首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Kubec R  Kim S  Musah RA 《Phytochemistry》2003,63(1):37-40
The lachrymatory principle of Petiveria alliacea has been isolated from a fresh homogenate of the root. Its structure and geometric configuration have been determined as (Z)-thiobenzaldehyde S-oxide by means of NMR, IR, MALDI-MS and by comparison with an authentic compound obtained by synthesis. This unique compound represents only the third naturally occurring sulfine (thiocarbonyl S-oxide) to be reported. Its formation and possible subsequent rearrangements are discussed. Its antibacterial and antifungal activities are also reported.  相似文献   

2.
Kubec R  Kim S  Musah RA 《Phytochemistry》2002,61(6):675-680
Three cysteine derivatives, (R)-S-(2-hydroxyethyl)cysteine, together with (R(S)R(C))- and (S(S)R(C))-S-(2-hydroxyethyl)cysteine sulfoxides, have been isolated from the roots of Petiveria alliacea. Furthermore, three additional amino acids, S-methyl-, S-ethyl-, and S-propylcysteine derivatives, were detected. They were present only in trace amounts (<3 microg g(-1) fr. wt), precluding determination of their absolute configurations and oxidation states. In addition, four thiosulfinates, S-(2-hydroxyethyl) (2-hydroxyethane)-, S-(2-hydroxyethyl) phenylmethane-, S-benzyl (2-hydroxyethane)- and S-benzyl phenylmethanethiosulfinates, have been found in a homogenate of the roots. The formation pathways of various benzyl/phenyl-containing compounds previously found in the plant were also discussed.  相似文献   

3.
报道了中国一新外来植物--蒜味草(Petiveria alliacea L.)。蒜味草为商陆科(Phytolaccaceae)蒜味草属植物,既是一种有毒植物,也是一种药用植物。  相似文献   

4.
He Q  Kubec R  Jadhav AP  Musah RA 《Phytochemistry》2011,72(16):1939-1946
A study of an enzyme that reacts with the sulfenic acid produced by the alliinase in Petiveria alliacea L. (Phytolaccaceae) to yield the P. alliacea lachrymator (phenylmethanethial S-oxide) showed the protein to be a dehydrogenase. It functions by abstracting hydride from sulfenic acids of appropriate structure to form their corresponding sulfines. Successful hydride abstraction is dependent upon the presence of a benzyl group on the sulfur to stabilize the intermediate formed on abstraction of hydride. This dehydrogenase activity contrasts with that of the lachrymatory factor synthase (LFS) found in onion, which catalyzes the rearrangement of 1-propenesulfenic acid to (Z)-propanethial S-oxide, the onion lachrymator. Based on the type of reaction it catalyzes, the onion LFS should be classified as an isomerase and would be called a “sulfenic acid isomerase”, whereas the P. alliacea LFS would be termed a “sulfenic acid dehydrogenase”.  相似文献   

5.
6.
Grzam A  Martin MN  Hell R  Meyer AJ 《FEBS letters》2007,581(17):3131-3138
The xenobiotic monochlorobimane is conjugated to glutathione in the cytosol of Arabidopsis thaliana, transported to the vacuole, and hydrolyzed to cysteine S-bimane [Grzam, A., Tennstedt, P., Clemens, S., Hell, R. and Meyer, A.J. (2006) Vacuolar sequestration of glutathione S-conjugates outcompetes a possible degradation of the glutathione moiety by phytochelatin synthase. FEBS Lett. 580, 6384-6390]. The work here identifies gamma-glutamyl transpeptidase 4 (At4g29210, GGT4) as the first step of vacuolar degradation of glutathione conjugates. Hydrolysis of glutathione S-bimane is blocked in ggt4 null mutants of A. thaliana. Accumulation of glutathione S-bimane in mutants and in wild-type plants treated with the high affinity GGT inhibitor acivicin shows that GGT4 is required to initiate the two step hydrolysis sequence. GGT4:green fluorescent protein fusions were used to demonstrate that GGT4 is localized in the lumen of the vacuole.  相似文献   

7.
A procedure for producing somatic embryos enriched with dibenzyl trisulfide (DTS) using a hormone-dependent culture system is reported for Petiveria alliacea L. (Guinea hen weed). Leaf explants were cultured on a Murashige and Skoog medium supplemented with a range of naphthaleneacetic acid (NAA) concentrations and a fixed concentration of benzyladenine (BAP) at 11.0 μM and sucrose or glucose at 30 g l−1. Leaf explants cultured on all media types started to form callus at the cut surfaces of the discs 10–14 d after initiation. The type of sugar used influenced average fresh weight, the propensity to form roots, as well as the embryogenic response. The highest mean fresh weight (337.7 ± 26.18 mg) and mean root number (23.7 ± 1.69) was produced on media enriched with sucrose and supplemented with 53.7 μM NAA and 11.0 μM BAP. An ethanol extract of rhizogenic/embryogenic callus or somatic embryos was subjected to high-performance liquid chromatography analysis, which revealed the presence of DTS in both extracts. UV spectral analysis and the use of standard quantitation procedures showed that the quantity of DTS in the somatic embryo extract, at 0.16% (w/v), was approximately 30-fold higher than in rhizogenic/embryogenic callus (0.0055% w/v) of similar fresh weight. These results indicate that it is possible to biosynthesize approximately 6 mg of natural DTS from 3,808 mg of fresh somatic embryos within 10 wk from less than three leaf explants.  相似文献   

8.
9.
Methionine (Met) residues in proteins are susceptible to oxidation. The resulting methionine sulfoxide can be reduced back to methionine by methionine sulfoxide-S-reductase (MsrA). The MsrA gene, isolated from Caenorhabditis elegans, was cloned and expressed in Escherichia coli. The resultant enzyme was able to revert both free Met and Met in proteins in the presence of either NADPH or dithiothreitol (DTT). However, approximately seven times higher enzyme activity was observed in the presence of DTT than of NADPH. The enzyme had an absolute specificity for the reduction of l-methionine-S-sulfoxide but no specificity for the R isomer. K(m) and k(cat) values for the enzyme were approximately 1.18 mM and 3.64 min(-1), respectively. Other kinetics properties of the enzyme were also evaluated.  相似文献   

10.
V8 protease (GluV8), a member of the glutamyl endopeptidase I family isolated from the V8 strain of Staphylococcus aureus, is widely used for proteome analysis because of its unique substrate specificity and resistance to detergents. We recently developed an Escherichia coli expression system for the production of GluV8 based on a technique that suppresses the autoproteolysis—the use of the prosequence of its homologue (GluSE) from Staphylococcus epidermidis as a chimeric form or the introduction of four substitutions in the prosequence of GluV8. In the current study, we refined this technique through five amino acid substitutions within the prosequence of GluV8 for complete suppression of the autodegradation. As a result, the recovery of GluV8 proform was enhanced to 20 fg/cell, which was comparable to the level of a constitutive inactive form of GluV8, indicating complete suppression of the autoproteolysis. This mutated propeptide was also effective for the expression of the mature sequence of the glutamyl endopeptidase from Staphylococcus warneri. The recombinant proteins were successfully converted to their active forms through a common cleavage mechanism mediated by thermolysin in vitro. This strategy may shed light on the way for the expression of the proteases that have been scarcely produced in E. coli to date.  相似文献   

11.
Liu Z  Qin J  Gao C  Hua D  Ma C  Li L  Wang Y  Xu P 《Bioresource technology》2011,102(22):10741-10744
Production of highly pure (2S,3S)-2,3-butanediol ((2S,3S)-2,3-BD) and (3S)-acetoin ((3S)-AC) in high concentrations is desirable but difficult to achieve. In the present study, glucose was first transformed to a mixture of (2S,3S)-2,3-BD and meso-2,3-BD by resting cells of Klebsiella pneumoniae CICC 10011, followed by biocatalytic resolution of the mixture by resting cells of Bacillus subtilis 168. meso-2,3-BD was transformed to (3S)-AC, leaving (2S,3S)-2,3-BD in the reaction medium. Using this approach, 12.5 g l(-1) (2S,3S)-2,3-BD and 56.7 g l(-1) (3S)-AC were produced. Stereoisomeric purity of (2S,3S)-2,3-BD and enantiomeric excess of (3S)-AC was 96.9 and 96.2%, respectively.  相似文献   

12.
S-nitrosoglutathione reductase (GSNOR), also known as S-(hydroxymethyl)glutathione (HMGSH) dehydrogenase, belongs to the large alcohol dehydrogenase superfamily, namely to the class III ADHs. GSNOR catalyses the oxidation of HMGSH to S-formylglutathione using a catalytic zinc and NAD+ as a coenzyme. The enzyme also catalyses the NADH-dependent reduction of S-nitrosoglutathione (GSNO). In plants, GSNO has been suggested to serve as a nitric oxide (NO) reservoir locally or possibly as NO donor in distant cells and tissues. NO and NO-related molecules such as S-nitrosothiols (S-NOs) play a central role in the regulation of normal plant physiological processes and host defence. The enzyme thus participates in the cellular homeostasis of S-NOs and in the metabolism of reactive nitrogen species. Although GSNOR has recently been characterized from several organisms, this study represents the first detailed biochemical and structural characterization of a plant GSNOR, that from tomato (Solanum lycopersicum). SlGSNOR gene expression is higher in roots and stems compared to leaves of young plants. It is highly expressed in the pistil and stamens and in fruits during ripening. The enzyme is a dimer and preferentially catalyses reduction of GSNO while glutathione and S-methylglutathione behave as non-competitive inhibitors. Using NAD+, the enzyme oxidizes HMGSH and other alcohols such as cinnamylalcohol, geraniol and ω-hydroxyfatty acids. The crystal structures of the apoenzyme, of the enzyme in complex with NAD+ and in complex with NADH, solved up to 1.9 Å resolution, represent the first structures of a plant GSNOR. They confirm that the binding of the coenzyme is associated with the active site zinc movement and changes in its coordination. In comparison to the well characterized human GSNOR, plant GSNORs exhibit a difference in the composition of the anion-binding pocket, which negatively influences the affinity for the carboxyl group of ω-hydroxyfatty acids.  相似文献   

13.
Mitbavkar S  Anil AC 《Cryobiology》2006,53(1):143-147
Two pennate microphytobenthic diatoms, Amphora coffeaeformis (Agardh) Kutzing and Navicula transitans var. derasa f. delicatula Heimdal, were cryopreserved and monitored on thawing to track the mechanical injuries and their post-preservation recovery. Cells were subjected to (1) direct freezing in liquid nitrogen and (2) two-step cooling with and without the cryoprotectant, dimethyl sulfoxide (Me(2)SO). Mechanical injury due to exposure to low temperature differed between the two species. While A. coffeaeformis cells were intact and could survive even direct freezing without a cryoprotectant, N. delicatula cell chloroplasts were damaged. However, the two-step cooling along with a cryoprotectant minimized the mechanical injury to cells of both species thereby enhancing the post-thaw viability.  相似文献   

14.
An isoenzyme of glutathione S-transferase (adGST) was purified from liver intestine of the seashell (Asaphis dichotoma) by GST-Sepharose 4B affinity chromatography followed by reverse-phase HPLC. The enzyme has a pI value of 4.6 and is composed of two subunits each with a molecular weight of 23kDa. It exhibits different catalytic activities toward the substrates 1-chloro-2,4-dinitrobenzene, 7-chloro-4-nitrobenzo-2-oxa-1,3-diazole, ethacrynic acid, and p-nitrophenyl acetate and, fascinatingly, shows high activity toward CDNB. The amino acid composition of adGST was determined and found to be very similar to the Sloane squid GSTs. N-terminal analysis of the first 15 residues of adGST revealed that it has 73% sequence identity with the pig roundworm GSTs. The adGST shows characteristics similar to those of class sigma GSTs, as was indicated by its substrate specificity, N-terminal amino acid sequence, and amino acid composition.  相似文献   

15.
Mammals with more rapid and agile locomotion have larger semicircular canals relative to body mass than species that move more slowly. Measurements of semicircular canals in extant mammals with known locomotor behaviours can provide a basis for testing hypotheses about locomotion in fossil primates that is independent of postcranial remains, and a means of reconstructing locomotor behaviour in species known only from cranial material. Semicircular canal radii were measured using ultra high resolution X-ray CT data for 9 stem primates (“plesiadapiforms”; n = 11), 7 adapoids (n = 12), 4 omomyoids (n = 5), and the possible omomyoid Rooneyia viejaensis (n = 1). These were compared with a modern sample (210 species including 91 primates) with known locomotor behaviours. The predicted locomotor agilities for extinct primates generally follow expectations based on known postcrania for those taxa. “Plesiadapiforms” and adapids have relatively small semicircular canals, suggesting they practiced less agile locomotion than other fossil primates in the sample, which is consistent with reconstructions of them as less specialized for leaping. The derived notharctid adapoids (excluding Cantius) and all omomyoids sampled have relatively larger semicircular canals, suggesting that they were more agile, with Microchoerus in particular being reconstructed as having had very jerky locomotion with relatively high magnitude accelerations of the head. Rooneyia viejaensis is reconstructed as having been similarly agile to omomyids and derived notharctid adapoids, which suggests that when postcranial material is found for this species it will exhibit features for some leaping behaviour, or for a locomotor mode requiring a similar degree of agility.  相似文献   

16.
Conversion of l-homocysteine into ethionine and of methionine into S-methylcysteine in apple tissues is demonstrated.  相似文献   

17.
A comparison of the rate of ethylene production by apple fruit to the methionine content of the tissue suggests that the sulfur of methionine has to be recycled during its continuous synthesis of ethylene. The metabolism of the sulfur of methionine in apple tissue in relation to ethylene biosynthesis was investigated. The results showed that in the conversion of methionine to ethylene the CH3S-group of methionine is first incorporated as a unit into S-methylcysteine. By demethylation, S-methylcysteine is metabolized to cysteine. Cysteine then donates its sulfur to form methionine, presumably through cystathionine and homocysteine. This view is consistent with the observation that cysteine, homoserine and homocysteine were all converted to methionine, in an order of efficiency from least to greatest. For the conversion to ethylene, methionine was the most efficient precursor, followed by homocysteine and homoserine. Based on these results, a methionine-sulfur cycle in relation to ethylene biosynthesis is presented.  相似文献   

18.
19.
Differential bacterial counts were made on the intestinal and caecal contents of chickens after inoculation with a standard dose of 320 000 freshly sporulated oocysts of Eimeria brunetti.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号