首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In Escherichia coli, adenylate cyclase activity is regulated by phosphorylated EnzymeIIAGlc, a component of the phosphotransferase system for glucose transport. In strains deficient in EnzymeIIAGlc, CAMP levels are very low. Adenylate cyclase containing the D414N substitution produces a low level of cAMP and it has been proposed that D414 may be involved in the process leading to activation by EnzymeIIAGlc. In this work, spontaneous secondary mutants producing large amounts of cAMP in strains deficient in EnzymeIIAGlc were obtained. The secondary mutations were all deletions located in the cya gene around the D414N mutation, generating adenylate cyclases truncated at the carboxyl end. Among them, a 48 kDa protein (half the size of wild-type adenylate cyclase) was shown to produce ten times more cAMP than wild-type adenylate cyclase in strains deficient in EnzymeIIAGlc. In addition, this protein was not regulated in strains grown on glucose and diauxic growth was abolished. This allowed the definition of a catalytic domain that is not regulated by the phosphotransferase system and produces levels of cAMP similar to that of regulated wild-type adenylate cyclase in wild-type strains grown in the absence of glucose. Further analysis allowed the characterization of the COOH-terminal regulatory domain, which is proposed to be inhibitory to the activity of the catalytic domain.  相似文献   

2.
3.
Using crude membrane preparations of Saccharomyces cerevisiae, we have demonstrated that glucose and glucose analogues which are not efficiently phosphorylated activate the guanine nucleotide-dependent adenylate cyclase in vitro. The activation appears to be mediated by the Ras proteins. Moreover, data are presented indicating that glucose and its analogues activate adenylate cyclase by stimulating the exchange of guanine nucleotides at its regulatory component. Thus, it has been possible to show the action of a physiological effector on the nucleotide exchange reaction in a member of the ras superfamily.  相似文献   

4.
5.
Using crude membrane preparations of Saccharomyces cerevisiae, we have demonstrated that glucose and glucose analogues which are not efficiently phosphorylated activate the guanine nucleotide-dependent adenylate cyclase in vitro. The activation appears to be mediated by the Ras proteins. Moreover, data are presented indicating that glucose and its analogues activate adenylate cyclase by stimulating the exchange of guanine nucleotides at its regulatory component. Thus, it has been possible to show the action of a physiological effector on the nucleotide exchange reaction in a member of the ras superfamily.  相似文献   

6.
Summary Acid phosphatase isoenzymes of Chlamydomonas reinhardii were investigated by isoelectric focusing in polyacrylamide gel systems. In this paper we describe in detail an original method for isoelectric focusing of acid phosphatases extracted from wildtype and acid phosphatase-lacking mutant algae, obtained from Laboratoire de Génetique of University of Liège. Three isoenzymes can be separated from the buffer-soluble components of these cells. An additional isoenzyme type can be visualized using the nonionic detergent NP40 as solubilizer. We conclude that these four isoenzymes are releated to the structural gene of the soluble constitutive acid phosphatase, which was shown by their appearance in P 2 and their total absence in mutant P a. The pl values of soluble constitutive acid phosphatase isoenzymes range between pH 5.2 and 6.2. As a result of treatment with NP40 the extracts from both wild-type and mutant lines contain two additional active phosphatase forms which can be characterized by their high heat resistance and low pI values. These enzymes are fully active using either -naphthyl phosphate or different acetate esters as substrates.  相似文献   

7.
Summary A method was developed for the isolation of spontaneous mutants of Escherichia coli K-12 with deletions extending from the srl operon to the adjacent recA gene. The srl-recA deletion mutants were extremely sensitive to DNA-damaging agents; unable to support growth of the feckless red gam mutant bio11; and recombination-deficient in transduction and in conjugation. They therefore resembled recA point mutants such as recA13. The existence of these recA deletion mutants shows that the recA gene is not essential for viability.  相似文献   

8.
9.
Molecular characterisation of the Stc mutation of Escherichia coli K-12   总被引:3,自引:0,他引:3  
R. Misra  P. Reeves   《Gene》1985,40(2-3):337-342
The previously described Stc - (suppressor of TolC) mutation modifies the phenotype of tolC mutants from OmpF to OmpF+. Restriction mapping of chromosomal DNA from Stc + and Stc strains was performed to investigate the nature of the mutation which was shown to be a deletion, upstream of the ompC gene. DNA from the region of the deletion was cloned into pUC18 and a 650-bp PstI-EcoRI fragment was sequenced. The deletion started 49 bp upstream of the AUG start codon of the ompC gene, thus removing part of the ompC promoter and the whole of the micF gene. We suggest that the deletion of micF gives rise to the Stc phenotype since the effect of micF expression is assumed to reduce ompF expression, and the Stc phenotype involves increase in ompF expression.  相似文献   

10.
Summary A protein of molecular weight 74,000, called protein Z, has been identified in cells of the genotype recB21 recC22 sbcB15 by SDS-polyacrylamide gel electrophoresis. This protein has not been detected in cells of the genotype recB21 recC22 sbcB15 recF144. The transductional transfer of recF144 into the rec + cells leads to the disappearance of the protein Z band. These results demonstrate that the recF gene is essential for protein Z synthesis. Of two recF mutants studied, recF144 completely lacks protein Z, while recF143 preserves a functionally inactive protein Z, probably resulting from a missense mutation.The recF144 cells are characterizied by a very low frequency of genetic exchange between the donor and recipient chromosomes after conjugation. The scale of the genetic map for these cells is 3-fold higher than for wild-type cells.  相似文献   

11.
12.
Thermal denaturation of uridine phosphorylase from Escherichia coli K-12 has been studied by differential scanning calorimetry. The excess heat capacity vs. temperature profiles were obtained at temperature scanning rates of 0.25, 0.5, and 1 K/min. These profiles were analysed using three models of irreversible denaturation which are approximations to the whole Lumry-Eyring model, namely, the one-step model of irreversible denaturation, the Lumry-Eyring model with the fast equilibrating first step, and the model involving two consecutive irreversible steps. In terms of statistics the latter model describes the kinetics of thermal denaturation of uridine phosphorylase more satisfactorily than the two other models. The values of energy activation for the first and second steps calculated for the model involving two consecutive irreversible steps are the following: Ea,1 = 609.3 ± 1.8 kJ/mol and Ea,2 = 446.8 ± 3.2 kJ/mol.  相似文献   

13.
14.
Summary The insertion of an F into the malB-dnaB-ampA region of Escherichia coli K-12 was examined. It was found that insertion occurred preferentially at a site within the dnaB gene. The presence of mutations in this gene did not seem to alter the site of F insertion but in some cases did affect the frequency at which this recombinational event took place. The map position of various dnaB alleles relative to this site was determined and compared with the allele order obtained by P1 transduction. Models to explain the nonrandom pattern of insertion are discussed.  相似文献   

15.
Summary Mutations in the fnr gene of Escherichia coli have pleiotropic effects leading to deficiencies in the reduction of fumarate and nitrate, hydrogen production and the ability to grow anaerobically with fumarate or nitrate as terminal electron acceptors. Transducing phages (fnr) carrying the wild-type fnr gene were isolated from populations of artificially-constructed recombinant lambda phages by their ability to complement the lesions of fnr mutants. The fnr phages restored anaerobic growth with fumarate and nitrate as electron acceptors and, as prophages, they promoted normal synthesis of fumarate reductase, nitrate reductase and hydrogenase in fnr mutants. Five independently-isolated fnr phages each contained a R.HindIII fragment (11.5 kilobases) that possessed three internal R.EcoRI targets and had inserted with the same orientation relative to the phage. A physical map of the fnr region was constructed by restriction analysis and flanking fragments were identified by DNA:DNA hybridization.  相似文献   

16.
Summary pTU 100 is a hybrid plasmid constructed by cloning a 7.5 Kb EcoRI fragment (carrying the wildtype ompA gene) onto pSC 101 (Henning et al., 1979). This plasmid confers sensitivity to phages Tull* and K3h1 when present in an ompA host strain, due to the expression of the phage receptor protein II* from the plasmid ompA + gene. Plasmid mutants have been isolated that have become resistant to one or both of these phages. Restriction endonuclease analysis and DNA-sequencing studies in these plasmids demonstrate that a BamHI site and two PvuII sites are located within the ompA gene. BamHI cuts the gene at a site corresponding to residue 227 within a total of 325 amino acid residues.Neither the wildtype ompA gene nor the BamHI fragment encoding the NH2-terminal part of the protein (residues 1–227) could be transferred to a high copy number plasmid, presumably due to lethal overproduction of the protein or its NH2-terminal fragment. However, the NH2-terminal fragment derived from one of the ompA mutants of pTU100 could be transferred to the high copy number plasmid pBR322, and was expressed in the presence of the amber suppressors supD or supF. Under these conditions two new envelope proteins with apparent molecular weights of 30,000 and 24,000 were synthesized, and the cells became sensitive to phage TuII*, indicating the presence of phage receptor activity in the outer membrane. The major, 24,000 dalton protein has the molecular weight expected of a protein comprising residues 1–227 of protein II*. DNA-sequencing studies demonstrated that no termination codons are present in the DNA region immediately downstream from the BamHI site at residue 227 in this hybrid plasmid, and it is therefore likely that the 24,000-dalton protein arises from the posttranslational proteolytic cleavage of a larger polypeptide. The 30,000-dalton protein is a likely candidate for such a larger polypeptide. These results also demonstrate that the 98 CO2H-terminal residues of wildtype protein II* (resisdues 228–325) are not required either for the activity of the protein as a phage receptor or for its incorporation into the outer membrane.  相似文献   

17.
Summary Plasmid pLC44-14 from the Clarke and Carbon collection has been shown to carry the lexA gene. The presence of lexA was demonstrated by complementation of tsl mutants which lie close to lexA on the E. coli K-12 linkage map and are probably in the lexA gene, and by crossing the dominant lexA mutation on to pLC44-14 to produce a recombinant plasmid, pSEl, which gave the host cell the properties of a lexA mutant. The lexA gene has been cloned on to pBR322 (Little, 1980). pJL21, which carries the lexA + gene, rendered the host cell moderately sensitive to UV light, greatly reduced the extent of Weigle reactivation and mutagenesis of UV-irradiated phage , and inhibited induction of protein X by either UV light or nalidixic acid. A similar plasmid carrying a mutant lexA3 allele produced extreme sensitivity to UV light, reduced recombinant production 10 to 50-fold following Hfr x F conjugation crosses, and otherwise mimicked the effects of pJL21. Introduction of an amber mutation into the lexA gene carried by the plasmid greatly reduced the UV-sensitivity of the host, thereby indicating that the extreme sensitivity was due to the mutant lexA gene product. These properties of strains with lexA plasmids are thought to originate from high levels of the lexA protein in the cell due to a large plasmid copy number. This protein, which appears from other studies to regulate negatively the recA gene, may inhibit expression of recA or other DNA repair genes when present in excess amounts in the cell.  相似文献   

18.
19.
A number of regulatory peptides were investigated for their ability to elevate plasma cAMP. Pituitary adenylate cyclase activating peptide (PACAP)-27, PACAP-38, helodermin, helospectin I and II, vasoactive intestinal peptide (VIP), glucagon, parathyroid hormone (PTH), calcitonin and calcitonin gene-related peptide were among the peptides that were highly effective in raising plasma cAMP when given intravenously in equimolar doses to conscious mice. PACAP-27 and -38 were more effective than any of the other peptides. PACAP 16–38, secretin, gastrin-17, galanin, somatostatin, cholecystokinin-8s, pancreatic polypeptide, substance P, peptide YY and neuropeptide Y were inactive and also did not interfere with the PACAP-27-evoked rise in plasma cAMP levels. Repeated injections of PACAP-27 every 30 min caused a progressive reduction in the plasma cAMP response (measured 5 min after each injection). Forskolin, an activator of adenylate cyclase, dose-dependently raised the plasma concentration of cAMP and displayed a synergistic effect when given in a low dose concurrently with PTH or PACAP-38. The phosphodiesterase inhibitor rolipram dose-dependently raised the plasma concentration of cAMP. Combined treatment with PACAP-27 and a threshold dose of rolipram resulted in an exaggerated plasma cAMP response. Kidney hilus ligation suppressed the responses to PACAP-38, PTH, helodermin, helospectin, VIP, glucagon and calcitonin. Hepatectomy suppressed the response to glucagon but was without effect on the response to the other peptides. Pancreatectomy and spleenectomy reduced the response to VIP, but was without effect on the response to the other peptides. PACAP-27 stimulated cAMP efflux from the isolated rat tail vein. Hence, it cannot be excluded that blood vessels contribute to the peptide evoked plasma cAMP response in vivo.  相似文献   

20.
Genes responsible for maltose utilization from Bacillus stearothermophilus ATCC7953 were cloned in the plasmid vector pBR325 and functionally expressed in Escherichia coli. The 4.2 kb Bacillus DNA insert in clone pAM1750 suppressed the growth defects on maltose caused by mutations in E. coli maltose transport genes (malE, malK or complete malB deletion) but not mutations in genes affecting intracellular maltose metabolism (malA region). Transport studies in E. coli and B. stearothermophilus suggested that pAM1750 codes for a high affinity transport system, probably one of two maltose uptake systems found in B. stearothermophilus ATCC7953. Nucleotide sequence analysis of a 3.6 kb fragment of pAM 1750 revealed three open reading frames (ORFs). One of the ORFs, malA, encoded a putative hydrophobic protein with 12 potential transmembrane segments. MalA showed amino acid sequence similarity to proteins in the superfamily containing LacY lactose permease and also some similarity to MaIG protein, a member of a binding protein-dependent transport system in E. coli. The products of two other ORFs were not hydrophobic, did not show similarity to other known sequences and were found not to be essential for maltose utilization in transport-defective E. coli mutants. Hence MalA protein was the only protein necessary for maltose transport, but despite giving a detectable but low level of transport function in E. coli, the protein was very poorly expressed and could not be identified.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号