首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The molecular mechanism of how the dam-methylation status of the DNA is recognized during DNA mismatch repair by the strand discrimination endonuclease MutH is not known. A comparison of the crystal structure of MutH with those of co-crystal structures of several restriction endonucleases, together with a multiple sequence alignment of MutH and related proteins suggested that Phe94, Arg184 and Tyr212 could be involved in discrimination between a methylated or unmethylated adenine in the d(GATC) sequence. A mutational analysis revealed that the variants R184A and Y212S, but not F94A, were substantially reduced in their ability to complement a mismatch repair deficiency in a mutH(-) Escherichia coli strain. In vitro, R184A displayed a strongly reduced endonuclease activity, whereas the Y212S variant has almost completely lost its preference for cleaving the unmethylated strand at hemimethylated d(GATC) sites. Furthermore, the Y212 variant can cleave fully methlyated d(GATC) sites at a comparable rate to unmethylated d(GATC) sites. This demonstrates that Tyr212 is an important, if not the only amino acid residue in MutH for sensing the methylation status of the DNA.  相似文献   

2.
The aim of this study was to synthesize and evaluate plasmid DNA interaction of new platinum(II) complexes with some 2-substituted benzimidazole derivatives as carrier ligands which may have potent anticancer activity and low toxicity. Twelve benzimidazole derivatives carrying indole, 2-/or 3-/or 4-methoxyphenyl, 4-methylphenyl, 3,4-dimethoxyphenyl, 3,4,5-trimethoxyphenyl, 4-methoxybenzyl, 3,4,5-trimethoxybenzyl, 3,4,5-trimethoxystyryl, 3,4,5-trimethoxybenzylthio or dimethylamino ethyl groups in their position 2 and twelve platinum(II) complexes with these carrier ligands were synthesized. The chemical structure of the platinum complexes have been characterized by their elemental analysis and FIR, 1H NMR and mass spectra and their 1H NMR and FIR spectra were interpreted by comparison with those of the ligands. The interaction of all the ligands and their complexes with plasmid DNA and their restriction endonuclease reactions by BamHI and HindIII enzymes were studied by agarose gel electrophoresis. It was determined that complex 1 [dichloro-di(2-(1H-indole-3-yl)benzimidazole)platinum(II)·2H2O] has stronger interaction than carboplatin and complex 10 [dichloro-di(2-(3,4,5-trimethoxystyryl)benzimidazole)platinum(II)·2H2O] has stronger interaction than both carboplatin and cisplatin with plasmid DNA.  相似文献   

3.
According to the current paradigm type IIE restriction endonucleases are homodimeric proteins that simultaneously bind to two recognition sites but cleave DNA at only one site per turnover: the other site acts as an allosteric locus, activating the enzyme to cleave DNA at the first. Structural and biochemical analysis of the archetypal type IIE restriction enzyme EcoRII suggests that it has three possible DNA binding interfaces enabling simultaneous binding of three recognition sites. To test if putative synapsis of three binding sites has any functional significance, we have studied EcoRII cleavage of plasmids containing a single, two and three recognition sites under both single turnover and steady state conditions. EcoRII displays distinct reaction patterns on different substrates: (i) it shows virtually no activity on a single site plasmid; (ii) it yields open-circular DNA form nicked at one strand as an obligatory intermediate acting on a two-site plasmid; (iii) it cleaves concertedly both DNA strands at a single site during a single turnover on a three site plasmid to yield linear DNA. Cognate oligonucleotide added in trans increases the reaction velocity and changes the reaction pattern for the EcoRII cleavage of one and two-site plasmids but has little effect on the three-site plasmid. Taken together the data indicate that EcoRII requires simultaneous binding of three rather than two recognition sites in cis to achieve concerted DNA cleavage at a single site. We show that the orthodox type IIP enzyme PspGI which is an isoschisomer of EcoRII, cleaves different plasmid substrates with equal rates. Data provided here indicate that type IIE restriction enzymes EcoRII and NaeI follow different mechanisms. We propose that other type IIE restriction enzymes may employ the mechanism suggested here for EcoRII.  相似文献   

4.
A model for kinetics of circular substrate cleavage by restriction endonuclease was formulated. The aim of the analysis of the model was to extract kinetic constants for all target sites from time-dependence of fragment concentration in reaction products. That was proved to be possible for molecules with an odd number of fragments only. A symmetry of the molecules with an even number of fragment is the cause. A solution for molecules with an odd number of fragments was found and methods for dealing with the other molecules were suggested.Preliminary results were presented at VIIth CMEA Symposium Biophysics of Nucleic Acids and Proteins, Brno (Czechoslovakia) December 2–6, 1985.  相似文献   

5.
We have determined the crystal structure of the PvuII endonuclease in the presence of Mg(2+). According to the structural data, divalent metal ion binding in the PvuII subunits is highly asymmetric. The PvuII-Mg(2+) complex has two distinct metal ion binding sites, one in each monomer. One site is formed by the catalytic residues Asp58 and Glu68, and has extensive similarities to a catalytically important site found in all structurally examined restriction endonucleases. The other binding site is located in the other monomer, in the immediate vicinity of the hydroxyl group of Tyr94; it has no analogy to metal ion binding sites found so far in restriction endonucleases. To assign the number of metal ions involved and to better understand the role of Mg(2+) binding to Tyr94 for the function of PvuII, we have exchanged Tyr94 by Phe and characterized the metal ion dependence of DNA cleavage of wild-type PvuII and the Y94F variant. Wild-type PvuII cleaves both strands of the DNA in a concerted reaction. Mg(2+) binding, as measured by the Mg(2+) dependence of DNA cleavage, occurs with a Hill coefficient of 4, meaning that at least two metal ions are bound to each subunit in a cooperative fashion upon formation of the active complex. Quenched-flow experiments show that DNA cleavage occurs about tenfold faster if Mg(2+) is pre-incubated with enzyme or DNA than if preformed enzyme-DNA complexes are mixed with Mg(2+). These results show that Mg(2+) cannot easily enter the active center of the preformed enzyme-DNA complex, but that for fast cleavage the metal ions must already be bound to the apoenzyme and carried with the enzyme into the enzyme-DNA complex. The Y94F variant, in contrast to wild-type PvuII, does not cleave DNA in a concerted manner and metal ion binding occurs with a Hill coefficient of 1. These results indicate that removal of the Mg(2+) binding site at Tyr94 completely disrupts the cooperativity in DNA cleavage. Moreover, in quenched-flow experiments Y94F cleaves DNA about ten times more slowly than wild-type PvuII, regardless of the order of mixing. From these results we conclude that wild-type PvuII cleaves DNA in a fast and concerted reaction, because the Mg(2+) required for catalysis are already bound at the enzyme, one of them at Tyr94. We suggest that this Mg(2+) is shifted to the active center during binding of a specific DNA substrate. These results, for the first time, shed light on the pathway by which metal ions as essential cofactors enter the catalytic center of restriction endonucleases.  相似文献   

6.
The structure of I-HmuI, which represents the last family of homing endonucleases without a defining crystallographic structure, has been determined in complex with its DNA target. A series of diverse protein structural domains and motifs, contacting sequential stretches of nucleotide bases, are distributed along the DNA target. I-HmuI contains an N-terminal domain with a DNA-binding surface found in the I-PpoI homing endonuclease and an associated HNH/N active site found in the bacterial colicins, and a C-terminal DNA-binding domain previously observed in the I-TevI homing endonuclease. The combination and exchange of these features between protein families indicates that the genetic mobility associated with homing endonucleases extends to the level of independent structural domains. I-HmuI provides an unambiguous structural connection between the His-Cys box endonucleases and the bacterial colicins, supporting the hypothesis that these enzymes diverged from a common ancestral nuclease.  相似文献   

7.
To observe the binding of plasmid DNA to non-nuclear DNA binding proteins in sar-coplasmic reticulum (SR) and the effects of this binding on SR function, sarcoplasmic reticulum proteins in rat skeletal muscle were isolated by differential centrifuge and sucrose density-gradient centrifuge. The results showed that there are two sequence-independent DNA binding proteins in SR proteins, the molecular weights of which are 83 and 58 ku, respectively. Ca2 uptake and release of SR were remarkably promoted by the binding of plasmid DNA to DNA binding proteins in SR, the mechanism is probably through increasing of Ca2 -ATPase activity in SR and changing of character of Ca2 release channel ryanodine receptors induced by the binding. These results suggest that there exist DNA binding proteins in SR and its binding to DNA may affect Ca2 transport of SR.  相似文献   

8.
9.
To observe the binding of plasmid DNA to non-nuclear DNA binding proteins in sarcoplasmic reticulum (SR) and the effects of this binding on SR function, sarcoplasmic reticulum proteins in rat skeletal muscle were isolated by differential centrifuge and sucrose density-gradient centrifuge. The results showed that there are two sequence-independent DNA binding proteins in SR proteins, the molecular weights of which are 83 and 58 ku, respectively. Ca2+ uptake and release of SR were remarkably promoted by the binding of plasmid DNA to DNA binding proteins in SR, the mechanism is probably through increasing of Ca2+-ATPase activity in SR and changing of character of Ca2+ release channel ryanodine receptors induced by the binding. These results suggest that there exist DNA binding proteins in SR and its binding to DNA may affect Ca2+ transport of SR.  相似文献   

10.
11.
Protein binding, DNA binding/cleavage and in vitro cytotoxicity studies of 2-((3-(dimethylamino)propyl)amino)naphthalene-1,4-dione (L) and its four coordinated M(II) complexes [M(II) = Co(II), Cu(II), Ni(II) and Zn(II)] have been investigated using various spectral techniques. The structure of the ligand was confirmed by spectral and single crystal XRD studies. The geometry of the complexes has been established using analytical and spectral investigations. These complexes show good binding tendency to bovine serum albumin (BSA) exhibiting high binding constant values (105 M?1) when compared to free ligand. Fluorescence titration studies reveal that these compounds bind strongly with CT-DNA through intercalative mode (Kapp 105 M?1) and follow the order: Cu(II) > Zn(II) > Ni(II) > Co(II) > L. Molecular docking study substantiate the strength and mode of binding of these compounds with DNA. All the complexes efficiently cleaved pUC18-DNA via hydroxyl radical mechanism and the Cu(II) complex degraded the DNA completely by converting supercoiled form to linear form. The complexes demonstrate a comparable in vitro cytotoxic activity against two human cancer cell lines (MCF-7 and A-549), which is comparable with that of cisplatin. AO/EB and DAPI staining studies suggest apoptotic mode of cell death, in these cancer cells, with the compounds under investigation.  相似文献   

12.
We analyzed the effect of ethidium bromide (EtBr) on the cleavage of closed circular pBR322 DNA molecules by six restriction enzymes which make staggered or flush cuts (EcoRI, HindIII, BglI, PstI, HincII, PvuII). EtBr concentrations and reaction temperatures were determined at which DNA molecules with single-strand breaks were the major reaction product of digestion by all the enzymes. However, the amounts of intermediates which could be isolated differed for various enzymes. The results extend previous studies, showing that sequential cleavage of the DNA strands probably is a general property of restriction endonucleases.  相似文献   

13.
14.
J A Engler  R A Forgie  M M Howe 《Gene》1980,10(1):79-83
We have cleaved phage Mu DNA with restriction endonucleases EcoRI and BamHI and have cloned three specific DNA fragments from the middle of the Mu genome into vector plasmid pBR322. By marker rescue experiments, we have determined that the two BamHI cleavage sites in Mu DNA occur within cistrons E and F.  相似文献   

15.
Novel chiral Schiff base ligands (R)/(S)‐2‐amino‐3‐(((1‐hydroxypropan‐2‐yl)imino)methyl)‐4H‐chromen‐4‐one (L1 and L2) derived from 2‐amino‐3‐formylchromone and (R/S)‐2‐amino‐1‐propanol and their Cu(II)/Zn(II) complexes ( R1 , S1 , R2 , and S2 ) were synthesized. The complexes were characterized by elemental analysis, infrared (IR), hydrogen (1H) and carbon (13C) nuclear magnetic resonance (NMR), electrospray ionization‐mass spectra (ESI‐MS), and molar conductance measurements. The DNA binding studies of the complexes with calf thymus were carried out by employing different biophysical methods and molecular docking studies that revealed that complexes R1 and S1 prefers the guanine–cytosine‐rich region, whereas R2 and S2 prefers the adenine–thymine residues in the major groove of DNA. The relative trend in Kb values followed the order R1 S1 R2 S2 . This observation together with the findings of circular dichroic and fluorescence studies revealed maximal potential of (R)‐enantiomeric form of complexes to bind DNA. Furthermore, the absorption studies with mononucleotides were also monitored to examine the base‐specific interactions of the complexes that revealed a higher propensity of Cu(II) complexes for guanosine‐5′‐monophosphate disodium salt, whereas Zn(II) complexes preferentially bind to thymidine‐5′‐monophosphate disodium salt. The cleavage activity of R1 and R2 with pBR322 plasmid DNA was examined by gel electrophoresis that revealed that they are good DNA cleavage agents; nevertheless, R1 proved to show better DNA cleavage ability. Topoisomerase II inhibitory activity of complex R1 revealed that the complex inhibits topoisomerase II catalytic activity at a very low concentration (25 μM). Furthermore, in vitro antitumor activity of complexes R1 and S1 were screened against human carcinoma cell lines of different histological origin. Chirality 24:977–986, 2012. © 2012 Wiley Periodicals, Inc.  相似文献   

16.
17.
The Bse634I restriction endonuclease is a tetramer and belongs to the type IIF subtype of restriction enzymes. It requires two recognition sites for its optimal activity and cleaves plasmid DNA with two sites much faster than a single-site DNA. We show that disruption of the tetramerisation interface of Bse634I by site-directed mutagenesis converts the tetrameric enzyme into a dimer. Dimeric W228A mutant cleaves plasmid DNA containing one or two sites with the same efficiency as the tetramer cleaves the two-site plasmid. Hence, the catalytic activity of the Bse634I tetramer on a single-site DNA is down-regulated due to the cross-talking interactions between the individual dimers. The autoinhibition within the Bse634I tetramer is relieved by bridging two DNA copies into the synaptic complex that promotes fast and concerted cleavage at both sites. Cleavage analysis of the oligonucleotide attached to the solid support revealed that Bse634I is able to form catalytically competent synaptic complexes by bridging two molecules of the cognate DNA, cognate DNA-miscognate DNA and cognate DNA-product DNA. Taken together, our data demonstrate that a single W228A mutation converts a tetrameric type IIF restriction enzyme Bse634I into the orthodox dimeric type IIP restriction endonuclease. However, the stability of the dimer towards chemical denaturants, thermal inactivation and proteolytic degradation are compromised.  相似文献   

18.
Molecular beacons for detecting DNA binding proteins: mechanism of action   总被引:3,自引:0,他引:3  
New methodology for detecting sequence-specific DNA binding proteins has been recently developed (T. Heyduk, and E. Heyduk, Nat. Biotechnol. 20 (2002) 171). The central feature of this assay is protein-dependent association of two DNA fragments, each containing about half of a DNA sequence-defining the protein binding site. In this report we propose a physical model explaining the functioning of the assay. The model involves two linked equilibria: association between the two DNA fragments and binding of the protein exclusively to the complex between the two DNA fragments. Equilibrium and kinetic experiments provided evidence supporting the proposed model and showed that the model was sufficient to describe the behavior of the assay under a variety of conditions. Kinetic data identified the association between the two DNA half-sites as the rate-limiting step of the assay. Theoretical simulations based on the proposed model were used to investigate parameters important for the maximal sensitivity of the assay. Physical understanding of the assay will provide means for rational design of the assay for a variety of target proteins.  相似文献   

19.
The DNA and protein sequences of single-stranded DNA binding proteins (SSBs) encoded by the plP71a, plP231a, and R64 conjugative plasmids have been determined and compared to Escherichia coli SSB and the SSB encoded by F-plasmid. Although the amino acid sequences of all of these proteins are highly conserved within the NH2-terminal two-thirds of the protein, they diverge in the COOH-terminal third region. A number of amino acid residues which have previously been implicated as being either directly or indirectly involved in DNA binding are conserved in all of these SSBs. These residues include Trp-40, Trp-54, Trp-88, His-55, and Phe-60. On the basis of these sequence comparisons and DNA binding studies, a role for Tyr-70 in DNA binding is suggested for the first time. Although the COOH-terminal third of these proteins diverges more than their NH2-terminal regions, the COOH-terminal five amino acid residues of all five of these proteins are identical. In addition, all of these proteins share the characteristic property of having a protease resistant, NH2-terminal core and an acidic COOH-terminal region. Despite the high degree of sequence homology among the plasmid SSB proteins, the F-plasmid SSB appears unique in that it was the only SSB tested that neither bound well to poly(dA) nor was able to stimulate DNA polymerase III holoenzyme elongation rates. Poly [d(A-T)] melting studies suggest that at least three of the plasmid encoded SSBs are better helix-destabilizing proteins than is the E. coli SSB protein.  相似文献   

20.
Two new Cu(II) complexes, [Cu(acac)(dpq)Cl] () and [Cu(acac)(dppz)Cl] () (acac = acetylacetonate, dpq = dipyrido[3,2-d:20,30-f]quinoxaline, dppz = dipyrido[3,2-a:20,30-c] phenazine), have been synthesized and their DNA binding, photo-induced DNA cleavage activity and cell cytotoxicity are studied. The complexes show good binding propensity to calf thymus DNA in the order: 2(dppz) > 1(dpq). Furthermore, two complexes exhibit efficient DNA cleavage activity on natural light or UV-A (365 nm) irradiation via a mechanistic pathway involving formation of singlet oxygen as the reactive species. The photo-induced DNA cleavage activity of the dppz complex 2 is found to be more efficient than its dpq analogue. In vitro study of the photocytotoxicity of two complexes on HeLa cells indicate that both of them have the potential to act as effective anticancer drugs, with IC50 values of 5.25 ± 0.83 μM (1) and 4.40 ± 0.52 μM (2) in the natural light, and 2.57 ± 0.92 μM (1) and 2.18 ± 0.52 μM (2) in UV-A light. In addition, to detect an apoptotic HeLa body, cells were stained with Hoechst 33342 dye.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号