首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Three potential secondary structures, stem-loops I, II, and III, are contained in the phage G4 origin of complementary DNA strand synthesis, G4oric, and are believed to be involved in its recognition by dnaG-encoded primase and the synthesis of primer RNA. In a previous publication [Sakai et al., Gene 71 (1988) 323-330], we suggested that base pairing between the loops of stem-loops I, and II, and/or II and III, might play a role in G4oric function. To test this hypothesis, site-directed mutagenesis was used to construct mutants which carried base substitutions in loops I, II and III that destroyed possible interloop base pairing. These mutations, however, did not seriously affect G4oric activity. This indicates that base pairing between the loops is not essential for G4oric functional activity, and also that base substitutions which do not affect the secondary structure of stem-loops I, II and III, do not affect G4oric activity. To complete an analysis of the effects of altering the structure of the G4oric stem-loops, insertions were made into stem-loop III. In contrast to stem-loops I and II, all insertions into stem-loop III destroyed in vivo G4oric activity.  相似文献   

2.
H Hiasa  H Sakai  K Tanaka  Y Honda  T Komano  G N Godson 《Gene》1989,84(1):9-16
The primase-dependent phage G4 origin of complementary DNA strand synthesis (G4oric) contains three stable stem-loops (I, II, and III) upstream from the initiation point of primer RNA (pRNA). Site-directed mutagenesis was used to introduce alterations into the nucleotide (nt) sequence of the G4oric pRNA template region. Mutations in stem-loop I, that changed the length of the stem and the sequence of the loop, slightly depressed, but did not abolish, G4oric activity. However, functional G4oric activity was destroyed when the sequence containing the starting position of pRNA synthesis was deleted, or when insertions were introduced between the pRNA starting position (5'-CTG-3') and stem-loop I. Reintroducing a CTG as part of a PstI linker close to stem-loop I, however, resulted in recovery of G4oric functional activity. These results suggest that the specific nt sequence, containing 5'-CTG-3', between nt 3994 and 4007, and also the distance between the starting position of pRNA synthesis and stem-loop I, are essential structural features for G4oric function.  相似文献   

3.
Functional dissection of adenovirus VAI RNA.   总被引:14,自引:8,他引:6       下载免费PDF全文
During the course of adenovirus infection, the VAI RNA protects the translation apparatus of host cells by preventing the activation of host double-stranded RNA-activated protein kinase, which phosphorylates and thereby inactivates the protein synthesis initiation factor eIF-2. In the absence of VAI RNA, protein synthesis is drastically inhibited at late times in infected cells. The experimentally derived secondary structure of VAI RNA consists of two extended base-paired regions, stems I and III, which are joined by a short base-paired region, stem II, at the center. Stems I and II are joined by a small loop, A, and stem III contains a hairpin loop, B. At the center of the molecule and at the 3' side, stems II and III are connected by a short stem-loop (stem IV and hairpin loop C). A fourth, minor loop, D, exists between stems II and IV. To determine sequences and domains critical for function within this VAI RNA structure, we have constructed adenovirus mutants with linker-scan substitution mutations in defined regions of the molecule. Cells infected with these mutants were analyzed for polypeptide synthesis, virus yield, and eIF-2 alpha kinase activity. Our results showed that disruption of base-paired regions in the distal parts of the longest stems, I and III, did not affect function, whereas mutations causing structural perturbations in the central part of the molecule containing stem II, the proximal part of stem III, and the central short stem-loop led to loss of function. Surprisingly, one substitution mutant, sub742, although dramatically perturbing the integrity of the structure of this central portion, showed a wild-type phenotype, suggesting that an RNA with an alternate secondary structure is functional. On the basis of sensitivity to single-strand-specific RNases, we can derive a novel secondary structure for the mutant RNA in which a portion of the sequences may fold to form a structure that resembles the central part of the wild-type molecule, which suggests that only the short stem-loop located in the center of the molecule and the adjoining base-paired regions may define the functional domain. These results also imply that only a portion of the VAI RNA structure may be recognized by the host factor(s).  相似文献   

4.
The genetic requirements for the excision repair of thymine glycols, urea residues, and apurinic (AP) sites were examined by measuring the survival in Escherichia coli mutants of phi X174 replicative form (RF) I transfecting DNA containing selectively introduced lesions. phi X RF I DNA containing thymine glycols was inactivated at a greater rate in mutants deficient in endonuclease III (nth) than in wild-type hosts, suggesting that endonuclease III is involved in the repair of thymine glycols in vivo. phi X RF I DNA containing thymine glycols was also inactivated at a greater rate in mutants that were deficient in both exonuclease III and endonuclease IV (xth nfo) than in wild-type hosts, suggesting that a class II AP endonuclease is required for the in vivo processing of thymine glycols. phi X duplex-transfecting DNA containing urea residues or AP sites was inactivated at a greater rate in xth nfo double mutants than in wild-type, but not single-mutant, hosts, suggesting that exonuclease III or endonuclease IV is required for the repair of these damages and that either activity can substitute for the other. These data are in agreement with the known in vitro substrate specificities of endonuclease III, exonuclease III, and endonuclease IV.  相似文献   

5.
Daughter strand gaps are secondary lesions caused by interrupted DNA synthesis in the proximity of UV-induced pyrimidine dimers. The relative roles of DNA recombination and de novo DNA synthesis in filling such gaps have not been clarified, although both are required for complete closure. In this study, the Escherichia coli E486 and E511 dnaE(Ts) mutants, in which DNA polymerase I but not DNA polymerase III is active at 43 degrees C, were examined. Both mutants demonstrated reduced gap closure in comparison with the progenitor strain at the nonpermissive temperature. These results and those of previous studies support the hypothesis that both DNA polymerase I and DNA polymerase III contribute to gap closure, suggesting a cooperative effort in the repair of each gap. Benzoylated, naphthoylated diethylaminoethyl-cellulose chromatography analysis for persistence of single-strand DNA in the absence of DNA polymerase III activity suggested that de novo DNA synthesis initiates the filling of daughter strand gaps.  相似文献   

6.
dnaQ (mutD) encodes the editing exonuclease subunit (epsilon) of DNA polymerase III. Previously described mutations in dnaQ include dominant and recessive mutator alleles as well as leaky temperature-sensitive alleles. We describe the properties of strains bearing null mutations (deletion-substitution alleles) of this gene. Null mutants exhibited a growth defect as well as elevated spontaneous mutation. As a consequence of the poor growth of dnaQ mutants and their high mutation rate, these strains were replaced within single colonies by derivatives carrying an extragenic suppressor mutation that compensated the growth defect but apparently not the mutator effect. Sixteen independently derived suppressors mapped in the vicinity of dnaE, the gene for the polymerization subunit (alpha) of DNA polymerase III, and one suppressor that was sequenced encoded an altered alpha polypeptide. Partially purified DNA polymerase III containing this altered alpha subunit was active in polymerization assays. In addition to their dependence on a suppressor mutation affecting alpha, dnaQ mutants strictly required DNA polymerase I for viability. We argue from these data that in the absence of epsilon, DNA replication falters unless secondary mechanisms, including genetically coded alteration in the intrinsic replication capacity of alpha and increased use of DNA polymerase I, come into play. Thus, epsilon plays a role in DNA replication distinct from its known role in controlling spontaneous mutation frequency.  相似文献   

7.
Type III restriction enzymes are multifunctional heterooligomeric enzymes that cleave DNA at a fixed position downstream of a non-symmetric recognition site. For effective DNA cleavage these restriction enzymes need the presence of two unmethylated, inversely oriented recognition sites in the DNA molecule. DNA cleavage was proposed to result from ATP-dependent DNA translocation, which is expected to induce DNA loop formation, and collision of two enzyme-DNA complexes. We used scanning force microscopy to visualise the protein interaction with linear DNA molecules containing two EcoP15I recognition sites in inverse orientation. In the presence of the cofactors ATP and Mg(2+), EcoP15I molecules were shown to bind specifically to the recognition sites and to form DNA loop structures. One of the origins of the protein-clipped DNA loops was shown to be located at an EcoP15I recognition site, the other origin had an unspecific position in between the two EcoP15I recognition sites. The data demonstrate for the first time DNA translocation by the Type III restriction enzyme EcoP15I using scanning force microscopy. Moreover, our study revealed differences in the DNA-translocation processes mediated by Type I and Type III restriction enzymes.  相似文献   

8.
Mutants of Escherichia coli K-12 deficient in both exonuclease III (the product of the xth gene) and deoxyuridine triphosphatase (the dut gene product) are inviable at high temperatures and undergo filamentation when grown at such temperatures. In dut mutants, the dUTP pool is known to be greatly enhanced, resulting in an increased substitution of uracil for thymine in DNA during replication. The subsequent removal of uracil from the DNA by uracil-DNA glycosylase produces apyrimidinic sites, at which exonuclease III is known to have an endonucleolytic activity. The lethality of dut xth mutants, therefore, indicates that exonuclease III is important for this base-excision pathway and suggests that unrepaired apyrimidinic sites are lethal. Two confirmatory findings were as follows. (i) dut xth mutants were viable if they also had a mutation in the uracil-DNA glycosylase (ung) gene; such mutants should not remove uracil from DNA and should not, therefore, generate apyrimidinic sites. (ii) In the majority of the temperature-resistant revertants isolated, viability had been restored by a mutation in the dCTP deaminase (dcd) gene; such mutations should decrease dUTP production and hence uracil misincorporation. The results indicate that, in dut mutants, exonuclease III is essential for the repair of uracil-containing DNA and of apyrimidinic sites.  相似文献   

9.
Nucleotide sequence analysis revealed that a DNA length polymorphism 5' to the human antithrombin III gene is due to the presence of 32bp or 108bp nonhomologous nucleotide sequences (variable segments) 345bp upstream from the translation initiation codon. Sequences at the 3' borders of both variable segments can form intrastrand inverted repeat structures with sequences further downstream. An inverted repeat is also found immediately 5' to the site where the variable segments are located. Thus, cruciform structures may form flanking the variable segments of both alleles of this DNA length polymorphism. DNA secondary structure may be detected with single strand specific nucleases. S1 nuclease sensitive sites were mapped in recombinant plasmids containing the cloned alleles of the ATIII length polymorphism. The site most sensitive to S1 is located upstream from the variable segments in an AT-rich segment flanked by 6bp direct repeats. A region of lesser nuclease sensitivity was also observed in the AT-rich loops formed between the inverted repeats 5' to the variable segments.  相似文献   

10.
To know the nature and mechanisms of spontaneous mutations in mitochondrial DNA (mtDNA), we determined, by direct cycle sequencing, the nucleotide sequence of the 3' terminal region of the mitochondrial 16S rRNA gene from chloramphenicol-resistant (CAP-R) mutants isolated in Chinese hamster V79 cells. Four different base substitutions were identified in common for the six CAP-R mutants. All mutations were heteroplasmic. One A to G transition was mapped at a site within the putative peptidyl transferase domain, the target region for chloramphenicol, and one G to A transition and two T to G transversions were located within the two different segments which form the stems of the hairpin loop structures attached to this key domain in the predicted secondary structure of 16S rRNA. The mutations detected in this study do not map to the same sites where CAP-R mutations were found previously in mammalian cells. Allele specific-PCR analyses revealed that all four mutations occurred on a single mutant-DNA molecule, but not on several ones independently. Together with the other previous reports, our data suggest that spontaneous mtDNA mutations may not be caused exclusively by oxidative DNA damage at least in 16S rRNA gene.  相似文献   

11.
12.
Membrane-bound transhydrogenases are conformationally driven proton-pumps which couple an inward proton translocation to the reversible reduction of NADP+ by NADH (forward reaction). This reaction is stimulated by an electrochemical proton gradient, Delta p, presumably through an increased release of NADPH. The enzymes have three domains: domain II spans the membrane, while domain I and III are hydrophilic and contain the binding sites for NAD(H) and NADP(H), respectively. Separately expressed domain I and III together catalyze a very slow forward reaction due to tightly bound NADP(H) in domain III. With the aim of examining the mechanistic role(s) of loop D and E in domain III and intact cysteine-free Escherichia coli transhydrogenase by cysteine mutagenesis, the conserved residues beta A398, beta S404, beta I406, beta G408, beta M409 and beta V411 in loop D, and residue beta Y431 in loop E were selected. In addition, the previously made mutants betaD392C and betaT393C in loop D, and beta G430C and beta A432C in loop E, were included. All loop D and E mutants, especially beta I406C and beta G430C, showed increased ratios between the rates of the forward and reverse reactions, thus approaching that of the wild-type enzyme. Determination of values indicated that the former increase was due to a strongly increased dissociation of NADPH caused by an altered conformation of loops D and E. In contrast, the cysteine-free G430C mutant of the intact enzyme showed the same inhibition of both forward and reverse rates. Most domain III mutants also showed a decreased affinity for domain I. The results support an important and regulatory role of loops D and E in the binding of NADP(H) as well as in the interaction between domain I and domain III.  相似文献   

13.
L Blanco  A Bernad  M Salas 《Gene》1992,112(1):139-144
The complete amino acid (aa) alignment of the N-terminal domain of 33 DNA-dependent DNA polymerases encompassing the putative segments Exo I, Exo II and Exo III, proposed by Bernad et al. [Cell 59 (1989) 219-228] to form a conserved 3'-5' exonuclease active site in prokaryotic and eukaryotic DNA polymerases, allowed us to identify and/or correct some of the most conserved segments (Exo I, II and III) in certain DNA polymerases. In particular, the aa region of T4 DNA polymerase and other eukaryotic (viral and cellular) DNA polymerases previously proposed as Exo I segment 1, did not align with the Exo I segment of Escherichia coli DNA polymerase I (PolI)-like and protein-primed DNA polymerases; instead, a new conserved region of aa similarity was identified in T4 DNA polymerase and eukaryotic (viral and cellular) DNA polymerases as their corresponding Exo I segment. Therefore, according to our alignment, the recently reported T4 DNA polymerase site-directed mutants, D189A and E191A [Reha-Krantz et al., Proc. Natl. Acad. Sci. USA 88 (1991) 2417-2421], do not correspond to what we now consider the critical Exo I motif of PolI. As discussed in this communication, the functional importance of conserved segments Exo I, Exo II and Exo III is supported by site-directed mutagenesis in PolI, and in phi 29, T7 and delta(Sc) DNA polymerases. Furthermore, genetically selected T4 DNA polymerase mutator mutants form two main clusters, centered in the conserved segment Exo III and in the newly identified Exo I segment.  相似文献   

14.
15.
The TOP3 gene of the yeast Saccharomyces cerevisiae was postulated to encode a DNA topoisomerase, based on its sequence homology to Escherichia coli DNA topoisomerase I and the suppression of the poor growth phenotype of top3 mutants by the expression of the E. coli enzyme (Wallis, J.W., Chrebet, G., Brodsky, G., Golfe, M., and Rothstein, R. (1989) Cell 58, 409-419). We have purified the yeast TOP3 gene product to near homogeneity as a 74-kDA protein from yeast cells lacking DNA topoisomerase I and overexpressing a plasmid-borne TOP3 gene linked to a phosphate-regulated yeast PHO5 gene promoter. The purified protein possesses a distinct DNA topoisomerase activity: similar to E. coli DNA topoisomerases I and III, it partially relaxes negatively but not positively supercoiled DNA. Several experiments, including the use of a negatively supercoiled heteroduplex DNA containing a 29-nucleotide single-stranded loop, indicate that the activity has a strong preference for single-stranded DNA. A protein-DNA covalent complex in which the 74-kDa protein is linked to a 5' DNA phosphoryl group has been identified, and the nucleotide sequences of 30 sites of DNA-protein covalent complex formation have been determined. These sequences differ from those recognized by E. coli DNA topoisomerase I but resemble those recognized by E. coli DNA topoisomerase III. Based on these results, the yeast TOP3 gene product can formally be termed S. cerevisiae DNA topoisomerase III. Analysis of supercoiling of intracellular yeast plasmids in various DNA topoisomerase mutants indicates that yeast DNA topoisomerase III has at most a weak activity in relaxing negatively supercoiled double-stranded DNA in vivo, in accordance with the characteristics of the purified enzyme.  相似文献   

16.
Winged bean chymotrypsin inhibitor (WCI) has an intruding residue Asn14 that plays a crucial role in stabilizing the reactive site loop conformation. This residue is found to be conserved in the Kunitz (STI) family of serine protease inhibitors. To understand the contribution of this scaffolding residue on the stability of the reactive site loop, it was mutated in silico to Gly, Ala, Ser, Thr, Leu and Val and molecular dynamics (MD) simulations were carried out on the mutants. The results of MD simulations reveal the conformational variability and range of motions possible for the reactive site loop of different mutants. The N-terminus side of the scissile bond, which is close to a beta-barrel, is conformationally less variable, while the C-terminus side, which is relatively far from any such secondary structural element, is more variable and needs stability through hydrogen-bonding interactions. The simulated structures of WCI and the mutants were docked in the peptide-binding groove of the cognate enzyme chymotrypsin and the ability to form standard hydrogen-bonding interactions at P3, P1 and P2' residues were compared. The results of the MD simulations coupled with docking studies indicate that hydrophobic residues like Leu and Val at the 14th position are disruptive for the integrity of the reactive site loop, whereas a residue like Thr, which can stabilize the C-terminus side of the scissile bond, can be predicted at this position. However, the size and charge of the Asn residue made it most suitable for the best maintenance of the integrity of the reactive site loop, explaining its conserved nature in the family.  相似文献   

17.
Endonuclease IV (nfo) mutant of Escherichia coli.   总被引:59,自引:26,他引:33       下载免费PDF全文
A cloned gene, designated nfo, caused overproduction of an EDTA-resistant endonuclease specific for apurinic-apyrimidinic sites in DNA. The sedimentation coefficient of the enzyme was similar to that of endonuclease IV. An insertion mutation was constructed in vitro and transferred from a plasmid to the Escherichia coli chromosome. nfo mutants had an increased sensitivity to the alkylating agents methyl methanesulfonate and mitomycin C and to the oxidants tert-butyl hydroperoxide and bleomycin. The nfo mutation enhanced the killing of xth (exonuclease III) mutants by methyl methanesulfonate, H2O2, tert-butyl hydroperoxide, and gamma rays, and it enhanced their mutability by methyl methanesulfonate. It also increased the temperature sensitivity of an xth dut (dUTPase) mutant that is defective in the repair of uracil-containing DNA. These results are consistent with earlier findings that endonuclease IV and exonuclease III both cleave DNA 5' to an apurinic-apyrimidinic site and that exonuclease III is more active. However, nfo mutants were more sensitive to tert-butyl hydroperoxide and to bleomycin than were xth mutants, suggesting that endonuclease IV might recognize some lesions that exonuclease III does not. The mutants displayed no marked increase in sensitivity to 254-nm UV radiation, and the addition of an nth (endonuclease III) mutation to nfo or nfo xth mutants did not significantly increase their sensitivity to any of the agents tested.  相似文献   

18.
The conformational behavior of DNA minihairpin loops is sensitive to the directionality of the base pair that closes the loop. Especially tailored circular dumbbells, consisting of a stem of three Watson–Crick base pairs capped on each side with a minihairpin loop, serve as excellent model compounds by means of which deeper insight is gained into the relative stability and melting properties of hairpin loops that differ only in directionality of the closing pair: C-G vs G-C. For this reason the thermodynamic properties of the circular DNA decamers 5′-d〈pCGC-TT-GCG-TT〉-3′( I ) and reference compounds 5′-d〈pGGC-TT-GCC-TT≤-3′( II ) and 5′-d(GCG-TC-CGC)-3′( III ) are studied by means of nmr spectroscopy. Molecules I and II adopt dumbbell structures closed on both sides by a two-membered hairpin hop. At low temperature I consists of a mixture of two slowly exchanging forms, denoted L2L2 and L2L4 . The low-temperature L2L2 form is the fully intact minihairpin structure with three Watson–Crick C-G base pairs. The high-temperature form, L2L4 ,contains a partially disrupted closing G-C base pair in the 5′-GTTC-3′ loop, with the cytosine base placed in a syn orientation. The opposite 5′-CTTG-3′ loop remains stable. A study of the noncircular hairpin structure III shows similar conformational behavior for the 5′-GTTC-3′ loop as found in I a syn orientation for C(6) and two slowly exchanging imino proton signals for G(3). The melting point Tm of II was estimated to lie above 365 K. The Tm value of the duplex stem and the 5′-CTTG-3′ loop of the L2L4 form ofIis 352 ± 2 K. The ΔH° is calculated as ?89 ± 10 kJ/mol. The Tm value determined for the individual residues of the 5′-GTTC-3′ loop lies 4°–11° lower. The enthalpy ΔH° of melting the thymine residues in the 5′-GTTC-3′ loop is calculated to be -61± 7 kJ/mol. Thermodynamic data of the equilibrium between the slowly exchanging two- and four-membered loop conformers of I reveal an upper limit for ΔH° of +30 kJ/mol in going from a two-memberedto a four-membered loop, in agreement with the enthalpy difference of +28 k.j/mol between the two loops at the Tm midpoint. For hairpin III the upper limit for ΔH° going from a two-membered to a four-membered loop amounts to ±21 kJ/mol. The mutual exchange rate between the L2 and L4 form in III is estimated as 13.6 s?1. Our results clearly suggest that small four-way DNA junctions(model for immobilized Holliday junctions) can be designed that consist of a single DNA strandthat features -CTTG-caps on three of the four arms of the junction. © 1995 John Wiley & Sons, Inc.  相似文献   

19.
Cephalosporin acylase (CA), a member of the N-terminal nucleophile hydrolase family, is activated through two steps of intramolecular autoproteolysis, the first mediated by a serine residue, and the second by a glutamate, which releases the pro-segment and produces an active enzyme. In this study, we have determined the crystal structures of mutants which could affect primary or secondary auto-cleavage and of sequential intermediates of a slow-processing mutant at 2.0-2.5 Å resolutions. The pro-segments of the mutants undergo dynamic conformational changes during activation and adopt surprisingly different loop conformations from one another. However, the autoproteolytic site was found to form a catalytically competent conformation with a solvent water molecule, which was essentially conserved in the CA mutants.  相似文献   

20.
Summary The dnaP strains of Bacillus subtilis are altered in the initiation of DNA replication at high temperature (Riva et al., 1975). Fine mapping of the gene shows that it is located very close to the dnaF gene, described by Karamata and Gross (1970) and mapped by Love et al. (1976) in the polC region. The phenotype of both mutants is indistinguishable: the DNA synthesis stops at non permissive temperature after synthesizing an amount of DNA equivalent to the completion of the rounds of replication already initiated; at permissive temperature they are abnormally sensitive to MMS and are reduced in the ability to be transformed. Both mutants are to be considered as belonging to the dnaF locus.The dnaF gene is very close to the polC gene, which specifies the DNA polymerase III of B. subtilis. The DNA polymerase III of the dnaF mutants is not temperature sensitive in vitro, however, the level of this enzyme is lower by a factor of 4 or 5 in the dnaF mutants, at the permissive temperature. Following shift of dnaF cultures to the non permissive temperature, the level of DNA polymerase III activity specifically decreases further by a factor of at least 10 in the mutant, whereas the DNA polymerase I level is unaffected.The possible roles of the dnaF gene in the control of the cellular level of the DNA polymerase III, and the possibility of a regulatory role of DNA polymerase III in the initiation of DNA replication in bacteria are discussed.Abbreviations and symbols HPUra 6-(p-hydroxyphenylazo)-uracil; mic, minimum inhibitory concentration - MMS methyl-methanesufonate - Pol I Pol II and Pol III: DNA polymerase I, II and III respectively - PCMB parachloro-mercuri-benzoate  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号