首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Extrinsic, host-associated environmental factors may influence postmating isolation between herbivorous insect populations and represent a fundamentally ecological cause of speciation. We investigated this issue in experiments on hybrids between the host races of Eurosta solidaginis, a fly that induces galls on the goldenrods Solidago altissima and S. gigantea. To do so, we measured the performance of parental host races and their hybrids on five genotypes of S. gigantea and nine genotypes of S. altissima to test hypotheses about how variation in plant genotype affects performance (i.e., fitness) and potentially influences gene flow between these host races. We found that rates of gall induction and of survival to adult emergence by hybrid larvae were significantly lower than those of both parental host races on both host species, adding support to the hypothesis that there is partial postmating isolation between the host races. Hybrid flies significantly varied in their performance across plant genotypes of both host species. A significant interaction between the effects of plant genotype and mating treatment (parental vs. hybrid crosses) on larval performance indicated that the relative suitability of particular plant genotypes differed between the parental host races and their hybrids. These patterns illustrate a poor correspondence between optimal parental and hybrid environments, consistent with the hypothesis that these host races are partially isolated due to extrinsic (ecological) factors. Based on these findings, we discuss the possibility that plant genotypes in which hybrid performance is high can facilitate hybridization and gene flow between partially reproductively isolated populations of herbivorous insects, thus affecting the dynamics of ecological speciation.  相似文献   

2.
1. A series of experiments was conducted to measure the impact of plant genotype, plant growth rate, and intraspecific competition on the oviposition preference and offspring performance of the host races of Eurosta solidaginis (Diptera: Tephritidae), a fly that forms galls on Solidago altissima and Solidago gigantea (Asteraceae). Previous research has shown that both host races prefer to oviposit on their own host plant where survival is much higher than on the alternate host plant. In this study, neither host race showed any relationship between oviposition preference and offspring performance in choosing among plants of their natal host species. 2. The larval survival of both host races differed among plant genotypes when each host race oviposited on its natal host species. In one experiment, altissima host race females showed a preference among plant genotypes that was not correlated with offspring performance on those genotypes. In all other experiments, neither the altissima nor gigantea host race demonstrated a preference for specific host plant genotypes. 3. Eurosta solidaginis had a preference for ovipositing on rapidly growing ramets in all experiments, however larval survival was not correlated with ramet growth rate at the time of oviposition. 4. Eurosta solidaginis suffered high mortality from intraspecific competition in the early larval stage. There was little evidence, however, that females avoided ovipositing on ramets that had been attacked previously. This led to an aggregated distribution of eggs among ramets and strong intraspecific competition. 5. There was no interaction among plant genotype, plant growth rate, or intraspecific competition in determining oviposition preference or offspring performance.  相似文献   

3.
Adaptation involves the successive substitution of beneficial mutations by selection, a process known as an adaptive walk. Gradualist models of adaptation, which assume that all mutations are small relative to the distance to a fitness optimum, predict that adaptive walks should be longer when the founding genotype is less well adapted. More recent work modeling adaptation as a sequence of moves in phenotype or genotype space predicts, by contrast, much shorter adaptive walks irrespective of the fitness of the founding genotype. Here, we provide what is, to the best of our knowledge, the first direct test of these alternative models, measuring the length of adaptive walks in evolving lineages of fungus that differ initially in fitness. Contrary to the gradualist view, we show that the length of adaptive walks in the fungus Aspergillus nidulans is insensitive to starting fitness and involves just two mutations on average. This arises because poorly adapted populations tend to fix mutations of larger average effect than those of better-adapted populations. Our results suggest that the length of adaptive walks may be independent of the fitness of the founding genotype and, moreover, that poorly adapted populations can quickly adapt to novel environments.  相似文献   

4.
The notion that shifts to new hosts can initiate insect speciation is more than 150 years old, yet widespread conflation with paradigms of sympatric speciation has led to confusion about how much support exists for this hypothesis. Here, we review 85 insect systems and evaluate the relationship between host shifting, reproductive isolation, and speciation. We sort insects into five categories: (1) systems in which a host shift has initiated speciation; (2) systems in which a host shift has made a contribution to speciation; (3) systems in which a host shift has caused the evolution of new reproductive isolating barriers; (4) systems with host‐associated genetic differences; and (5) systems with no evidence of host‐associated genetic differences. We find host‐associated genetic structure in 65 systems, 43 of which show that host shifts have resulted in the evolution of new reproductive barriers. Twenty‐six of the latter also support a role for host shifts in speciation, including eight studies that definitively support the hypothesis that a host shift has initiated speciation. While this review is agnostic as to the fraction of all insect speciation events to which host shifts have contributed, it clarifies that host shifts absolutely can and do initiate speciation.  相似文献   

5.
Most biological systems are formed by component parts that are to some degree interrelated. Groups of parts that are more associated among themselves and are relatively autonomous from others are called modules. One of the consequences of modularity is that biological systems usually present an unequal distribution of the genetic variation among traits. Estimating the covariance matrix that describes these systems is a difficult problem due to a number of factors such as poor sample sizes and measurement errors. We show that this problem will be exacerbated whenever matrix inversion is required, as in directional selection reconstruction analysis. We explore the consequences of varying degrees of modularity and signal-to-noise ratio on selection reconstruction. We then present and test the efficiency of available methods for controlling noise in matrix estimates. In our simulations, controlling matrices for noise vastly improves the reconstruction of selection gradients. We also perform an analysis of selection gradients reconstruction over a New World Monkeys skull database to illustrate the impact of noise on such analyses. Noise-controlled estimates render far more plausible interpretations that are in full agreement with previous results.  相似文献   

6.
Host shifts and the formation of insect-host races are likely common processes in the speciation of herbivorous insects. The interactions of goldenrods Solidago (Compositae), the gall fly Eurosta solidaginis (Diptera: Tephritidae) and the beetle Mordellistena convicta (Coleoptera: Mordellidae) provide behavioural, ecological and genetic evidence of host races that may represent incipient species forming via sympatric speciation. We summarize evidence for Eurosta host races and show that M. convicta has radiated from goldenrod stems to Eurosta galls to form host-part races and, having exploited the galler's host shift, has begun to differentiate into host races within galls. Thus, host-race formation has occurred in two interacting, but unrelated organisms representing two trophic levels, resulting in 'sequential radiation' (escalation of biodiversity up the trophic system). Distributions of host races and their behavioural isolating mechanisms suggest sympatric differentiation. Such differentiation suggests host-race formation and subsequent speciation may be an important source of biodiversity.  相似文献   

7.
When compared to other hominids--great apes including humans--the human pelvis reveals a fundamental reorganization of bony morphology comprised of multiple trait-level changes, many of which are associated with bipedal locomotion. Establishing how patterns of integration--correlations and covariances among traits--within the pelvis have evolved in concert with morphology is essential to explaining this evolutionary transition because integration may facilitate or constrain morphological evolution. Here, we show that the human hip bone has significantly lower levels of integration and constraint overall when compared to other hominids, that the focus of these changes is on traits hypothesized to play major functional roles in bipedalism, and we provide evidence that the human hip was reintegrated in a pattern distinct from other members of this group. Additionally, the evolutionary transition from a nonhuman great ape-like to human hip bone morphology was significantly easier to traverse using the human integration pattern in each comparison, which suggests hominin patterns may have evolved to facilitate this transition. Our results suggest natural selection for bipedalism broke down earlier hominid integration patterns, allowing relevant traits to respond to separate selection pressures to a greater extent than was previously possible, and reintegrated traits in a way that could have facilitated evolution along the vector specifying ancestral hominid and hominin morphological differences.  相似文献   

8.
Host-associated mating is crucial in maintaining the partial reproductive isolation between the host races of Eurosta solidaginis (Diptera: Tephritidae), a fly that forms galls on Solidago altissima and S. gigantea. (We refer to flies reared from S. gigantea as gigantea flies and those reared from S. altissima as altissima flies.) We measured the host preference of males and females of both host races, F1 hybrids between the host races, F2, and backcrosses to both host races. Male and female altissima flies and female gigantea flies had high host fidelity, whereas male gigantea flies had low host fidelity. This result suggests that there may be gene flow between the host races due to nonassortative mating that occurs when male gigantea mate with altissima females on S. altissima. This indicates assortative-mating mechanisms in addition to host-associated mating are required to produce the partial reproductive isolation between the host races that has been observed. Nongenetic factors had no influence on host preference. Larval conditioning did not influence host preference: reciprocal F1 hybrids reared in S. altissima and S. gigantea both preferred S. gigantea. Adult experience had no impact on host preference: females preferred their natal host plant regardless of which host they encountered first as an adult. The hypothesis that maternal effects influence preferences was rejected because male and female flies did not show a consistent preference for the host plant of their mother. We also found no evidence that preference was a sex-linked trait because F1 and backcrosses to the host races with different combinations of X chromosomes from the two host races preferred S. gigantea. Our results indicate that host preference is not determined by a large number of genes because preference of hybrids did not correspond to the proportion of the genome derived from each host race. The strength of the ovipuncture preference for S. gigantea by gigantea females, the females of both reciprocal F1 hybrids, the backcross to gigantea, and F2s indicates that preference is inherited nonadditively at a limited number of loci. The F1 female hybrids, however, had a weaker host preference for S. gigantea than the pure gigantea host race, indicating that there may be incomplete dominance or modifier loci. Males had different host preference patterns than females, with individual male gigantea and male F1 hybrids usually exhibiting preference exclusively for S. gigantea or S. altissima. One hypothesis explaining the difference in host preference between males and females is that the same gene influences both female and male host preference, but it is a sex-influenced gene. Thus, males carrying the gene for S. gigantea preference have an intermediate host preference, whereas females have a strong host preference to S. gigantea. In summary, we found that the host preference that produces host-associated mating is inherited nonadditively at a relatively small number of loci on autosomal genes. This mode of inheritance meets the assumptions of models of sympatric speciation, indicating that the host races could have evolved in sympatry.  相似文献   

9.
Earlier research by W.R. Rice showed that experimentally limiting gene expression to males in Drosophila melanogaster leads to the rapid evolution of higher fitness. Using a similar male-limited (ML) selection protocol, we confirmed that result and showed that eliminating intralocus sexual conflict results in a comprehensive remodeling of the sexually dimorphic phenotype. However, despite starting from laboratory-evolved descendants of the same founder population used in earlier work, we found no evidence for the increased performance in sperm competition or increased postmating harm to females previously demonstrated. We employed females with both ancestral population genotypes and those of the special "clone generator" females used in ML selection. Despite strong differences in sperm storage or usage patterns between these females, there was no detectable adaptation by males to the specific female stock used in the selection protocol. The lack of evolution of postcopulatory traits suggests either that requisite genetic variation was eliminated by long-term domestication of the base population, or that complex male-by-male-by-female interactions made these traits unavailable to selection. The different evolutionary outcomes produced by two very similar experiments done at different time points underscores the potential for cryptic adaptation in the laboratory to qualitatively affect inferences made using quantitative genetic methodologies.  相似文献   

10.
The genetic basis of host plant use by phytophagous insects can provide insight into the evolution of ecological niches, especially phenomena such as specialization and phylogenetic conservatism. We carried out a quantitative genetic analysis of multiple host use traits, estimated on five species of host plants, in the Colorado potato beetle, Leptinotarsa decemlineata (Coleoptera: Chrysomelidae). Mean values of all characters varied among host plants, providing evidence that adaptation to plants may require evolution of both behavioral (preference) and post-ingestive physiological (performance) characteristics. Significant additive genetic variation was detected for several characters on several hosts, but not in the capacity to use the two major hosts, a pattern that might be caused by directional selection. No negative genetic correlations across hosts were detected for any 'performance' traits, i.e. we found no evidence of trade-offs in fitness on different plants. Larval consumption was positively genetically correlated across host plants, suggesting that diet generalization might evolve as a distinct trait, rather than by independent evolution of feeding responses to each plant species, but several other traits did not show this pattern. We explored genetic correlations among traits expressed on a given plant species, in a first effort to shed light on the number of independent traits that may evolve in response to selection for host-plant utilization. Most traits were not correlated with each other, implying that adaptation to a novel potential host could be a complex, multidimensional 'character' that might constrain adaptation and contribute to the pronounced ecological specialization and the phylogenetic niche conservatism that characterize many clades of phytophagous insects.  相似文献   

11.
12.
苏铁蚧虫及其天敌   总被引:3,自引:0,他引:3  
通过对我省10县市的调查、采集和鉴定,苏铁蚧虫计有15种,隶属4科、10属。发生最普遍、最严重的是咖啡盔蚧和酱褐圆蚧。天敌有寄生性天敌15种、捕食性天敌6种和寄生菌1种。  相似文献   

13.
Divergence and speciation can sometimes proceed in the face of, and even be enhanced by, ongoing gene flow. We here study divergence with gene flow in Darwin''s finches, focusing on the role of ecological/adaptive differences in maintaining/promoting divergence and reproductive isolation. To this end, we survey allelic variation at 10 microsatellite loci for 989 medium ground finches (Geospiza fortis) on Santa Cruz Island, Galápagos. We find only small genetic differences among G. fortis from different sites. We instead find noteworthy genetic differences associated with beak. Moreover, G. fortis at the site with the greatest divergence in beak size also showed the greatest divergence at neutral markers; i.e. the lowest gene flow. Finally, morphological and genetic differentiation between the G. fortis beak-size morphs was intermediate to that between G. fortis and its smaller (Geospiza fuliginosa) and larger (Geospiza magnirostris) congeners. We conclude that ecological differences associated with beak size (i.e. foraging) influence patterns of gene flow within G. fortis on a single island, providing additional support for ecological speciation in the face of gene flow. Patterns of genetic similarity within and between species also suggest that interspecific hybridization might contribute to the formation of beak-size morphs within G. fortis.  相似文献   

14.
15.
By tradition, speciation research has been focused on processes leading to either premating or post-zygotic reproductive isolation. The processes which generate isolation after mating but before zygote formation are less well understood. Here, we study divergence in characters which contribute to post-mating prezygotic isolation, such as egg production and remating rate. We propose that 'replicated' laboratory phylogenies with known histories can be used to yield insights into the processes of divergence. We performed a series of cross-matings between populations within two strains of the bean weevil Callosobruchus maculatus. Each strain has a unique and independent origin and both have been kept in the same set of laboratories during the last few decades. Our results show that divergence has occurred between laboratory populations within strains with regards to the effects that mating has on female reproductive behaviour, showing that the evolution of partial post-mating prezygotic isolation can be rapid. More importantly, the pattern of divergence across populations was distinct in the two strains, suggesting that coevolutionary trajectories are not determined by environmental factors but are to some extent arbitrary. We discuss the limitations of the novel empirical strategy employed here, and conclude that our results lend support to the hypothesis that post-mating sexual selection is capable of rapidly generating post-mating prezygotic isolation.  相似文献   

16.
The COP9 signalosome (CSN) is a multi‐protein complex that regulates the activities of cullin‐RING E3 ubiquitin ligases (CRLs). CRLs ubiquitinate proteins in order to target them for proteasomal degradation. The CSN is required for proper plant development. Here we show that the CSN also has a profound effect on plant defense responses. Silencing of genes for CSN subunits in tomato plants resulted in a mild morphological phenotype and reduced expression of wound‐responsive genes in response to mechanical wounding, attack by Manduca sexta larvae, and Prosystemin over‐expression. In contrast, expression of pathogenesis‐related genes was increased in a stimulus‐independent manner in these plants. The reduced wound response in CSN‐silenced plants corresponded with reduced synthesis of jasmonic acid (JA), but levels of salicylic acid (SA) were unaltered. As a consequence, these plants exhibited reduced resistance against herbivorous M. sexta larvae and the necrotrophic fungal pathogen Botrytis cinerea. In contrast, susceptibility to tobacco mosaic virus (TMV) was not altered in CSN‐silenced plants. These data demonstrate that the CSN orchestrates not only plant development but also JA‐dependent plant defense responses.  相似文献   

17.
How natural selection might be involved in speciation remains a fundamental question in evolutionary biology. When two or more species co-occur in the same areas, natural selection may favor divergence in mating traits. By acting in sympatric but not allopatric populations, natural selection can also affect mate choice within species and ultimately initiate speciation among conspecific populations. Here, we address this potential effect in the sea rock-pool beetles Ochthebius quadricollis and O. urbanelliae. The two species, which inhabit the Mediterranean coasts, co-occurr syntopically in an area along the Italian Tyrrhenian coast and completed reproductive isolation by reinforcement. In this article, through mating trials under laboratory conditions between conspecific populations, we found in O. quadricollis no deviations from random mating. Conversely, in O. urbanelliae, we found a clear pattern of premating isolation between the reinforced populations sympatric with O. quadricollis and those nonreinforced allopatric. This pattern is consistent with the view that natural selection, which completed the reproductive isolation between the two species in sympatry, led incidentally also to partial premating reproductive isolation (I(PSI) estimator from 0.683 to 0.792) between conspecific populations of O. urbanelliae. This case study supports an until recently underappreciated role of natural selection resulting from species interactions in initiating speciation.  相似文献   

18.
The relative influences of history, natural selection and hybridization in shaping phenotypic variation in closely related taxa is a crucial issue in current evolutionary biology. In this study, we used as a model two sibling but paradoxically highly variable species of larks (Galerida theklae and Galerida cristata) of Morocco to separate the impacts of these evolutionary forces. In the former species, variation is manifested mainly in colouration, while in the latter, variation also encompasses bill size and shape. Mitochondrial and nuclear DNA sequencing were used to identify the historical relationships among the subspecies and species. According to our analyses, G. cristata and G. theklae diverged about 3.7 million years ago (Ma), and we found no evidence for a role of hybridization in maintaining their similarity. In G. theklae, there was no further subdivision, while in G. cristata two major mtDNA groups were identified (divergence approximately 1.1 Ma). These two lineages are parapatric and regroup, respectively, the three short-billed subspecies [G. (cristata) cristata] and the two long-billed subspecies [G. (cristata) randonii]. Patterns of morphological variation were then contrasted to this pattern of neutral relationships: we found that G. (c.) cristata was morphologically more similar to G. theklae than to G. (c.) randonii. Overall, these results point towards the prominent role of (i) natural selection and/or phenotypic plasticity in adapting the plumage to local conditions and (ii) natural selection in combination with historical isolation in driving the divergence in size and bill morphology in the crested larks.  相似文献   

19.
Pollinator‐mediated evolutionary divergence has seldom been explored in generalist clades because it is assumed that pollinators in those clades exert weak and conflicting selection. We investigate whether pollinators shape floral diversification in a pollination generalist plant genus, Erysimum. Species from this genus have flowers that appeal to broad assemblages of pollinators. Nevertheless, we recently reported that it is possible to sort plant species into pollination niches varying in the quantitative composition of pollinators. We test here whether floral characters of Erysimum have evolved as a consequence of shifts among pollination niches. For this, we quantified the evolutionary lability of the floral traits and their phylogenetic association with pollination niches. As with pollination niches, Erysimum floral traits show weak phylogenetic signal. Moreover, floral shape and color are phylogenetically associated with pollination niche. In particular, plants belonging to a pollination niche dominated by long‐tongued large bees have lilac corollas with parallel petals. Further analyses suggest, however, that changes in color preceded changes in pollination niche. Pollinators seem to have driven the evolution of corolla shape, whereas the association between pollination niche and corolla color has probably arisen by lilac‐flowered Erysimum moving toward certain pollination niches for other adaptive reasons.  相似文献   

20.
Eurosta solidaginis Fitch (Diptera: Tephritidae) has formed host races on Solidago altissima L. and Solidago gigantea Ait. (Asteraceae), and reproductive isolation between these host races is brought about in part by host‐associated assortative mating. Any non‐assortative mating creates the potential for gene flow between the populations, and we investigated the conditions that favored non‐assortative mating. We hypothesized that the frequency of non‐assortative mating would be influenced by differences in the behaviors of the host races and sexes and by the presence and pattern of distribution of the two host species. To test these hypotheses, we caged flies on four combinations of 32 potted host plants: all S. altissima, all S. gigantea, and cages with both host species arranged in either two pure species blocks or randomly dispersed. We recorded the number of flies of each host race that alighted on each host species and the frequency of mating within and between the host races. Males of both host races were observed on plants more frequently than females. Flies of the host race from S. gigantea (gig flies) were observed on plants in greater absolute numbers, and they mated more frequently than flies of the host race from S. altissima (alt flies). In all treatments, gig flies of both sexes were found on non‐natal host plants significantly more frequently than alt flies, and gig females showed a weaker preference for their host species than did gig males or alt flies of either gender for their respective natal hosts. Assortative mating predominated in all treatments, and flies from each host race mated more frequently in cages containing their own host plant. The frequency of non‐assortative mating varied among treatments, with the matings between alt ♀ × gig ♂ being more common in the pure S. altissima treatment and the gig ♀ × alt ♂ being more frequent in the pure S. gigantea and random treatments. Matings between gig ♂ × alt ♀ were more common overall than the reciprocal mating, because gig males were more active in pursuing matings and in alighting on the non‐natal host plant than alt flies. Non‐assortative matings were more frequent in the random than in the block treatments, but this difference was not significant. Because of strong selection against oviposition into the alternate host, we hypothesized that host plant distribution would not affect oviposition preference. We tested this hypothesis by examining the oviposition behavior of naïve, mated females in two treatments in which both host species were present: either arranged in blocks or randomly dispersed. Females oviposited only into their natal host, regardless of host plant distribution.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号