首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 15 毫秒
1.
The study of plant pathogenesis and the development of effective treatments to protect plants from diseases could be greatly facilitated by a high-throughput pathosystem to evaluate small-molecule libraries for inhibitors of pathogen virulence. The interaction between the Gram-negative bacterium Pseudomonas syringae and Arabidopsis thaliana is a model for plant pathogenesis. However, a robust high-throughput assay to score the outcome of this interaction is currently lacking. We demonstrate that Arabidopsis seedlings incubated with P. syringae in liquid culture display a macroscopically visible 'bleaching' symptom within 5 days of infection. Bleaching is associated with a loss of chlorophyll from cotyledonary tissues, and is correlated with bacterial virulence. Gene-for-gene resistance is absent in the liquid environment, possibly because of the suppression of the hypersensitive response under these conditions. Importantly, bleaching can be prevented by treating seedlings with known inducers of plant defence, such as salicylic acid (SA) or a basal defence-inducing peptide of bacterial flagellin (flg22) prior to inoculation. Based on these observations, we have devised a high-throughput liquid assay using standard 96-well plates to investigate the P. syringae-Arabidopsis interaction. An initial screen of small molecules active on Arabidopsis revealed a family of sulfanilamide compounds that afford protection against the bleaching symptom. The most active compound, sulfamethoxazole, also reduced in planta bacterial growth when applied to mature soil-grown plants. The whole-organism liquid assay provides a novel approach to probe chemical libraries in a high-throughput manner for compounds that reduce bacterial virulence in plants.  相似文献   

2.
Plant cell walls undergo dynamic structural and chemical changes during plant development and growth. Floral organ abscission and lateral root emergence are both accompanied by cell‐wall remodeling, which involves the INFLORESCENCE DEFICIENT IN ABSCISSION (IDA)‐derived peptide and its receptors, HAESA (HAE) and HAESA‐LIKE2 (HSL2). Plant cell walls also act as barriers against pathogenic invaders. Thus, the cell‐wall remodeling during plant development could have an influence on plant resistance to phytopathogens. Here, we identified IDA‐like 6 (IDL6), a gene that is prominently expressed in Arabidopsis leaves. IDL6 expression in Arabidopsis leaves is significantly upregulated when the plant is suffering from attacks of the bacterial Pseudomonas syringae pv. tomato (Pst) DC3000. IDL6 overexpression and knockdown lines respectively decrease and increase the Arabidopsis resistance to Pst DC3000, indicating that the gene promotes the Arabidopsis susceptibility to Pst DC3000. Moreover, IDL6 promotes the expression of a polygalacturonase (PG) gene, ADPG2, and increases PG activity in Arabidopsis leaves, which in turn reduces leaf pectin content and leaf robustness. ADPG2 overexpression restrains Arabidopsis resistance to Pst DC3000, whereas ADPG2 loss‐of‐function mutants increase the resistance to the bacterium. Pst DC3000 infection elevates the ADPG2 expression partially through HAE and HSL2. Taken together, our results suggest that IDL6‐HAE/HSL2 facilitates the ingress of Pst DC3000 by promoting pectin degradation in Arabidopsis leaves, and Pst DC3000 might enhance its infection by manipulating the IDL6‐HAE/HSL2‐ADPG2 signaling pathway.  相似文献   

3.
4.
5.
Bacteria and plant derived volatile organic compounds have been reported as the chemical triggers that elicit induced resistance in plants. Previously, volatile organic compounds (VOCs), including acetoin and 2,3-butanediol, were found to be emitted from plant growth-promoting rhizobacteria (PGPR) Bacillus subtilis GB03, which had been shown to elicit ISR and plant growth promotion. More recently, we reported data that stronger induced resistance could be elicited against Pseudomonas syringae pv maculicola ES4326 in plants exposed to C13 VOC from another PGPR Paenibacillus polymyxa E681 compared with that of strain GB03. Here, we assessed whether another long hydrocarbon C16 hexadecane (HD) conferred protection to Arabidopsis from infection of a biotrophic pathogen, P. syringae pv maculicola and a necrotrophic pathogen, Pectobacterium carotovorum subsp carotovorum. Collectively, long-chain VOCs can be linked to a plant resistance activator for protecting plants against both biotrophic and necrotrophic pathogens at the same time.  相似文献   

6.
Quantitative trait loci (QTL) that confer broad‐spectrum resistance (BSR), or resistance that is effective against multiple and diverse plant pathogens, have been elusive targets of crop breeding programmes. Multiparent advanced generation intercross (MAGIC) populations, with their diverse genetic composition and high levels of recombination, are potential resources for the identification of QTL for BSR. In this study, a rice MAGIC population was used to map QTL conferring BSR to two major rice diseases, bacterial leaf streak (BLS) and bacterial blight (BB), caused by Xanthomonas oryzae pathovars (pv.) oryzicola (Xoc) and oryzae (Xoo), respectively. Controlling these diseases is particularly important in sub‐Saharan Africa, where no sources of BSR are currently available in deployed varieties. The MAGIC founders and lines were genotyped by sequencing and phenotyped in the greenhouse and field by inoculation with multiple strains of Xoc and Xoo. A combination of genomewide association studies (GWAS) and interval mapping analyses revealed 11 BSR QTL, effective against both diseases, and three pathovar‐specific QTL. The most promising BSR QTL (qXO‐2‐1, qXO‐4‐1 and qXO‐11‐2) conferred resistance to more than nine Xoc and Xoo strains. GWAS detected 369 significant SNP markers with distinguishable phenotypic effects, allowing the identification of alleles conferring disease resistance and susceptibility. The BSR and susceptibility QTL will improve our understanding of the mechanisms of both resistance and susceptibility in the long term and will be immediately useful resources for rice breeding programmes.  相似文献   

7.
The balance between cell proliferation and cell differentiation is essential for leaf patterning. However, identification of the factors coordinating leaf patterning and cell growth behavior is challenging. Here, we characterized a temperature‐sensitive Arabidopsis mutant with leaf blade and venation defects. We mapped the mutation to the sub‐2 allele of the SCRAMBLED/STRUBBELIG (SCM/SUB) receptor‐like kinase gene whose functions in leaf development have not been demonstrated. The sub‐2 mutant displayed impaired blade development, asymmetric leaf shape and altered venation patterning under high ambient temperature (30°C), but these defects were less pronounced at normal growth temperature (22°C). Loss of SCM/SUB function results in reduced cell proliferation and abnormal cell expansion, as well as altered auxin patterning. SCM/SUB is initially expressed throughout leaf primordia and becomes restricted to the vascular cells, coinciding with its roles in early leaf patterning and venation formation. Furthermore, constitutive expression of the SCM/SUB gene also restricts organ growth by inhibiting the transition from cell proliferation to expansion. We propose the existence of a SCM/SUB‐mediated developmental stage‐specific signal for leaf patterning, and highlight the importance of the balance between cell proliferation and differentiation for leaf morphogenesis.  相似文献   

8.
9.
Development of effective disease-resistance to a broad-range of pathogens in crops usually requires tremendous resources and effort when traditional breeding approaches are taken. Genetic engineering of disease-resistance in crops has become popular and valuable in terms of cost and efficacy. Due to long-lasting and broad-spectrum of effectiveness against pathogens, employment of systemic acquired resistance (SAR) for the genetic engineering of crop disease-resistance is of particular interest. In this report, we explored the potential of using SAR-related genes for the genetic engineering of enhanced resistance to multiple diseases in tomato. The Arabidopsis NPR1 (nonexpresser of PR genes) gene was introduced into a tomato cultivar, which possesses heat-tolerance and resistance to tomato mosaic virus (ToMV). The transgenic lines expressing NPR1 were normal as regards overall morphology and horticultural traits for at least four generations. Disease screens against eight important tropical diseases revealed that, in addition to the innate ToMV-resistance, the tested transgenic lines conferred significant level of enhanced resistance to bacterial wilt (BW) and Fusarium wilt (FW), and moderate degree of enhanced resistance to gray leaf spot (GLS) and bacterial spot (BS). Transgenic lines that accumulated higher levels of NPR1 proteins exhibited higher levels and a broader spectrum of enhanced resistance to the diseases, and enhanced disease-resistance was stably inherited. The spectrum and degree of these NPR1-transgenic lines are more significant compared to that of transgenic tomatoes reported to date. These transgenic lines may be further explored as future tomato stocks, aiming at building up resistance to a broader spectrum of diseases.  相似文献   

10.
The isolation, characterization and regulation of the first lipopolysaccharide (LPS)-responsive S-domain receptor-like kinase (RLK) in Nicotiana tabacum are reported. The gene, corresponding to a differentially expressed LPS-responsive EST, was fully characterised to investigate its involvement in LPS-induced responses. The full genomic sequence, designated Nt-Sd-RLK, encodes for a S-domain RLK protein containing conserved modules (B-lectin-, S- and PAN-domains) reported to function in mediating protein-protein and protein-carbohydrate interactions in its extracellular domain, as well as the molecular architecture to transduce signals intracellularly through a Ser/Thr kinase domain. Phylogenetic analysis clustered Nt-Sd-RLK with S-domain RLKs induced by bacteria, wounding and salicylic acid. Perception of LPS induced a rapid, bi-phasic response in Nt-Sd-RLK expression with a 17-fold up-regulation at 3 and 9h. A defence-related W-box cis element was found in the promoter region of Nt-Sd-RLK and the transient induction of Nt-Sd-RLK in cultured cells by LPS exhibited a pattern typical of early response defence genes. Nt-Sd-RLK was also responsive to salicylic acid induction and was expressed in differentiated leaf tissue, where LPS elicited local as well as systemic up-regulation. The results contribute new knowledge about the potential role that S-domain RLKs may play within interactive signal transduction pathways associated with immunity and defence.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号