首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Methylated mercury (MeHg) can be produced by all microbes possessing the genes hgcA and hgcB, which can include sulfate-reducing bacteria (SRB), iron-reducing bacteria (FeRB), methane-producing archaea (MPA), and other anaerobic microbes. These microbial groups compete for substrates, including hydrogen and acetate. When sulfate is in excess, SRB can outcompete other anaerobic microbes. However, low concentrations of sulfate, which often occur in stream sediments, are thought to reduce the relative importance of SRB. Although SRB are regarded as the primary contributors of MeHg in many aquatic environments, their significance may not be universal, and stream sediments are poorly studied with respect to microbial Hg methylation. We evaluated suppression of methanogenesis by SRB and the potential contributions from SRB, MPA and other MeHg producing microbes (including FeRB) to the production of MeHg in stream sediments from the North Carolina Piedmont region. Lower methanogenesis rates were observed when SRB were not inhibited, however, application of a sulfate-reduction inhibitor stimulated methanogenesis. Greater MeHg production occurred when SRB were active. Other MeHg producing microbes (i.e., FeRB) contributed significantly less MeHg production than SRB. MPA produced MeHg in negligible amounts. Our results suggest that SRB are responsible for the majority of MeHg production and suppress methanogenesis in mid-order stream sediments, similar to other freshwater sediments. Further investigation is needed to evaluate the generality of these findings to streams in other regions, and to determine the mechanisms regulating sulfate and electron acceptor availability and other potential factors governing Hg methylation and methane production in stream sediments.  相似文献   

2.
We have previously hypothesized that sulfide inhibits Hg methylation by decreasing its bioavailability to sulfate-reducing bacteria (SRB), the important methylators of Hg in natural sediments. With a view to designing a bioassay to test this hypothesis, we investigated a number of aspects of Hg methylation by the SRB Desulfobulbus propionicus, including (i) the relationship between cell density and methylmercury (MeHg) production, (ii) the time course of Hg methylation relative to growth stage, (iii) changes in the bioavailability of an added inorganic Hg (Hg(I)) spike over time, and (iv) the dependence of methylation on the concentration of dissolved Hg(I) present in the culture. We then tested the effect of sulfide on MeHg production by this microorganism. These experiments demonstrated that under conditions of equal bioavailability, per-cell MeHg production was constant through log-phase culture growth. However, the methylation rate of a new Hg spike dramatically decreased after the first 5 h. This result was seen whether methylation rate was expressed as a fraction of the total added Hg or the filtered Hg(I) concentration, which suggests that Hg bioavailability decreased through both changes in Hg complexation and formation of solid phases. At low sulfide concentration, MeHg production was linearly related to the concentration of filtered Hg(I). The methylation of filtered Hg(I) decreased about fourfold as sulfide concentration was increased from 10(-6) to 10(-3) M. This decline is consistent with a decrease in the bioavailability of Hg(I), possibly due to a decline in the dissolved neutral complex, HgS(0).  相似文献   

3.
Differences in methylmercury (CH(3)Hg) production normalized to the sulfate reduction rate (SRR) in various species of sulfate-reducing bacteria (SRB) were quantified in pure cultures and in marine sediment slurries in order to determine if SRB strains which differ phylogenetically methylate mercury (Hg) at similar rates. Cultures representing five genera of the SRB (Desulfovibrio desulfuricans, Desulfobulbus propionicus, Desulfococcus multivorans, Desulfobacter sp. strain BG-8, and Desulfobacterium sp. strain BG-33) were grown in a strictly anoxic, minimal medium that received a dose of inorganic Hg 120 h after inoculation. The mercury methylation rates (MMR) normalized per cell were up to 3 orders of magnitude higher in pure cultures of members of SRB groups capable of acetate utilization (e.g., the family Desulfobacteriaceae) than in pure cultures of members of groups that are not able to use acetate (e.g., the family Desulfovibrionaceae). Little or no Hg methylation was observed in cultures of Desulfobacterium or Desulfovibrio strains in the absence of sulfate, indicating that Hg methylation was coupled to respiration in these strains. Mercury methylation, sulfate reduction, and the identities of sulfate-reducing bacteria in marine sediment slurries were also studied. Sulfate-reducing consortia were identified by using group-specific oligonucleotide probes that targeted the 16S rRNA molecule. Acetate-amended slurries, which were dominated by members of the Desulfobacterium and Desulfobacter groups, exhibited a pronounced ability to methylate Hg when the MMR were normalized to the SRR, while lactate-amended and control slurries had normalized MMR that were not statistically different. Collectively, the results of pure-culture and amended-sediment experiments suggest that members of the family Desulfobacteriaceae have a greater potential to methylate Hg than members of the family Desulfovibrionaceae have when the MMR are normalized to the SRR. Hg methylation potential may be related to genetic composition and/or carbon metabolism in the SRB. Furthermore, we found that in marine sediments that are rich in organic matter and dissolved sulfide rapid CH(3)Hg accumulation is coupled to rapid sulfate reduction. The observations described above have broad implications for understanding the control of CH(3)Hg formation and for developing remediation strategies for Hg-contaminated sediments.  相似文献   

4.
We have previously hypothesized that sulfide inhibits Hg methylation by decreasing its bioavailability to sulfate-reducing bacteria (SRB), the important methylators of Hg in natural sediments. With a view to designing a bioassay to test this hypothesis, we investigated a number of aspects of Hg methylation by the SRB Desulfobulbus propionicus, including (i) the relationship between cell density and methylmercury (MeHg) production, (ii) the time course of Hg methylation relative to growth stage, (iii) changes in the bioavailability of an added inorganic Hg (HgI) spike over time, and (iv) the dependence of methylation on the concentration of dissolved HgI present in the culture. We then tested the effect of sulfide on MeHg production by this microorganism. These experiments demonstrated that under conditions of equal bioavailability, per-cell MeHg production was constant through log-phase culture growth. However, the methylation rate of a new Hg spike dramatically decreased after the first 5 h. This result was seen whether methylation rate was expressed as a fraction of the total added Hg or the filtered HgI concentration, which suggests that Hg bioavailability decreased through both changes in Hg complexation and formation of solid phases. At low sulfide concentration, MeHg production was linearly related to the concentration of filtered HgI. The methylation of filtered HgI decreased about fourfold as sulfide concentration was increased from 10−6 to 10−3 M. This decline is consistent with a decrease in the bioavailability of HgI, possibly due to a decline in the dissolved neutral complex, HgS0.  相似文献   

5.
The sulfate-reducing bacterium strain SRB D2 isolated from the photic zone of a hypersaline microbial mat, from Lake Chiprana, NE Spain, respired pyruvate, alanine, and α-ketoglutarate but not formate, lactate, malate, succinate, and serine at significant rates under fully oxic conditions. Dehydrogenase enzymes of only the former substrates are likely oxygen-tolerant as all substrates supported anaerobic sulfate reduction. No indications were found, however, that aerobic respiration supported growth. Although strain SRB D2 appeared phylogenetically closely related to the oxygen-tolerant sulfate-reducing bacterium Desulfovibrio oxyclinae, substrate spectra were markedly different. Most-probable-number (MPN) estimates of sulfate-reducing bacteria and aerobic heterotrophic bacteria indicated that the latter were numerically dominant in both the photic and aphotic zones of the mat. Moreover, substrate spectra of representative isolates showed that the aerobic heterotrophic bacteria are metabolically more diverse. These findings indicate that sulfate-reducing bacteria in the fully oxic photic zone of mats have to compete with aerobic heterotrophic bacteria for organic substrates. Porewater analysis revealed that total carbohydrates and low-molecular-weight carbon compounds (LMWC) made up substantial fractions of the total dissolved organic carbon (DOC) pool and that nighttime degradation of the former was concomitant with increased concentration of the latter. Our findings indicate that aerobic respiration by sulfate-reducing bacteria contributes to organic carbon mineralization in the oxic zone of microbial mats as daytime porewater LMWC concentrations are above typical half-saturation constants.  相似文献   

6.
Differences in methylmercury (CH3Hg) production normalized to the sulfate reduction rate (SRR) in various species of sulfate-reducing bacteria (SRB) were quantified in pure cultures and in marine sediment slurries in order to determine if SRB strains which differ phylogenetically methylate mercury (Hg) at similar rates. Cultures representing five genera of the SRB (Desulfovibrio desulfuricans, Desulfobulbus propionicus, Desulfococcus multivorans, Desulfobacter sp. strain BG-8, and Desulfobacterium sp. strain BG-33) were grown in a strictly anoxic, minimal medium that received a dose of inorganic Hg 120 h after inoculation. The mercury methylation rates (MMR) normalized per cell were up to 3 orders of magnitude higher in pure cultures of members of SRB groups capable of acetate utilization (e.g., the family Desulfobacteriaceae) than in pure cultures of members of groups that are not able to use acetate (e.g., the family Desulfovibrionaceae). Little or no Hg methylation was observed in cultures of Desulfobacterium or Desulfovibrio strains in the absence of sulfate, indicating that Hg methylation was coupled to respiration in these strains. Mercury methylation, sulfate reduction, and the identities of sulfate-reducing bacteria in marine sediment slurries were also studied. Sulfate-reducing consortia were identified by using group-specific oligonucleotide probes that targeted the 16S rRNA molecule. Acetate-amended slurries, which were dominated by members of the Desulfobacterium and Desulfobacter groups, exhibited a pronounced ability to methylate Hg when the MMR were normalized to the SRR, while lactate-amended and control slurries had normalized MMR that were not statistically different. Collectively, the results of pure-culture and amended-sediment experiments suggest that members of the family Desulfobacteriaceae have a greater potential to methylate Hg than members of the family Desulfovibrionaceae have when the MMR are normalized to the SRR. Hg methylation potential may be related to genetic composition and/or carbon metabolism in the SRB. Furthermore, we found that in marine sediments that are rich in organic matter and dissolved sulfide rapid CH3Hg accumulation is coupled to rapid sulfate reduction. The observations described above have broad implications for understanding the control of CH3Hg formation and for developing remediation strategies for Hg-contaminated sediments.  相似文献   

7.
Anaerobic oxidation of methane (AOM) with sulfate is catalysed by microbial consortia of archaea and bacteria affiliating with methanogens and sulfate-reducing Deltaproteobacteria respectively. There is evidence that methane oxidation is catalysed by enzymes related to those in methanogenesis, but the enzymes for sulfate reduction coupled to AOM have not been examined. We collected microbial mats with high AOM activity from a methane seep in the Black Sea. The mats consisted mainly of archaea of the ANME-2 group and bacteria of the Desulfosarcina-Desulfococcus group. Cell-free mat extract contained activities of enzymes involved in sulfate reduction to sulfide: ATP sulfurylase (adenylyl : sulfate transferase; Sat), APS reductase (Apr) and dissimilatory sulfite reductase (Dsr). We partially purified the enzymes by anion-exchange chromatography. The amounts obtained indicated that the enzymes are abundant in the mat, with Sat accounting for 2% of the soluble mat protein. N-terminal amino acid sequences of purified proteins suggested similarities to the corresponding enzymes of known species of sulfate-reducing bacteria. The deduced amino acid sequence of PCR-amplified genes of the Apr subunits is similar to that of Apr of the Desulfosarcina/Desulfococcus group. These results indicate that the major enzymes involved in sulfate reduction in the Back Sea microbial mats are of bacterial origin, most likely originating from the bacterial partner in the consortium.  相似文献   

8.
Desulfovibrio desulfuricans strain ND132 is an anaerobic sulfate-reducing bacterium (SRB) capable of producing methylmercury (MeHg), a potent human neurotoxin. The mechanism of methylation by this and other organisms is unknown. We present the 3.8-Mb genome sequence to provide further insight into microbial mercury methylation.  相似文献   

9.
Five subgroups of sulfate-reducing bacteria (SRB) were detected by PCR in three macrophyte rhizospheres (Polygonum densiflorum, Hymenachne donacifolia, and Ludwigia helminthorriza) and three subgroups in Eichhornia crassipes from La Granja, a floodplain lake from the upper Madeira basin. The SRB community varied according to the macrophyte species but with different degrees of association with their roots. The rhizosphere of the C4 plant Polygonum densiflorum had higher frequencies of SRB subgroups as well as higher mercury methylation potentials (27.5 to 36.1%) and carbon (16.06 +/- 5.40%), nitrogen (2.03 +/- 0.64%), Hg (94.50 +/- 6.86 ng Hg g(-1)), and methylmercury (8.25 +/- 1.45 ng Hg g(-1)) contents than the rhizosphere of the C3 plant Eichhornia crassipes. Mercury methylation in Polygonum densiflorum and Eichhornia crassipes was reduced when SRB metabolism was inhibited by sodium molybdate.  相似文献   

10.
This study demonstrates the ability of Desulfitobacterium spp. to utilize aliphatic sulfonates as terminal electron acceptors (TEA) for growth. Isethionate (2-hydroxyethanesulfonate) reduction by Desulfitobacterium hafniense resulted in acetate as well as sulfide accumulation in accordance with the expectation that the carbon portion of isethionate was oxidized to acetate and the sulfur was reduced to sulfide. The presence of a polypeptide, approximately 97 kDa, was evident in isethionate-grown cells of Desulfitobacterium hafniense, Desulfitobacterium sp. strain PCE 1, and the two sulfate-reducing bacteria (SRB)-Desulfovibrio desulfuricans IC1 (T. J. Lie, J. R. Leadbetter, and E. R. Leadbetter, Geomicrobiol. J. 15:135-149, 1998) and Desulfomicrobium norvegicum; this polypeptide was not detected when these bacteria were grown on TEA other than isethionate, suggesting involvement in its metabolism. The sulfate analogs molybdate and tungstate, effective in inhibiting sulfate reduction by SRB, were examined for their effects on sulfonate reduction. Molybdate effectively inhibited sulfonate reduction by strain IC1 and selectively inhibited isethionate (but not cysteate) reduction by Desulfitobacterium dehalogenans and Desulfitobacterium sp. strain PCE 1. Desulfitobacterium hafniense, however, grew with both isethionate and cysteate in the presence of molybdate. In contrast, tungstate only partially inhibited sulfonate reduction by both SRB and Desulfitobacterium spp. Similarly, another inhibitor of sulfate reduction, 1,8-dihydroxyanthraquinone, effectively inhibited sulfate reduction by SRB but only partially inhibited sulfonate reduction by both SRB and Desulfitobacterium hafniense.  相似文献   

11.
We propose the use of Desulfovibrio desulfuricans ND132 as a model species for understanding the mechanism of microbial Hg methylation. Strain ND132 is an anaerobic dissimilatory sulfate-reducing bacterium (DSRB), isolated from estuarine mid-Chesapeake Bay sediments. It was chosen for study because of its exceptionally high rates of Hg methylation in culture and its metabolic similarity to the lost strain D. desulfuricans LS, the only organism for which methylation pathways have been partially defined. Strain ND132 is an incomplete oxidizer of short-chain fatty acids. It is capable of respiratory growth using fumarate as an electron acceptor, supporting growth without sulfide production. We used enriched stable Hg isotopes to show that ND132 simultaneously produces and degrades methylmercury (MeHg) during growth but does not produce elemental Hg. MeHg produced by cells is mainly excreted, and no MeHg is produced in spent medium. Mass balances for Hg and MeHg during the growth of cultures, including the distribution between filterable and particulate phases, illustrate how medium chemistry and growth phase dramatically affect Hg solubility and availability for methylation. The available information on Hg methylation among strains in the genus Desulfovibrio is summarized, and we present methylation rates for several previously untested species. About 50% of Desulfovibrio strains tested to date have the ability to produce MeHg. Importantly, the ability to produce MeHg is constitutive and does not confer Hg resistance. A 16S rRNA-based alignment of the genus Desulfovibrio allows the very preliminary assessment that there may be some evolutionary basis for the ability to produce MeHg within this genus.  相似文献   

12.
13.
The distribution and activity of sulfate-reducing bacteria (SRB) in the water column of the alpine meromictic Gek-Gel lake were studied. Apart from traditional microbiological methods based on cultivation and on measuring the process rates with radioactive labels, in situ fluorescent hybridization (FISH) was used, which enables identification and quantification without cultivating organisms. The peak rate of sulfate reduction, 0.486 microg S/(l day), was found in the chemocline at 33 m. The peak SRB number of 2.5 x 106 cells/ml, as determined by the end-point dilutions method on selective media, was found at the same depth. The phylogenetic position of the SRB, as determined by FISH, revealed the predominance of the Desulfovibrio spp., Desulfobulbus spp., and Desulfoarculus spp./Desulfomonile spp. groups. The numbers of spore-forming Desulfotomaculum spp. increased with depth. The low measured rates of sulfate reduction accompanied with high SRB numbers and the predominance of the groups capable of reducing a wide range of substrates permit us to propose utilization of electron acceptors other than sulfate as the main activity of the SRB in the water column.  相似文献   

14.
A mixed culture of human fecal bacteria was grown for 120 days in a three-stage continuous culture system. To reproduce some of the nutritional and pH characteristics of the large gut, each vessel had a different operating volume (0.3, 0.5, and 0.8 liter) and pH (6.0, 6.5, and 7.0). A mixture of polysaccharides and proteins was used as carbon and nitrogen sources. Measurements of H2, CH4, S2-, sulfate reduction rates, sulfate-reducing bacteria (SRB), and volatile fatty acids were made throughout the experiment. After 48 days of running, porcine gastric mucin (5.8 g/day) was independently fed to vessel 1 of the multichamber system. The mucin was extensively degraded as evidenced by the stimulation of volatile fatty acid production. In the absence of mucin, sulfate-reducing activity was comparatively insignificant and methanogenesis was the major route for the disposal of electrons. The reverse occurred upon the addition of mucin; sulfate reduction predominated and methanogenesis was completely inhibited. This was attributed to release of sulfate from the mucin which enabled SRB to outcompete methanogenic bacteria for H2. SRB stimulated by mucin were acetate-utilizing Desulfobacter spp., lactate- and H2-utilizing Desulfovibrio spp., and propionate-utilizing Desulfobulbus spp. When the mucin pump was switched off, the multichamber system reverted to a state close to its original equilibrium. These data provide further evidence that sulfated polysaccharides such as mucin may be a source of sulfate for SRB in the human large gut.  相似文献   

15.
A mixed culture of human fecal bacteria was grown for 120 days in a three-stage continuous culture system. To reproduce some of the nutritional and pH characteristics of the large gut, each vessel had a different operating volume (0.3, 0.5, and 0.8 liter) and pH (6.0, 6.5, and 7.0). A mixture of polysaccharides and proteins was used as carbon and nitrogen sources. Measurements of H2, CH4, S2-, sulfate reduction rates, sulfate-reducing bacteria (SRB), and volatile fatty acids were made throughout the experiment. After 48 days of running, porcine gastric mucin (5.8 g/day) was independently fed to vessel 1 of the multichamber system. The mucin was extensively degraded as evidenced by the stimulation of volatile fatty acid production. In the absence of mucin, sulfate-reducing activity was comparatively insignificant and methanogenesis was the major route for the disposal of electrons. The reverse occurred upon the addition of mucin; sulfate reduction predominated and methanogenesis was completely inhibited. This was attributed to release of sulfate from the mucin which enabled SRB to outcompete methanogenic bacteria for H2. SRB stimulated by mucin were acetate-utilizing Desulfobacter spp., lactate- and H2-utilizing Desulfovibrio spp., and propionate-utilizing Desulfobulbus spp. When the mucin pump was switched off, the multichamber system reverted to a state close to its original equilibrium. These data provide further evidence that sulfated polysaccharides such as mucin may be a source of sulfate for SRB in the human large gut.  相似文献   

16.
Methylmercury (MeHg), a neurotoxic substance that accumulates in aquatic food chains and poses a risk to human health, is synthesized by anaerobic microorganisms in the environment. To date, mercury (Hg) methylation has been attributed to sulfate- and iron-reducing bacteria (SRB and IRB, respectively). Here we report that a methanogen, Methanospirillum hungatei JF-1, methylated Hg in a sulfide-free medium at comparable rates, but with higher yields, than those observed for some SRB and IRB. Phylogenetic analyses showed that the concatenated orthologs of the Hg methylation proteins HgcA and HgcB from M. hungatei are closely related to those from known SRB and IRB methylators and that they cluster together with proteins from eight other methanogens, suggesting that these methanogens may also methylate Hg. Because all nine methanogens with HgcA and HgcB orthologs belong to the class Methanomicrobia, constituting the late-evolving methanogenic lineage, methanogenic Hg methylation could not be considered an ancient metabolic trait. Our results identify methanogens as a new guild of Hg-methylating microbes with a potentially important role in mineral-poor (sulfate- and iron-limited) anoxic freshwater environments.  相似文献   

17.
The distribution and activity of sulfate-reducing bacteria (SRB) in the water column of the alpine meromictic Gek-Gel lake were studied. Apart from traditional microbiological methods based on cultivation and on measuring the process rates with radioactive labels, in situ fluorescent hybridization (FISH) was used, which enables identification and quantification without cultivating organisms. The peak rate of sulfate reduction, 0.486 μg S 1−1 day−1, was found in the chemocline at 33 m. The peak SRB number of 2.5×106 cells/ml, as determined by the most probable number method on selective media, was found at the same depth. The phylogenetic affiliation of the SRB, as determined by FISH, revealed the predominance of the Desulfovibrio spp., Desulfobulbus spp., and Desulfoarculus spp./Desulfomonile spp. groups. The numbers of spore-forming Desulfotomaculum spp. increased with depth. The low measured rates of sulfate reduction accompanied by high SRB numbers and the predominance of the groups capable of reducing a wide range of substrates permit us to assume utilization of electron acceptors other than sulfate as the main activity of the SRB in the water column. Original Russian Text ? O.V. Karnachuk, N.V. Pimenov, S.K. Yusupov, Yu.A. Frank, Ya.A. Puhakka, M.V. Ivanov, 2006, published in Mikrobiologiya, 2006, Vol. 75, No. 1, pp. 101–109.  相似文献   

18.
Five subgroups of sulfate-reducing bacteria (SRB) were detected by PCR in three macrophyte rhizospheres (Polygonum densiflorum, Hymenachne donacifolia, and Ludwigia helminthorriza) and three subgroups in Eichhornia crassipes from La Granja, a floodplain lake from the upper Madeira basin. The SRB community varied according to the macrophyte species but with different degrees of association with their roots. The rhizosphere of the C4 plant Polygonum densiflorum had higher frequencies of SRB subgroups as well as higher mercury methylation potentials (27.5 to 36.1%) and carbon (16.06 ± 5.40%), nitrogen (2.03 ± 0.64%), Hg (94.50 ± 6.86 ng Hg g−1), and methylmercury (8.25 ± 1.45 ng Hg g−1) contents than the rhizosphere of the C3 plant Eichhornia crassipes. Mercury methylation in Polygonum densiflorum and Eichhornia crassipes was reduced when SRB metabolism was inhibited by sodium molybdate.  相似文献   

19.
Bacterial diversity and sulfur cycling in a mesophilic sulfide-rich spring   总被引:4,自引:0,他引:4  
An artesian sulfide- and sulfur-rich spring in southwestern Oklahoma is shown to sustain an extremely rich and diverse microbial community. Laboratory incubations and autoradiography studies indicated that active sulfur cycling is occurring in the abundant microbial mats at Zodletone spring. Anoxygenic phototrophic bacteria oxidize sulfide to sulfate, which is reduced by sulfate-reducing bacterial populations. The microbial community at Zodletone spring was analyzed by cloning and sequencing 16S rRNA genes. A large fraction (83%) of the microbial mat clones belong to sulfur- and sulfate-reducing lineages within delta-Proteobacteria, purple sulfur gamma-Proteobacteria, epsilon -Proteobacteria, Chloroflexi, and filamentous Cyanobacteria of the order Oscillatoria as well as a novel group within gamma-Proteobacteria. The 16S clone library constructed from hydrocarbon-exposed sediments at the source of the spring had a higher diversity than the mat clone library (Shannon-Weiner index of 3.84 compared to 2.95 for the mat), with a higher percentage of clones belonging to nonphototrophic lineages (e.g., Cytophaga, Spirochaetes, Planctomycetes, Firmicutes, and Verrucomicrobiae). Many of these clones were closely related to clones retrieved from hydrocarbon-contaminated environments and anaerobic hydrocarbon-degrading enrichments. In addition, 18 of the source clones did not cluster with any of the previously described microbial divisions. These 18 clones, together with previously published or database-deposited related sequences retrieved from a wide variety of environments, could be clustered into at least four novel candidate divisions. The sulfate-reducing community at Zodletone spring was characterized by cloning and sequencing a 1.9-kb fragment of the dissimilatory sulfite reductase (DSR) gene. DSR clones belonged to the Desulfococcus-Desulfosarcina-Desulfonema group, Desulfobacter group, and Desulfovibrio group as well as to a deeply branched group in the DSR tree with no representatives from cultures. Overall, this work expands the division-level diversity of the bacterial domain and highlights the complexity of microbial communities involved in sulfur cycling in mesophilic microbial mats.  相似文献   

20.
This study demonstrates the ability of Desulfitobacterium spp. to utilize aliphatic sulfonates as terminal electron acceptors (TEA) for growth. Isethionate (2-hydroxyethanesulfonate) reduction by Desulfitobacterium hafniense resulted in acetate as well as sulfide accumulation in accordance with the expectation that the carbon portion of isethionate was oxidized to acetate and the sulfur was reduced to sulfide. The presence of a polypeptide, approximately 97 kDa, was evident in isethionate-grown cells of Desulfitobacterium hafniense, Desulfitobacterium sp. strain PCE 1, and the two sulfate-reducing bacteria (SRB)—Desulfovibrio desulfuricans IC1 (T. J. Lie, J. R. Leadbetter, and E. R. Leadbetter, Geomicrobiol. J. 15:135–149, 1998) and Desulfomicrobium norvegicum; this polypeptide was not detected when these bacteria were grown on TEA other than isethionate, suggesting involvement in its metabolism. The sulfate analogs molybdate and tungstate, effective in inhibiting sulfate reduction by SRB, were examined for their effects on sulfonate reduction. Molybdate effectively inhibited sulfonate reduction by strain IC1 and selectively inhibited isethionate (but not cysteate) reduction by Desulfitobacterium dehalogenans and Desulfitobacterium sp. strain PCE 1. Desulfitobacterium hafniense, however, grew with both isethionate and cysteate in the presence of molybdate. In contrast, tungstate only partially inhibited sulfonate reduction by both SRB and Desulfitobacterium spp. Similarly, another inhibitor of sulfate reduction, 1,8-dihydroxyanthraquinone, effectively inhibited sulfate reduction by SRB but only partially inhibited sulfonate reduction by both SRB and Desulfitobacterium hafniense.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号