首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
SUMMARY 1. The objective was to compare variations in egg hatching between the two species (interspecific variations) and between populations of the same species (intraspecific variations). There were significant interspecific, but not intraspecific, differences in female size, adult life-span, egg production, hatching success, incubation periods and hatching periods.
2. The optimum temperature for hatching success within the range 3.8–22.1°C in the laboratory and the range over which at least 50% of the eggs hatched were lower for Chloroperia tripunctata (Scopoli) (8.5°C, 4.2–17.3°C) than for Siphonoperla torrentium (Pictet) (12.8°C, 6.1–19.4°C). Few eggs hatched at 22.r°C.
3. The relationship between incubation period (d days) and water temperature (T°C) was given by: d=1219/T1.368 for S. torrentium , d=253/T0.459 for C. tripunctata . Both equations successfully predicted incubation periods for eggs placed in a stream. The period over which eggs hatched was much longer for C. tripunctata than for S. torrentium at all temperatures.
4. The shorter incubation period (at r>5.6°C) and shorter hatching period for S. torrentium ensure that larvae of this species are already growing when eggs of C. tripunctata start to hatch, but the prolonged hatching period of the latter species ensures a long period of larval recruitment to the population. These differences in egg hatching may reduce competition between the two closely-related species.  相似文献   

2.
J. M. Elliott 《Ecography》1986,9(2):113-116
Gravid females of Capnia bifrons (Newman) from Windermere (English Lake District) were almost completely ovoviviparous, the eggs hatching within 15 min after oviposition in the water. When kept in the laboratory at constant temperatures between 3.8 and 19.8°C, few females survived to lay eggs at temperatures above 12.1°C. The relationship between air temperature (T°C) and the egg incubation period (Y days between fertilisation and oviposition) was given by the regression equation: Y = 316.4 T−0.9996 (r2= 0.957, p < 0.001). This equation successfully predicted egg incubation periods for gravid females kept in cages in the field.
Comparisons with similar studies on four non-ovoviviparous species of Plecoptera showed that egg development was rarely more rapid in C. bifrons . It was also shown that the hypothesis of ovoviviparity being an adaptation to combat low water temperatures could be rejected for C. bifrons from Windermere.  相似文献   

3.
SUMMARY. 1. Nemurella pictetii Klapæplek took 2 years to complete its life cycle in both the laboratory and a small stream in the English Lake District.
2. Hatching time (days after oviposition for 10%. 50% and 90% of the eggs to hatch) and hatching period (days between dates for 10% and 90% hatched) decreased with increasing water temperature in the laboratory, and the relationships were well described by a power-law. Estimates of the mean time for 50% hatching in the stream varied between 16 and 31 days after oviposition. depending on temperature.
3. Larval instars numbered fifteen for males and seventeen for females with a constant ratio of 1.18 between successive instars (conformed with Dyar's rule). Larval growth was exponential at four constant temperatures in the laboratory; mean instantaneous growth rates were 0.40±0.01% day−1 at 5.9°C, 0.43±0.01% day−1 at 8.2°C, 0.46±0.01% day−1 at 12. 1°C. 0.56±0.02%day−1 at 19.8°C. No larvae survived after instar XI at 19.8°C.
4. Larval growth was exponential in the stream and was scarcely affected by variations in water temperature (range 4.2 -14.0°C); mean growth rates for three year-classes were 0.41±0.02, 0.43±0.08, 0.54±0.05% day−1. Their similarity to laboratory growth rates under optimum conditions suggests that the availability of resources, such as food and space, was not restricting growth in the stream.  相似文献   

4.
SUMMARY. 1. The duration of egg incubation ( Y ) in Dinocras cephalotes and Siphonoperla burmeisteri was related to constant temperatures from 4 to 24°C, by the regression equations Y=2382 T 1, 402(r2=0.992, P<0.001) and y= 2683 T −1.667 ( r 2=0.994, P <0.001), respectively. No diapause was observed in either species.
2. Egg incubation in D. cephaloles was slow and took 784.9±92.7 (mean ± SD) degree days between 12 and 20°C. significantly more than in S. burmeisteri (445±76.17 degree days: t = 7.44. d.f.=13, P <0.001).
3. For D. cephalotes hatching occurred at temperatures between 12 and 24°C, and for S . burmeisteri between 8 and 20°C. The mean volume of the eggs of D. cephalotes was about 5 times greater than that of S. burmeisteri and the mean body lengths of the newly-hatched nymphs were 1.13 mm and 0.95 mm respectively.
4. This study shows that the freshwater fauna of northern Fennoscan- dia also contains species with warm stenotherm eggs. D. cephalotes. which is of a Mediterranean origin (Zwick, 1981a), may exist at the limit of its distribution in northern Fennoscandia.  相似文献   

5.
J. M. Elliott 《Ecography》1988,11(1):55-59
Adults were obtained from three populations of Taeniopteryx nebulosa and four populations of Brachyptera risi ; their eggs were incubated at seven constant temperatures (range 3.8–22.1°C). There were interspecific, but not intraspecific, differences in adult life-span, mean number of eggs laid per female, hatching success and egg incubation periods. The optimum temperature for hatching success and the range over which at least 50% of the eggs hatched were lower for T. nebulosa (6.5°C, 2.7–15.0°C) than for B. risi (9.0°C, 5.1–15.8°C). No eggs hatched at 22.1°C. The relationship between incubation period (d days) and water temperature (T°C) was given by; d = 326.4 T−1.015 for T. nebulosa , d = 824.0 T−0.739 for B. risi . Both equations successfully predicted incubation periods for eggs placed in a stream.
Hatching success and incubation periods were similar to those already published for a Norwegian population of T. nebulosa . The lack of significant intraspecific variation suggests that the genotypes associated with the variables examined in this study have remained remarkably stable in these two species in spite of the geographical isolation of their different populations.  相似文献   

6.
1. One temperature shift from 20 to 30°C in darkness induces 30–40% germination in Rumex obtusifolius seeds. The same germination percentages are found with heat treatment varying between 1 and 6h duration, indicating that the total heat sum of the temperature shift is not important.
2. Germination is greatly enhanced by three consecutive heat shifts of 1h at 30°C separated by 1h periods at 20°C.
3. The seeds are activated to a small extent after a slow warming (+2°Ch–1) from 20 to 30°C, followed by incubation for 1h at 30°C. Germination is much higher after rapid heating (+10°Ch–1) to 30°C, followed by 1h incubation at this temperature. Repeated fast heating treatments on four consecutive days enhances germination. Moderately rapid heatings (+3·3°Ch–1) give intermediate results.
4. The rate of cooling does not influence the germination percentage. Cooling alone cannot induce germination.
5. Heating alone from 15 to 25°C without cooling also activates germination. In this temperature range the seeds are more activated by rapid warming than by slow warming.
6. The ecological relevance of the response to different warming rate is discussed. The insensitivity of seeds to a slow warming might keep deeply buried seeds in a dormant stage.  相似文献   

7.
Literature data are analysed regarding losses of body substances occurring during a period of food deprivation in rainbow trout ( Oncorhynchus mykiss ). Nitrogen (protein) and energy losses show a distinct dependence on fish mass (FM [g]) and water temperature (T [°C]). Several regression models for this relationship were compared with best testing estimates as follows:
Nitrogen loss [mg N 2 fish−1 2 d−1] = 0.0658 e(1.037) 2 FM0.739
( n = 49, 9–20°C, 5–400g fish mass, P < 0.001, B = 0.826)
Nitrogen-corrected energy loss [J 2 fish−1 2 d−1] = 22.09 e(1.034) 2 FM0.833
( n = 63, 9–25°C, 8–400 g fish mass, P < 0.001, B = 0.887).
For nitrogen loss as well as for nitrogen-corrected energy loss, the metabolic rate shows a progressive increase with rising water temperature. The temperature coefficient increases in magnitude as temperature increases. The introduction of a general common exponent (0.8 instead of 0.739 for nitrogen loss and 0.833 for energy loss) for fish mass decreases the precision of the estimate. The equations could serve as a base for estimating net protein and net energy maintenance requirements of rainbow trout. Possible limitations, caused by uncertainities in estimating the elevated metabolic rate by food intake and ingestion, are discussed.  相似文献   

8.
Abstract. 1. The population of the lycosid Trochosa terricola Thorell was sampled from April 1973 to August 1975 at Weeting Heath NNR, a Breckland grass heath.
2. Four sampling methods were compared for efficiency. Hand searching gave density estimates between 38.3 and 70.1% of heat extraction.
3. The temperature range in the sward at +1 cm was –5°C to 39°C with January and July means of 3.2°C and 17.4°C.
4. Eight male and nine female instars were determined and the life cycle extended over 2 or 3 years.
5. Adults were nocturnal but the juveniles diurnal. An annual diplochrone activity pattern was observed for adult males.
6. The horizontal distribution within the sward was aggregated, the structure and microhabitat being important determining factors. The population density was greater in moist, young Festuca spp. tussocks. An equation relating population density to habitat characteristics was derived.
7. The overall population density ranged from 14.0 m-2 to 76.0 m-2 and was maximal in autumn after breeding. The population biomass was greatest during autumn (291.2 mg d.wt m-2).
8. Mean number of juveniles emerging from an egg sac was 77.3 (first sac) and 38.0 (second sac). The natality in 1973 was 66.8 individuals m-2.
9. The survivorship curve until maturity varied between types I and III in different years.
10. The population dynamics were compared and are discussed in the light of other data. The variable population characteristics suggested that Den Boer's "spreading of risk" theory applied to the T.terricola population.  相似文献   

9.
Oxygen uptake rates and yolk-inclusive dry weiGhts were measured during the egg and yolk-sac larval stages of milkfish, Chanos chanos (Forsskal). Oxygen uptake by eggs and yolk-sac larvae was measured to assess the effects of four salinities (20,25,30,35 ppt) at 28°C. The effects of three temperatures (23,28,33°C) on oxygen uptake by yolk-sac larvae were determined at a salinity of 35 ppt. Dry weights were measured throughout embryonic development at 28°C and the yolk-sac stage at 23.28 and 33°C.
Oxygen uptake rates of eggs increased more than fivefold during embryogenesis (0.07±0.03 to 0.40 ± 03 μl O2 egg −1 h −1;blastula to prehatch stage). Larval oxygen uptake did not change with age but was affected by rearing temperature (0.33 ± 0.08, 0.44 ± 0.07 and 0.63 ± 0.13 μl O2 larva −1 h−1 at 23, 28 and 33°C, respectively; Q10= 1.93). Acute temperature changes from 28 to 33°C caused significant increases in oxygen uptake by embryos (Q 10= 1.69–3.58) and yolk-sac larvae (Q 10=2.55). Salinity did not affect metabolic rates.
Dry weight of eggs incubated at 28°C decreased 13% from fertilization to hatching. Incubation temperatures from 23–33°C did not affect dry weights at hatching. Rearing temperatures significantly affected the rate of larval yolk absorption (Q 10= 2.25).  相似文献   

10.
SUMMARY. 1. Newly-laid eggs of Coenagrion puella (L.) from a pond near Herzogenburg (Lower Austria) were kept at constant water temperatures (range c .3.5°C to c .28°C)in the laboratory. Hatching success varied with temperature; no eggs hatched below 12°C and nearly all hatched at c .l6°C. Hatching time decreased with increasing temperature and the relationship between the two variables within the range 12–28 °C was well described by a power law. The length of the hatching period was less than 12 days. Hatching times estimated from the power-law equations and those obtained in the field experiments were similar. Therefore both the hatching time and the length of the hatching period in the field could be estimated from the laboratory data for the range 12–28°C.
2. The maximum number of instars from egg to imago was 11; the average body length increment (mm) per moult was proportionately constant at c .26% and Dyar's rule was applicable. The interval between moults decreased with increasing temperature up to the seventh instar and the relationship between the two variables within the range 12–28°C was well described by a power law. The moulting interval for instars 8–11 ranged from 23 to 48 days and was relatively independent of temperature. No moulting occurred at temperatures below 12°C.
3. Larval growth was logistic in the laboratory and variations in mean logistic growth rate (range 0–2.5% length day−1) were related to mean temperature with no growth at temperatures <12°C. Larval growth rates in pond experiments were similar to those estimated from laboratory data, and therefore the regression equations obtained from the laboratory experiments are probably applicable to larval growth in the field.
4. Information on the life cycle of C. puella is briefly reviewed and it is concluded that C. puella from the pond near Herzogenburg has an univoltine life cycle.  相似文献   

11.
Abstract. 1. For many species of insect, cold hardiness is an important trait that enables a population to develop in the next season and to extend its range. To elucidate the role of cold hardiness of the migratory locust Locusta migratoria L. in its outbreak and distribution areas, egg cold hardiness was examined in locusts derived from four locations from latitude 18°23'N to latitude 41°10'N in eastern China.
2. The supercooling points of eggs from different geographic populations did not differ significantly for the first development stage, with an average ± SE of −24.5 ± 0.51 °C, or for the second stage, −22.06 ± 0.68 °C, however there was a significant difference for the embryonic development phase among the four geographical populations. The egg supercooling point increased gradually from neonatal egg to old egg; eggs prior to hatching always had a much higher supercooling point.
3. Comparisons of the cold hardiness of four populations were carried out by validating the close correlation between latitude and the effects of cold on hatching, low lethal temperature (Ltemp50), and low lethal time (Ltime50). There were significant differences among the four populations; the northern population was more cold hardy than the southern population, and the two mid-latitude populations were intermediately cold hardy.
4. The cold hardiness of all populations was enhanced to various degrees by short-term cold acclimation at 0 °C and 5 °C. For most populations, a 2-day acclimation period seemed to be optimal.  相似文献   

12.
1. The hypothesis that a 3 °C elevation in temperature and doubled CO2 concentration would have no effect on the synchronization of winter moth egg hatch with budburst in oak was tested by comparing the separate and interactive effects of ambient and elevated (+ 3 °C) temperature and ambient and elevated (doubled to 340 p.p.m.) CO2 in eight experimental Solardomes. In addition, an outdoor control was compared with the ambient temperature/CO2 treatment combination.
2. Elevated temperature accelerated darkening (preceding egg hatch by about 5–10 days) and hatching of eggs developing off the trees; elevated CO2 had no effect. The same effects were observed in eggs developing on the trees.
3. Within treatments, date of egg hatch was the same on trees with early or late budburst.
4. Egg darkening and budburst were closely synchronized at both ambient and elevated temperatures.
5. Both eggs and trees required fewer cumulative heat units (day degrees > 4 °C), for hatching and budburst, respectively, at ambient than elevated temperatures. The requirements in the outdoor control treatment were similar to those in the ambient Solardome treatment.
6. Egg hatch between 10 and 25 °C, on a temperature gradient in the laboratory, required a constant number of heat units; fewer were required below 10 °C.
7. Elevated temperatures, in the Solardomes and the field, delayed adult emergence from the pupae.
8. The results suggest that a general increase in temperature with climatic change would not affect the closeness of the synchronization between egg hatch of winter moth and budburst of oak.  相似文献   

13.
Goldsinny Ctenolabrus rupestris were subjected to rapid, environmentally realistic, reductions in temperature at 2° C increments from 10 to 4° C over a 3-day period in full-strength sea water. In separate experiments, oxygen uptake measurements and ultrasound recordings of heart rate and opercular motion were carried out at regular intervals over the same temperature regime. Mean oxygen uptake rates fell from 0.042 to 0.028 ml O2 g−1 h−1 between 10 and 6° C respectively (Q10=2.71). Between 6 and 4° C mean rates decreased from 0.028 to 0.008 ml O2 g−1 h−1 (Q10=542). Mean opercular motion and heart beat rates decreased from 49.5 and 60.3 beats min−1 respectively at 10° C to 18.7 and 18.0 beats min−1 respectively at 4° C. Most goldsinny subjected to 4° C were observed in a torpid state and would not react to external stimulation. Opercular motion was erratic at 4° C and would at times cease altogether for periods up to 1.3 min duration. Heart movement was diffcult to detect at 4° C and may also have ceased for prolonged periods. Q10 values for opercular motion and heart beat rates recorded between 6 and 4° C were 6.39 and 24.52 respectively compared with values of 2.42 and 2.93 respectively recorded between 10 and 8° C. Such large depressions in metabolism appear not to have been reported previously for a marine fish species. No goldsinny mortalities were recorded at any temperature. The possibility that hypometabolic torpor is an adaptive strategy for goldsinny survival at low environmental temperatures is discussed.  相似文献   

14.
Turbot Scophthalmus maximus maximum oxygen uptake following feeding and exhaustive exercise increased from 107 mg O2 kg−1 h−1 at 6° C to c . 218 mg O2 kg−1 h−1 at 18° C, then increased slightly from 18 to 22° C to 224 mg O2 kg−1 h−1. Standard oxygen uptake increased exponentially as a function of temperature from 11 mg O2 kg −1 h−1 at 6° C to 66 mg O2 kg−1 h−1 at 22° C. Gradual reduction in oxygen concentration to 87–90% air saturation at 6, 10. 18° C and <80% at 14 and 22° C limited the maximum metabolic rate but, supersaturation (>100% saturation) had little effect. Metabolic scope attained a maximum of 176 mg O2 kg−1 h−1 at 18° C. Interpolation of the results showed that this value changed little between 16 and 20° C. It is suggested that this temperature range is optimal for turbot of c . 500 g. A comparison with a previous study on feeding demand in intensive farming conditions showed a linear relationship between appetite and metabolic scope. It is concluded that the ability of a fish to supply energy (including the energy requirement of digestive metabolism) above a standard level is a limiting factor in the manifestation of its feeding demand.  相似文献   

15.
The Cape golden mole, Chrysochloris asiatica is an insectivore which excavates superficial foraging burrows as it searches for its food. It has a mean (±S.D.) resting metabolic rate (RMR) when newly captured of 1–17±0.17 cm3 O2g-1 h-1 ( n = 14), within the thermoneutral zone (TNZ) of 30–32°C.
The body temperature (Tb) of the mole in the TNZ is low 32.9 ± 0.36 ( n = 14) and remains stable at ambient temperatures (Tas) from 28–32°C. Above 32°C (range 34–37°C), Tb increases albeit slightly to 36 ± 1.75°C ( n = 14). The conductance is high 0.27 ± 006cm3 O2g-1 h-l°C-1 ( n = 46) at the lower limit of thermoneutrality. The mean RMR at 9°C (the lowest Ta tested) was 4.82±11 cm3 O2g-1h-1, which is 4.1 times that of the RMR in the TNZ.
At an ambient temperature of 9°C, three of the golden moles entered a state of torpor where the RMR was reduced from 5.9±0.56 to 10 1.0 ± 0.69cm3O2g-1h-1.  相似文献   

16.
1. We hypothesized that a large collection of reasonably standardized data for natural algal assemblages would reveal the influence of environmental factors on the fraction of recently produced photosynthate allocated to lipid.
2. Our analysis of photosynthate allocation in fresh- and saltwater systems showed that allocation of carbon to lipid was not well correlated with any one environmental factor.
3. Allocation to lipid increases with temperature up to 12 °C (lipid allocation = 11.7 + 1.70*temperature (°C), n = 48, r 2 = 0.50, P < 0.001) but not above.
4. The relationship between temperature and lipid allocation appears to be caused by a unique convergence of nutrient limitation (nitrate or silicate) in the presence of facultative lipid-producing algae (diatoms or other chrysophytes) which occurs at or below 12 °C during stratification of the water column.  相似文献   

17.
Rates of oxygen consumption were measured in the geothermal, hot spring fish, Oreochromis alcalicus grahami by stopped flow respirometry. At 37° C, routine oxygen consumption followed the allometric relationship: V o2=0.738 M 0.75, where V o2 is ml O2 h −1 and M is body mass (g). This represents a routine metabolic rate for a 10 g fish at 37° C of 0.415 ml O2 g−1 h −1 (16.4 μmol O2 g −1 h −1). Acutely increasing the temperature from 37 to 42° C significantly elevated the rate of O2 consumption from 0.739 to 0.970 ml O2 g −1 h −1 ( Q 10=l.72). In the field, O. a. grahami was observed to be 'gulping' air from the surface of the water especially in hot springs that exceeded 40° C. O. a. grahami may utilize aerial respiration when O2 requirements are high.  相似文献   

18.
Isolate 18191, obtained from mature strawberry fruit and determined as Paenibacillus polymyxa has shown an antagonistic potential against Botrytis cinerea , the causal agent of grey mould in strawberries. Germ tube growth of conidia of B. cinerea was strongly inhibited by the culture suspension of the antagonist in aqueous strawberry fruit pulp suspension (1%) but germination rate of conidia was not affected. The application of the culture suspension and the washed cells on detached strawberry leaf discs reduced conidiophore density of B. cinerea by 67 and 84%, respectively. The treatment of detached leaf discs with culture suspensions of different cell densities (1 × 106, 1 × 107, 1 × 108) showed that the lowest density already reduced incidence of B. cinerea by 68% after 8 days incubation period. Investigating the influence of the temperature on the effectiveness of P. polymyxa it was observed that the antagonist was highly effective already at 10°C and reduced incidence and conidiophore density of B. cinerea by 53 and 58%, respectively. In 3-year field trials the effectiveness of P. polymyxa was in a range of 24–36% as compared to the water control.  相似文献   

19.
1. Hyalella montezuma is endemic to Montezuma Well, Arizona, and is exposed to minimal diel and seasonal temperature fluctuations in the pelagic zone (21 ± 4 °C). Juvenile H . montezuma feed in the pelagic zone during the day and migrate into the littoral vegetation at night, while adults remain primarily in the littoral vegetation.
2. Oxygen consumption ( V O2) of adult and juvenile H . montezuma was measured at 20, 25 and 30 °C. The V O2 of both adult and juvenile H . montezuma increased with temperature. However, the V O2 of juveniles was significantly greater than that of adults at all temperatures, with greatest divergence at 30 °C where mean juvenile V O2 (6.31 μl mg–1 dry weight (DW) h–1) was almost twice that of adults (3.60 μl mg–1 DW h–1).
3. Survivorship of juveniles was significantly lower (54%) at 30 °C than at 27.5 °C (95%) after 4 h, whereas adults showed at least a 93% survivorship at both temperatures.
4. Our data suggest that temperature may have been the proximate cue that elicited the diel horizontal migration of juvenile H . montezuma in Montezuma Well, with the behaviour maintained and enhanced by intensive invertebrate predation in the pelagic and littoral zones.  相似文献   

20.
1. Hyalella montezuma is endemic to Montezuma Well, Arizona, and is exposed to minimal diel and seasonal temperature fluctuations in the pelagic zone (21 ± 4 °C). Juvenile H . montezuma feed in the pelagic zone during the day and migrate into the littoral vegetation at night, while adults remain primarily in the littoral vegetation.
2. Oxygen consumption ( V O2) of adult and juvenile H . montezuma was measured at 20, 25 and 30 °C. The V O2 of both adult and juvenile H . montezuma increased with temperature. However, the V O2 of juveniles was significantly greater than that of adults at all temperatures, with greatest divergence at 30 °C where mean juvenile V O2 (6.31 μl mg–1 dry weight (DW) h–1) was almost twice that of adults (3.60 μl mg–1 DW h–1).
3. Survivorship of juveniles was significantly lower (54%) at 30 °C than at 27.5 °C (95%) after 4 h, whereas adults showed at least a 93% survivorship at both temperatures.
4. Our data suggest that temperature may have been the proximate cue that elicited the diel horizontal migration of juvenile H . montezuma in Montezuma Well, with the behaviour maintained and enhanced by intensive invertebrate predation in the pelagic and littoral zones.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号