首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Factors shaping population differentiation in low latitude seabirds are not well-understood. In this study, we examined global patterns of DNA sequence variation in the mitochondrial control region of the band-rumped storm-petrel (Oceanodroma castro), a highly pelagic seabird distributed across the sub-tropical and tropical Atlantic and Pacific Oceans. Despite previous classification as a single, monotypic species, fixed haplotype differences occurred between Atlantic and Pacific populations, and among all Pacific populations. In addition, Cape Verde and Galapagos birds formed distinct clades, estimated to have diverged from all other populations at least 150,000years ago. Azores hot season populations were also genetically distinct, lending support to previous phenotypic evidence that they be recognized as a separate species. Seasonal populations in Madeira probably represent separate genetic management units. The phylogeography of the band-rumped storm-petrel appears to have been shaped by both nonphysical barriers to gene flow and Pleistocene oceanographic conditions. Ancestral populations likely expanded through contiguous range expansion and infrequent long-distance colonization into their current breeding range. These findings suggest several possible revisions to the taxonomy of the band-rumped storm-petrel.  相似文献   

2.
Population divergence could be strongly affected by species’ ecology and might not be a direct response to climate‐driven environmental change. We tested this in the middle spotted woodpecker (Dendrocoptes medius), a non‐migratory, low‐dispersal habitat specialist associated with old deciduous forests of the Western Palearctic. We present the first phylogeographic study of this species integrating genetic data (three mitochondrial loci, one autosomal and one Z‐linked intron) with species distribution modelling. Based on this species’ ecology, we predicted that the middle spotted woodpecker could have colonized its current range from multiple Last Glacial Maximum (LGM) refugia and that strongly structured populations could be expected. Indeed, we discovered a strong genetic divergence between Asian and European populations, with a split estimated at around one million of years ago. This was surprising given only slight intraspecific variation in plumage and morphology. Although there was no significant phylogeographic structure within the Asian and European groups, we cannot exclude the possibility of multiple refugia within either group during the LGM. This has to be further investigated with more extensive geographic sampling and larger number of variable independently evolving markers. Future studies should also investigate potential differences in vocalizations and ecology between the two groups. Lineages showing similar level of genetic differentiation including woodpeckers are often treated as species‐level taxa. Comparison of our results with the phylogeographic history of other woodpeckers, suggests that sympatric species with similar life‐histories might have idiosyncratic phylogeographic patterns probably resulting from different ecological requirements or historic stochasticity.  相似文献   

3.
Local adaptation of populations along elevational gradients is well known, but conclusive evidence that such divergence has resulted in the origin of distinct species in parapatry remains lacking. We integrated morphological, vocal, genetic and behavioural data to test predictions pertaining to the hypothesis of parapatric ecological speciation associated with elevation in populations of a tropical montane songbird, the Grey‐breasted Wood‐wren (Henicorhina leucophrys: Troglodytidae), from the Sierra Nevada de Santa Marta, Colombia. We confirmed that two distinct populations exist along the elevational gradient. Phylogenetic analyses tentatively indicate that the two populations are not sister taxa, suggesting they did not differentiate from a single ancestor along the gradient, but rather resulted from separate colonization events. The populations showed marked divergence in morphometrics, vocalizations and genetic variation in mitochondrial and nuclear loci, and little to no evidence of hybridization. Individuals of both populations responded more strongly to their own local songs than to songs from another elevation. Although the two forms do not appear to have differentiated locally in parapatry, morphological and vocal divergence along the elevational gradient is consistent with adaptation, suggesting a possible link between adaptive evolution in morphology and songs and the origin of reproductive isolation via a behavioural barrier to gene flow. The adaptive value of phenotypic differences between populations requires additional study.  相似文献   

4.
Often during the process of divergence, genetic markers will only gradually obtain the signal of isolation. Studies of recently diverged taxa utilizing both mitochondrial and nuclear data sets may therefore yield gene trees with differing levels of phylogenetic signal as a result of differences in coalescence times. However, several factors can lead to this same pattern, and it is important to distinguish between them to gain a better understanding of the process of divergence and the factors driving it. Here, we employ three nuclear intron loci in addition to the mitochondrial Cytochrome b gene to investigate the magnitude and timing of divergence between two endangered and nearly indistinguishable petrel taxa: the Galapagos (GAPE) and Hawaiian (HAPE) petrels (Pterodroma phaeopygia and P. sandwichensis). Phylogenetic analyses indicated reciprocal monophyly between these two taxa for the mitochondrial data set, but trees derived from the nuclear introns were unresolved. Coalescent analyses revealed effectively no migration between GAPE and HAPE over the last 100,000 generations and that they diverged relatively recently, approximately 550,000 years ago, coincident with a time of intense ecological change in both the Galapagos and Hawaiian archipelagoes. This indicates that recent divergence and incomplete lineage sorting are causing the difference in the strength of the phylogenetic signal of each data set, instead of insufficient variability or ongoing male-biased dispersal. Further coalescent analyses show that gene flow is low even between islands within each archipelago suggesting that divergence may be continuing at a local scale. Accurately identifying recently isolated taxa is becoming increasingly important as many clearly recognizable species are already threatened by extinction.  相似文献   

5.
This study uses enzymatic and mitochondrial genes to infer the relative importance of historical processes and contemporary hydrodynamic features on the observed patterns of genetic structure in subdivided populations of Pectinaria koreni (Polychaeta: Pectinariidae) along the coasts of Brittany and the English Channel. Nucleotide sequence variation of a 603-bp fragment of the mtDNA cytochrome oxidase subunit I gene revealed a surprisingly deep phylogeographic break of about 16% divergence separating the Brittany and Channel populations, which coincides with a biogeographic boundary along the western coast of Brittany. Deep sequence divergence with fixed haplotype differences and the inversion of allele frequencies at two enzyme loci suggests the occurrence of potential cryptic or sibling species of P. koreni. The two clades showed opposite features. Channel populations exhibited bimodal match-mismatch curves due to two highly divergent haplotypes occurring at high frequencies and no overall heterozygote deficiencies at enzyme loci, suggesting respectively, a historic secondary contact between two differentiated populations followed by contemporary panmixia. On the contrary, Brittany populations displayed unimodal curves with low nucleotide diversity and highly significant heterozygote deficiencies, probably reminiscent of a recent population expansion and recolonisation of Brittany with contemporary admixture of divergent populations.  相似文献   

6.
Oliver JC  Shapiro AM 《Molecular ecology》2007,16(20):4308-4320
Species exist as biological entities with patterns of discontinuous phenotypic variation. However, the distinctness of taxa is called into question when morphological intermediates exist in areas of sympatry, reflecting either gene flow among variants of a species or hybridization between different species. Studying the partitioning of genetic variation provides a means to discern between the two possibilities. We used genetic and morphometric approaches to investigate the degree of isolation among the three members of the Lycaena xanthoides species group. Lycaena xanthoides, L. editha, and L. dione are predominantly allopatric and have been treated both as three separate species and as a single polytypic species. Using 618 bp of the mitochondrial gene COII, we found little phylogenetic resolution, but significant among-taxa genetic variance partitioning. Divergence among these taxa has been relatively recent, as evidenced by relatively low pairwise sequence divergence. Also, the existence of two well-supported clades within L. xanthoides sensu stricto, concordant with the Transverse Ranges of southern California, indicates divergence within this taxon, and a possible cryptic species. Significant morphological differentiation between L. editha and L. xanthoides supports the hypothesis that these taxa represent separate gene pools. Populations occurring in a narrow zone where the two species' ranges approach are characterized by intermediate morphology, suggesting incomplete morphological divergence or recent hybridization. These findings highlight the utility of genetic data in inferring species boundaries and the identification of cryptic lineages.  相似文献   

7.
Yang XM  Sun JT  Xue XF  Li JB  Hong XY 《PloS one》2012,7(4):e34567
The western flower thrips, Frankliniella occidentalis (Pergande), is an invasive species and the most economically important pest within the insect order Thysanoptera. F. occidentalis, which is endemic to North America, was initially detected in Kunming in southwestern China in 2000 and since then it has rapidly invaded several other localities in China where it has greatly damaged greenhouse vegetables and ornamental crops. Controlling this invasive pest in China requires an understanding of its genetic makeup and migration patterns. Using the mitochondrial COI gene and 10 microsatellites, eight of which were newly isolated and are highly polymorphic, we investigated the genetic structure and the routes of range expansion of 14 F. occidentalis populations in China. Both the mitochondrial and microsatellite data revealed that the genetic diversity of F. occidentalis of the Chinese populations is lower than that in its native range. Two previously reported cryptic species (or ecotypes) were found in the study. The divergence in the mitochondrial COI of two Chinese cryptic species (or ecotypes) was about 3.3% but they cannot be distinguished by nuclear markers. Hybridization might produce such substantial mitochondrial-nuclear discordance. Furthermore, we found low genetic differentiation (global F ST = 0.043, P<0.001) among all the populations and strong evidence for gene flow, especially from the three southwestern populations (Baoshan, Dali and Kunming) to the other Chinese populations. The directional gene flow was further supported by the higher genetic diversity of these three southwestern populations. Thus, quarantine and management of F. occidentalis should focus on preventing it from spreading from the putative source populations to other parts of China.  相似文献   

8.
MARK BOLTON 《Ibis》2007,149(2):255-263
A number of lines of evidence suggest that temporally segregated sympatric populations of Madeiran Storm‐petrels Oceanodroma castro breeding in the Azores are reproductively isolated and morphologically and genetically distinct from each other. Within the Galapagos Islands, similar sympatric populations may also be isolated from each other, as individuals are not known to switch breeding seasons. The taxonomic relationships among populations of this species that are seasonally and spatially separated are unclear and in need of revision. In this study, playback experiments were used to determine the level of vocal response among prospecting Madeiran Storm‐petrels at colonies in the Azores, Galapagos and Cape Verde islands to recordings from different populations. Vocalizations of all populations studied here differ in their structural characteristics and in all but one case prospecting Storm‐petrels showed far greater response to playback of burrow calls from their own colony type than to calls recorded at other seasonally or geographically distinct colonies. Additionally, the level of response to foreign colony types was no different to playback of vocalizations of an unrelated control species present at the same location. Although not all combinations of geographical and seasonal populations could be examined, the finding that prospecting hot‐season (breeding April–August) Storm‐petrels in the Azores did not differ in their response level to playback from Azores cool‐season (breeding August–March) storm‐petrels and Cory's Shearwaters Calonectris diomedea is of particular significance and suggests the existence of a pre‐mating isolation mechanism that would prevent interbreeding between these two sympatric populations. Furthermore, Azores hot‐season Storm‐petrels showed a similar absence of response to playback from Galapagos dry‐season (May–July) populations, indicating that they are also taxonomically distant from this group. Madeiran Storm‐petrels in the Cape Verde islands showed a low response rate to Azores hot‐season vocalizations, which did not differ from the response to unrelated controls. These data provide further evidence that the hot‐season Azores population represents a distinct taxon that is reproductively isolated from the sympatrically breeding cool‐season population, as well as from more distant populations in the Cape Verde and Galapagos islands.  相似文献   

9.
Detection of genetic and behavioural diversity within morphologically similar species has led to the discovery of cryptic species complexes. We tested the hypothesis that US populations of the canyon treefrog (Hyla arenicolor) may consist of cryptic species by examining mate‐attraction signals among three divergent clades defined by mtDNA. Using a multi‐locus approach, we re‐analysed phylogenetic relationships among the three clades and a closely related, but morphologically and behaviourally dissimilar species, the Arizona treefrog (H. wrightorum). We found evidence for introgression of H. wrightorum’s mitochondrial genome into H. arenicolor. Additionally, the two‐clade topology based on nuclear data is more congruent with patterns of call variation than the three‐clade topology from the mitochondrial dataset. The magnitude of the call divergence is probably insufficient to promote isolation of the nuclear DNA‐defined clades should they become sympatric, but further divergence in call properties significant in species identification could promote speciation in the future.  相似文献   

10.
11.
Complexes of cryptic species are rapidly being discovered in many parasite taxa, including trematodes. However, after they are found, cryptic species are rarely distinguished from each other with respect to key ecological or life history traits. In this study, we applied an integrative taxonomic approach to the discovery of cryptic species within Stegodexamene anguillae, a facultatively progenetic trematode common throughout New Zealand. The presence of cryptic species was determined by the genetic divergence found in the mitochondrial cytochrome c oxidase I gene, the 16S rRNA gene and the nuclear 28S gene, warranting recognition of two distinct species and indicating a possible third species. Speciation was not associated with geographic distribution or microhabitat within the second intermediate host; however frequency of the progenetic reproductive strategy (and the truncated life cycle associated with it) was significantly greater in one of the lineages. Therefore, two lines of evidence, molecular and ecological, support the distinction between these two species and suggest scenarios for their divergence.  相似文献   

12.
Geographic variation in vocalizations is widespread in passerine birds, but its origins and maintenance remain unclear. One hypothesis to explain this variation is that it is associated with geographic isolation among populations and therefore should follow a vicariant pattern similar to that typically found in neutral genetic markers. Alternatively, if environmental selection strongly influences vocalizations, then genetic divergence and vocal divergence may be disassociated. This study compared genetic divergence derived from 11 microsatellite markers with a metric of phenotypic divergence derived from male bower advertisement calls. Data were obtained from 16 populations throughout the entire distribution of the satin bowerbird, an Australian wet-forest-restricted passerine. There was no relationship between call divergence and genetic divergence, similar to most other studies on birds with learned vocalizations. Genetic divergence followed a vicariant model of evolution, with the differentiation of isolated populations and isolation-by-distance among continuous populations. Previous work on Ptilonorhynchus violaceus has shown that advertisement call structure is strongly influenced by the acoustic environment of different habitats. Divergence in vocalizations among genetically related populations in different habitats indicates that satin bowerbirds match their vocalizations to the environment in which they live, despite the homogenizing influence of gene flow. In combination with convergence of vocalizations among genetically divergent populations occurring in the same habitat, this shows the overriding importance that habitat-related selection can have on the establishment and maintenance of variation in vocalizations.  相似文献   

13.
Few genetic data are currently available to assess patterns of population differentiation and speciation in planktonic taxa that inhabit the open ocean. A phylogenetic study of the oceanic copepod family Eucalanidae was undertaken to develop a model zooplankton taxon in which speciation events can be confidently identified. A global survey of 20 described species (526 individuals) sampled from 88 locations worldwide found high levels of cryptic diversity at the species level. Mitochondrial (16S rRNA, CO1) and nuclear (ITS2) DNA sequence data support 12 new genetic lineages as highly distinct from other populations with which they are currently considered conspecific. Out of these 12, at least four are new species. The circumglobal, boundary current species Rhincalanus nasutus was found to be a cryptic species complex, with genetic divergence between populations unrelated to geographic distance. 'Conspecific' populations of seven species exhibited varying levels of genetic differentiation between Atlantic and Pacific basins, suggesting that continental landmasses form barriers to dispersal for a subset of circumglobal species. A molecular phylogeny of the family based on both mitochondrial (16S rRNA) and nuclear (ITS2, 18S rRNA) gene loci supports monophyly of the family Eucalanidae, all four eucalanid genera and the 'pileatus' and 'subtenuis' species groups.  相似文献   

14.
Hybridization experiments indicate that Pteridium aquilinum from Hawaii and P. aquilinum from the Galapagos Isles are intersterile. Both of these populations will cross readily with other New World collections of Pteridium. Evidence suggests that the Galapagos populations are genetically distinct from the South American populations. The genetic divergence of the Galapagos populations has not been accompanied by morphological divergence.  相似文献   

15.
Evolutionary relationships of different populations of the threatened malagasy lemur Lepilemur septentrionalis were assessed by sequence analysis of mitochondrial DNA (D-loop region and partial Cyt b gene). One hundred and fifty nine samples were collected from five main different localities in the northern part of Madagascar. We applied the phylogenetic species concept based on fixed diagnostic differences to determine the status of different geographical populations. No nucleotide site diagnoses Ankarana from Andrafiamena or Analamera. However, numerous fixed differences separate Sahafary from all other populations. These results were corroborated by phylogenetic trees. As previous cytogenetic studies, our molecular data suggest that two cryptic species of Lepilemur occur in the extreme north of Madagascar. This speciation is probably caused by chromosomal rearrangements in at least one of the evolutionary lineages. Our study comprises another striking example of how molecular genetic assay can detect phylogenetic discontinuities that are not reflected in traditional morphologically based taxonomies. Our study indicates that the Sahafary population is a hitherto undescribed endangered endemic species which urgently needs conservation efforts.  相似文献   

16.
The Northern Fulmar (Fulmarus glacialis) is a common tube‐nosed seabird with a disjunct Holarctic range. Taxonomic divisions within the Northern Fulmar have historically been muddled by geographical variation notably including highly polymorphic plumage. Recent molecular analyses (i.e., DNA barcoding) have suggested that genetic divergence between Atlantic and Pacific populations could be on par with those typically observed between species. We employ a multigene phylogenetic analysis to better explore the level of genetic divergence between these populations and to test an old hypothesis on the origin of the modern distribution of color morphs across their range. Additionally, we test whether mutations in the melanocortin‐1 receptor gene (MC1R) are associated with dark plumage in the Northern Fulmar. We confirmed that mitochondrial lineages in the Atlantic and Pacific populations are highly divergent, but nuclear markers revealed incomplete lineage sorting. Genetic divergence between these populations is consistent with that observed between many species of Procellariiformes and we recommend elevating these two forms to separate species. We also find that MC1R variation is not associated with color morph but rather is better explained by geographical divergence.  相似文献   

17.
The evolutionary history of the cryptic Gammarus fossarum species complex (Crustacea, Amphipoda) in Central Europe was approached by investigating the genetic variation in populations of a natural contact zone. Nucleotide sequence variation of a 395-bp segment of the mitochondrial 16S rRNA gene was compared to that of six nuclear allozyme loci. Three major mtDNA lineages were found, the eastern clade being consistent with the former allozyme type A. The two western clades (types B and C) were not distinguished previously. Strong sequence divergence and correlation with nuclear genetic isolation in syntopic populations, however, justifies the specific status of the three G. fossarum types. The common speciation event is believed to be very old (Miocene). The within-type mtDNA variation is probably molded by the ice ages, with type B populations being most affected. Moreover, the patch-like distribution of mtDNA type B lineages in an area near the contact zone corroborates the hypothesis of a recent colonization.  相似文献   

18.
Genetic divergence of mitochondrial DNA does not necessarily correspond to reproductive isolation. However, if mitochondrial DNA lineages occupy separate segments of environmental space, this supports the notion of their evolutionary independence. We explore niche differentiation among three candidate species of crested newt (characterized by distinct mitochondrial DNA lineages) and interpret the results in the light of differences observed for recognized crested newt species. We quantify niche differences among all crested newt (candidate) species and test hypotheses regarding niche evolution, employing two ordination techniques (PCA-env and ENFA). Niche equivalency is rejected: all (candidate) species are found to occupy significantly different segments of environmental space. Furthermore, niche overlap values for the three candidate species are not significantly higher than those for the recognized species. As the three candidate crested newt species are, not only in terms of mitochondrial DNA genetic divergence, but also ecologically speaking, as diverged as the recognized crested newt species, our findings are in line with the hypothesis that they represent cryptic species. We address potential pitfalls of our methodology.  相似文献   

19.
Spatial patterns of genetic diversity provide insight into the demography and history of species. Morphologically similar but genetically distinct “cryptic” species are increasingly being recognized in marine organisms through molecular analyses. Such species are, on closer inspection, often discovered to display contrasting life histories or occasionally minor morphological differences; molecular tools can thus be useful indicators of diversity. Bostrychia intricata, a marine red alga, is widely distributed throughout the Southern Hemisphere and comprises many cryptic species. We used mitochondrial cytochrome c oxidase I gene sequences to assess the genetic variation, population genetic structure, and demographic history of B. intricata in New Zealand. Our results supported the existence of three cryptic species of B. intricata (N2, N4, and N5) in New Zealand. Cryptic species N4, which was found throughout New Zealand, showed a higher genetic diversity and wider distribution than the other two species, which were only found in the North Island and northern South Island. Our analyses showed low to moderate genetic differentiation among eastern North Island populations for cryptic species N2, but high differentiation among North and South Island populations for N4, suggesting different population structure between these cryptic species. Data also indicated that N2 has recently undergone population expansion, probably since the Last Glacial Maximum (LGM), while the higher genetic diversity in N4 populations suggests persistence in situ through the LGM. The contrasting population structures and inferred demographic histories of these species highlight that life history can vary greatly even among morphologically indistinguishable taxa.  相似文献   

20.
Mathews LM 《Molecular ecology》2006,15(13):4049-4063
Recent investigations suggest that marine biodiversity may be much higher than earlier estimates, and an important hidden source of diversity in marine systems is the phenomenon of cryptic species complexes. Such complexes are informative models for research into the evolutionary processes that govern species compositions of marine fauna. The snapping shrimp genera Alpheus and Synalpheus are known to harbour large numbers of cryptic species; here, I characterize the genetic structure of the Alpheus armillatus species complex in the northern Caribbean, west Atlantic, and Gulf of Mexico using mitochondrial and nuclear sequence data. Over this geographical region, the complex harbours at least three lineages that are probable reproductively isolated species; all major lineages diverged subsequent to the close of the Isthmus of Panama. Only one lineage was present in the Gulf of Mexico, whereas outside the Gulf of Mexico there was no clear tendency for lineage dominance by geographical region, as most sites were populated by shrimp from at least two lineages. However, within each lineage, there was strong evidence of population genetic differentiation between geographical regions. All lineages showed strong signals of demographic expansion, and one lineage showed sharply reduced genetic diversity, suggestive of past population bottlenecks or recently founded populations with low gene flow from other sites. These results show that evolutionary processes leading to divergence and speciation have been common and recent in the snapping shrimp, and suggest that connectivity among shrimp populations may be limited.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号