal human skin in situ and in both plaque and nonplaque skin from individuals with psoriasis. In contrast to the differentiation phenotype expressed by keratinocytes in normal epidermis, keratinocytes in the psoriatic plaque exhibit a hyperproliferative/regenerative differentiation phenotype. Anti-TGF beta 1 staining was observed primarily in the epidermis. Anti-LC TGF beta 1 antibody stained nonproliferating, differentiated suprabasal keratinocytes intracellularly in normal skin but did not stain psoriatic plaques from five of seven patients. In contrast, anti-CC TGF beta 1 antibody stained suprabasal keratinocytes extracellularly in psoriatic plaques, but did not stain normal skin. Both anti-LC and anti-CC stained suprabasal keratinocytes intracellularly in nonplaque psoriatic skin. Thus, the conformation or structure of TGF beta 1 and its localization vary in keratinocytes with distinct differentiation phenotypes suggesting that TGF beta 1 is a potential modulator of keratinocyte differentiation in vivo. Selective association of TGF beta 1 with nonproliferating keratinocytes in the suprabasal layers of the epidermis and its exclusion from the proliferating keratinocytes in the basal layer suggest that it may be a physiological regulator of keratinocyte proliferation. In addition, the intracellular localization of TGF beta 1 peptide in both normal and psoriatic keratinocytes suggests that it is constitutively synthesized by epidermal keratinocytes in vivo.  相似文献   

19.
CD30, a member of the TNF receptor family, has been implicated in the activation of T cells and B cells. In the present study, we characterized the expression and function of murine CD30 ligand (mCD153) by utilizing mCD153 transfectants and a novel mAb against mCD153 (RM153), which can inhibit the binding of murine CD30 to mCD153. The mCD153 transfectants did not co-stimulate the proliferation of anti-CD3-stimulated naive T cells but enhanced the proliferation of anti-CD28-co-stimulated T cells. The mCD153 transfectants exhibited a potent co-stimulatory activity for proliferation of pre-activated T cells that expressed CD30 after anti-CD3 and anti-CD28 stimulation. In contrast to the CD30 expression on naive T cells that required anti-CD28 co-stimulation, mCD153 expression was observed on anti-CD3-stimulated T cells without the anti-CD28 co-stimulation, predominantly on CD4(+) T cells with a transient kinetics which peaked at 24 h but disappeared at 48 h. In contrast to the preferential expression of CD30 on Th2 cells, mCD153 was expressed on both Th1 and Th2 cells after anti-CD3 stimulation. These results indicated a differential regulation of CD30 and CD153 expression in T cells, which may be relevant to immuno-regulatory role of the CD30-CD153 interaction.  相似文献   

20.
In various cell types, including cancer cells, decorin is involved in regulation of cell attachment, migration and proliferation. In skin, decorin is seen in dermis, but not in keratinocytes. We show that decorin gene (DCN) is expressed in the cultured keratinocytes, and the protein is found in the cytoplasm of differentiating keratinocytes and in suprabasal layers of human epidermis. RT-PCR experiments showed that DCN expression is regulated by pro-inflammatory and proliferative cytokines. Our data suggest that decorin should play a significant role in keratinocyte terminal differentiation, cutaneous homeostasis and dermatological diseases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号