首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Single nuclear gene inheritance was shown to be responsible for increased resistance to: eight diverse inhibitors of mitochondrial function (antimycin, carbonylcyanide-m-chlorophenylhydrazone, chloramphenicol, oligomycin, tetracycline, triethyltin bromide, triphenylmethylphosphonium bromide and triton-X-165); and an inhibitor of cytoplasmic protein synthesis (cycloheximide). Continuous monitoring of oxygen uptake during respiratory adaptation showed that anerobic pretreatment of resistant cells sensitized respiratory adaptation to chloramphenicol and antimycin. However, since a depression of mitochondrial function by catabolite repression did not result in sensitization to antimycin, alteration of the mitochondrial membrane does not appear to be responsible for resistance to mitochondrial inhibition. Alteration of cellular binding sites was not responsible for resistance since in vitro mitochondrial protein synthesis was sensitive to chloramphenicol and in vitro mitochondrial respiration was sensitive to oligomycin, carbonylcyanide-m-chlorophenylhydrazone, and antimycin. Autoradiography of an ethylacetate-ethanol extract of [14C]chloramphenicol-treated resistant cells indicated that resistance was not due to enzymatic modification of inhibitors. The maintenance of an antimycin-resistant respiration by protoplasts of resistant cells ruled out the involvement of the cell wall in cellular resistance. The reduced transport of [14C]chloramphenicol by resistant cells (1% of normal cells) indicated that a single nuclear gene mutation can alter the permeability of the plasma membrane to many diverse inhibitors.  相似文献   

2.
Summary Previous tetrad analyses defined a yeast strain (332-7c) as containing a single nuclear gene (11.8 map units from the centromere) conferring resistance to oligomycin. Resistance to 18 additional inhibitors of mitochondrial function (Table 1) was determined on (i) ascospore isolates from tetrads segregating 2 resistant: 2 sensitive for oligomycin (Table 2) and (ii), spontaneously derived sensitive isolates of the oligomycin resistant strain (Tables 3 and 4). The observed pattern of resistance suggests that the gene for resistance to oligomycin also results in (i) cross resistance to rutamycin, venturicidin, triethyltin bromide, antimycin A, carbonylcyanide m-chlorophenylhydrazone, tetra-N-butylammonium bromide, dibenzyl-dimethylammonium chlorop and tetracycline and (ii), collateral sensitivity to paromomycin, neomycin, dequalinium chloride, ethidium bromide and acriflavin.  相似文献   

3.
Summary A mutant strain (2–20) isolated by growth on medium containing oligomycin and cycloheximide was also found to be cross resistant to antimycin, cerulenin, chloramphenicol, tetracycline, triethyltin and triphenylmethylphosphonium bromide, but collaterally sensitive to dequalinium chloride, gentamycin, neomycin, paromomycin and thiolutin. Growth of 2–20, compared to the parental strain and 2 complete revertants, under a variety of environmental conditions revealed that strain 2–20 had an enhanced sensitivity to increased osmolality, elevated pH, and high temperature; in addition, strain 2–20 was unable to polymerize aminoimidazole ribotide at 37° C as shown by the failure to develop a red colony in the presence of ade 2. Four complex solid media (glucose-KCl, galactose, ethanol, ethanol-KCl, Table 1) unable to sustain the growth of strain 2–20 were arbitrarily chosen to monitor cellular growth under different physiological conditions. Tetrad analysis indicated that the complex phenotype (cross resistance, collateral sensitivity, inability to polymerize aminoimidazole ribotide, absence of growth under adverse physiological conditions) was inherited by an allele of a locus previously shown to result in a permeability barrier of the plasma membrane to chloramphenicol. 582 of 640 subclones used to isolate revertants of 2–20, under four different physiological conditions, were observed to produce a complete revertant of the complex phenotype. It is proposed that the pleiotropic phenotype could result from an alteration of the plasma membrane and mitochondrial inner membrane by a single nuclear gene mutation.  相似文献   

4.
We have isolated a single step spontaneous mutant of S. cerevisiae resistant simultaneously to oligomycin, venturicidin, chloramphenicol, cycloheximide and triethyltin. This multiple drug resistance results from the interaction of two genetic factors showing both chromosomal location and episomal characteristics. One factor (π) confers oligomycin resistance, the other (τ) confers the other resistances. π can be lost spontaneously while τ can be completely eliminated with ethidium bromide. All π+ strains, whether grande or petite, τ+ or τ?, carry a covalently closed circular DNA while π? strains are devoid of it. We hypothesise that this circular DNA may play an informational role in the biogenesis and/or function of membranes.  相似文献   

5.
Clavilier L 《Genetics》1976,83(2):227-243
Three antibiotic-resistance mutations were isolated from strain FL496–2B: two are independent Mendelian genes, one conferring both oligomycin and venturicidin resistance (oliR496) and the other conferring cycloheximide resistance (cyhR496). The third is a mitochondrial mutation, OR9, and confers a low level of oligomycin resistance to cells (in vivo) but not to the extracted mitochondrial ATPase (in vitro). This mutation is located on the mitochondrial DNA at a new locus [OLI4] linked to [OLI2] and independent from [OLI1] and [OLI3] and from the other mitochondrial loci.

All three mutations (O R9, oliR496, cyhR496 ) were found without any selection, in the same prototrophic haploid strain, which contained unknown resistances to antibiotics.

Some physiological, genetical and biochemical properties of the mitochondrial mutation are described.

  相似文献   

6.
Summary Oligomycin-resistant lines were derived from a Nicotiana sylvestris cell suspension, after N-nitroso-N-methylurea mutagenesis followed by selection in the presence of 0.4 g/ml oligomycin, a specific mitochondrial ATPase inhibitor. One of the lines, oli R38 was further analyzed to investigate the role of mitochondria in this resistance. The oli R38 line proved to be also highly resistant to venturicidin, another specific inhibitor of mitochondrial ATPase. By the donor-recipient protoplast-fusion procedure the cytoplasmic organelles of oli R38 were transferred to protoplasts of Line 92, a line of tobacco plants which contain the cytoplasmic organelles of N. undulata. Cell suspensions prepared from several cybrid plants, containing the cytoplasmic organelles of oli R38, exhibited the same level of oligomycin resistance as the oli R38 line.  相似文献   

7.
Summary Three antimycin resistant mutants of Saccharomyces cerevisiae are characterized genetically. The mutations have been shown to be cytoplasmically inherited by four criteria. The phenotype persists in diploids formed by a cross with a 0 strain of yeast of the opposite mating type. Diploids heterozygous for the antimycin marker, however, show segregation of the resistance and sensitivity during mitosis. Tetrad analysis indicated a non-Mendelian segregation (4:0 and 0:4) of the mutations. The antimycin marker can be eliminated by ethidium bromide treatment under conditions that should have deleted all of the mitochondrial DNA.  相似文献   

8.
Effects of some metabolic inhibitors, as well as of biologically active compounds (diakarb, ethidium bromide and a phenanthridine alkaloid sanguinarine) on the formed novocaine and neutral red segregation zones were studied. The volume of granules diminished under the influence of a glycolytic inhibitor iodoacetate, uncouplers of oxidative phosphorylation (2,4-dinitrophenol and carbonyl cyanide trifluoromethoxyphenylhydrozone), and respiratory inhibitors (antimycin A and rotenone), as well as under the influence of cycloheximide - an inhibitor of protein synthesis. Diakarb, ethidium bromide or sanguinarine also provoked a regression of the segregation zones. It has been found that all these compounds are inhibitors of ATPase activity of the isolated segregation zones. A possible mechanism of volume decreasing in segregation zones under the influence of both the metabolic inhibitors and diakarb, ethidium bromide and sanguinarine is discussed.  相似文献   

9.
Staphylococcus aureus isolate, WBG1022, was resistant to penicillin, kanamycin, neomycin, streptomycin, chloramphenicol, trimethoprim, cadmium, and ethidium bromide and harbored plasmids of 34.5, 24.5, 4.4, 3.2, and 2.6 kilobases. The plasmids were transferred in mixed-culture transfer and conjugation experiments. No resistance phenotype was associated with the 2.6-kb plasmid. The 3.2-kb and 4.4-kb plasmids encoded chloramphenicol and streptomycin resistance respectively. The 24.5-kb plasmid, pWBG626, encoded joint resistance to penicillin, kanamycin, neomycin, and ethidium bromide. Resistance to trimethoprim and cadmium were chromosomal. The 34.5-kb plasmid, pWBG661, had no resistance phenotype but was found to be conjugative. It also mobilized the 4.4-kb and 24.5-kb plasmids in WBG1022. Restriction endonuclease analysis of pWBG661 with EcoRI, ClaI, PvuII, and BglII restriction enzymes demonstrated that pWBG661 was identical to two previously isolated S. aureus conjugative plasmids, p WBG620 and pWBG637, that also lack resistance phenotypes.  相似文献   

10.
Summary Janus green B was found to be a specific inhibitor of mitochondrial function in yeast. This is consistent with the Janus green specificity in supravital staining of mitochondria.A mutant of S. cerevisiae resistant to Janus green B was isolated. It shows cross resistance to oligomycin, ethidium bromide and a weak resistance to chloramphenicol. The mutant was found to be sensitive to cycloheximide and erythromycin.Genetic analysis of this mutant showed that mitochondrial genes are not involved in the determination of Janus green resistance. Tetrad analysis suggested that two or more nuclear genes are concerned, but many unusual genetic features suggestive of the involvement of a cytoplasmic element remain to be explained.  相似文献   

11.
Energy metabolism and mitochondria have been discussed with respect to their role in the circadian rhythm mechanism for some time. Numerous examples of inhibitors that affect the mitochondria of plants and animals and microorganisms are known, which cause large phase shifts in the rhythms of these organisms. Analogous studies on the role of mitochondria in the Neurospora circadian rhythm mechanism have also been reported and summarized. This communication differs from previous studies on other organisms in that it will focus on two lines of evidence derived from studies on Neurospora strains carrying mutations affecting the mitochondria, (a) Strains whose growth rate is resistant to oligomycin (olit) owing to an altered protein in the F0 sector of the mitochondrial ATPase, showed no phase shifts when pulsed with oligomycin. Control strains (oli8) showed large phase shifts when pulsed with oligomycin. This indicates that the phase-shifting effect of oligomycin is due to the direct inhibition of the mitochondrial ATPase and not some side effect of this inhibitor, (b) In Neurospora, many different strains are known that carry mutations in the nuclear or mitochondrial genome that affect mitochondrially localized proteins. Some of these, such as oli', [MI-3], or cya-5, showed shorter (≥ 19-h) periods compared with the normal (21.5-h) period. Others showed little or no change in period. Those mutant strains exhibiting shorter periods also contained ≥60% more mitochondrial protein per gram total protein in extracts compared with the normal strains. Assays of the level of a mitochondrial-specific protein, acyl carrier protein, showed that the cellular content of this protein was approximately doubled. A parallel set of studies on the effects of antimycin or chloramphenicol on Neurospora demonstrated that these inhibitors also produced shorter periods as well as increased amounts of mitochondrial proteins. These two new lines of evidence may be interpreted to indicate that in Neurospora either some part of the oscillator is localized to the mitochondria and/or that mitochondria exert their effect on the clock mechanism through their effects on biosynthetic pathways or by their contribution in determining ion gradients.  相似文献   

12.
Several strains of Candida parapsilosis, isolated independently in our laboratory, had their resistance compared to a series of inhibitors which act either at the level of mitochondrial ribosomes (chloramphenicol, erythromycin, paromomycin) or at the level of mitochondrial respiration and oxidative phosphorylation (oligomycin, antimycin A, diuron, carbonylcyanide m-chlorophenylhydrazone). Cells were grown on glycerol media supplemented with one of these inhibitors, and it was demonstrated that the resistance of these yeasts to a large spectrum of antibiotics was due to several features: a resistance to oligomycin was found at the permeation level; the resistance to the other drugs was correlated to the relative insensitivity of cytochrome biosynthesis to the drugs; the cells developed, at the same time, two types of alternative pathways: the one branched at the ubiquinone level which drove electrons from Krebs cycle substrates to oxygen, and the other, antimycin A-insensitive but inhibited by amytal, salicylhydroxamic acid and high cyanide concentrations. This secondary mitochondrial pathway, driving reducing equivalents from cytoplasmic NADH to cytochrome c and then to cytochrome aa3 or to alternate oxidase, allowed the growth of Candida parapsilosis on a non fermentescible medium, supplemented with these drugs.  相似文献   

13.
Summary A mutation for multiple resistance to tetracycline, cycloheximide and oligomycin appears to be followed by reconstruction of the mitochondrial genome resulting in the formation of independent nucleotide sequences that determine different resistant phenotypes.Heterozygotes for the cross resistance factor lack locus T responsible for relation tetracycline which comes from the-parent. The nuclear recessive gene-suppressori induces deletion of the whole determinant for multiple resistance. The loss of mt-DNA on ethidium bromide treatment does not lead to the loss of this determinant which remains in the cells either in an active or in a passive state.  相似文献   

14.
The antifungal activity of substances interfering with the function and biogenesis of mitochondria was studied. Strict anaerobiosis, cyanide, azide, oligomycin, bongkrekic acid and ethidium bromide were found to prevent spore germination ofAspergillus niger andPenicillium italicum in liquid germination medium. The effect of azide, oligomycin and ethidium bromide was fungicidal. Cyanide and azide completely inhibited the incorporation of14C-leucine and14C-uracil into germinating conidia ofA. niger. Oligomycin and ethidium bromide reduced the extent of incorporation of both precursors in the first few hours of conidial germination and at later stages stopped it completely. The inhibition of both spore germination and macromolecules synthesis during the germination ofA. niger conidia were in relation to the specific inhibitory effect of the agents on respiratory activity of dormant conidia and mycelial cells. The results indicate that both the function of mitochondrial genetic and protein synthesizing systems and the function of oxidative phosphorylation are essential for normal spore germination and fungal growth.  相似文献   

15.
The nuclear gene encoding the Sit4 protein phosphatase was identified in the budding yeast Kluyveromyces lactis. K. lactis cells carrying a disrupted sit4 allele are resistant to oligomycin, antimycin, ketoconazole, and econazole but hypersensitive to paromomycin, sorbic acid, and 4-nitroquinoline-N-oxide (4-NQO). Overexpression of SIT4 leads to an elevation in resistance to paromomycin and to lesser extent tolerance to sorbic acid, but it has no detectable effect on resistance to 4-NQO. These observations suggest that the Sit4 protein phosphatase has a broad role in modulating multidrug resistance in K. lactis. Expression or activity of a membrane transporter specific for paromomycin and the ABC pumps responsible for 4-NQO and sorbic acid would be positively regulated by Sit4p. In contrast, the function of a Pdr5-type transporter responsible for ketoconazole and econazole extrusion, and probably also for efflux of oligomycin and antimycin, is likely to be negatively regulated by the phosphatase. Drug resistance of sit4 mutants was shown to be mediated by ABC transporters as efflux of the anionic fluorescent dye rhodamine 6G, a substrate for the Pdr5-type pump, is markedly increased in sit4 mutants in an energy-dependent and FK506-sensitive manner.  相似文献   

16.
This paper describes investigations into the effects of ethidium bromide on the mitochondrial genomes of a number of different petite mutants derived from one respiratory competent strain of Saccharomyces cerevisiae. It is shown that the mutagenic effects of ethidium bromide on petite mutants occur by a similar mechanism to that previously reported for the action of this dye on grande cells. The consequences of ethidium bromide action in both cases are inhibition of the replication of mitochondrial DNA, fragmentation of pre-existing mitochondrial DNA, and the induction, often in high frequency, of cells devoid of mitochondrial genetic information (ρ ° cells).The susceptibility of the mitochondrial genomes to these effects of ethidium bromide varies in the different clones studied. The inhibition of mitochondrial DNA replication requires higher concentrations of ethidium bromide in petite cells than in the parent grande strain. Furthermore, the susceptibility of mitochondrial DNA replication to inhibition by ethidium bromide varies in different petite clones.It is found that during ethidium bromide treatment of the suppressive petite clones, the over-all suppressiveness of the cultures is reduced in parallel with the reduction in the over-all cellular levels of mitochondrial DNA. Furthermore, ethidium bromide treatment of petite clones carrying mitochondrial erythromycin resistance genes (ρ?ERr) leads to the elimination of these genes from the cultures. The rates of elimination of these genes are different in two ρ?ERr clones, and in both the gene elimination rate is slower than in the parent ρ+ ERr strain. It is proposed that the rate of elimination of erythromycin resistance genes by ethidium bromide is related to the absolute number of copies of these genes in different cell types. In general, the more copies of the gene in the starting cells, the slower is the rate of elimination by ethidium bromide. These concepts lead us to suggest that petite mutants provide a system for the biological purification of particular regions of yeast mitochondrial DNA and of particular relevance is the possible purification of erythromycin resistance genes.  相似文献   

17.
Summary Rhodamine 6G was found to be a specific inhibitor of aerobic growth of yeast, having no effect on fermentative growth. A single step spontaneous mutant of S. cerevisiae resistant to rhodamine 6G was isolated, which showed cross-resistance to the ATPase inhibitors venturicidin and triethyltin, to the uncoupler 1799, to bongkrekic acid and to cycloheximide, but not to oligomycin or to the inhibitors of mitochondrial protein synthesis, chloramphenicol and erythromycin. The genetic analysis of this mutant showed that both nuclear and cytoplasmic (but apparently not mitochondrial) factors may be involved in the determination of the mutation. The behaviour is discussed as a possible function for 2 micron circular (omicron) DNA.  相似文献   

18.
Summary An examination of the effect of the aminoglycoside antibiotics paromomycin and neomycin on mitochondrial ribosome function in yeast has been made. Both antibiotics are potent inhibitors of protein synthesis in isolated mitochondria. With isolated mitochondrial ribosomes programmed with polyuridylic acid (poly U), the drugs are shown to inhibit polyphenylalanine synthesis at moderately high concentrations (above 100 g/ml). At lower concentrations (about 10 g/ml), paromomycin and neomycin cause a 2–3 fold stimulation in the extent of misreading of the UUU codons in poly U, over and above the significant level of misreading catalyzed by the ribosomes in the absence of drugs.Comparative studies have been made between a paromomycin sensitive strain D585-11C and a mutant strain 4810P carrying the parl-r mutation in mtDNA, which leads tohigh resistance to both paromomycin and neomycin in vivo. A high level of resistance to these antibiotics is observed in strain 4810P at the level of mitochondrial protein synthesis in vitro. Whilst the degree of resistance of isolated mitochondrial ribosomes from strain 4810P judged by the inhibition of polyphenylalanine synthesis by paromomycin and neomycin is not extensive, studies on misreading of the poly U message promoted by these drugs demonstrate convincingly the altered properties of mitochondrial ribosomes from the mutant strain 4810P. These ribosomes show resistance to the stimulation of misreading of the codon UUU brought about by paromomycin and neomycin in wild-type mitochondrial ribosomes. Although strain 4810P was originally isolated as being resistant to paromomycin, in all the in vitro amino acid incorporation systems tested here, the 4810P mitochondrial ribosomes show a higher degree of resistance to neomycin than to paromomycin.It is concluded that the parl-r mutation in strain 4810P affects a component of the mitochondrial ribosome, possibly by altering the 15S rRNA or a protein of the small ribosomal subunit. The further elucidation of the functions in the ribosomes that are modified by the parl-r mutation was hampered by the inability of current preparations of yeast mitochondrial ribosomes to translate efficiently natural messenger RNAs from the several sources tested.  相似文献   

19.
Mutants of the petite-negative yeast, Kluyveromyceslactis, resistant to the inhibitors of oxidative phosphorylation, decamethylenediguanidine and octylguanidine were isolated from medium containing ethidium bromide. All mutants were resistant to ethidium bromide; some mutants were resistant to both alkylguanidines, some to one, others to neither. Both nuclear and cytoplasmic inheritance of resistance to decamethylenediguanidine and ethidium bromide was demonstrated by tetrad analysis.  相似文献   

20.
Mutants of Saccharomyces cerevisiae resistant to triethyl tin sulphate have been isolated and are cross-resistant to other trialkyl tin salts. Triethyl-tin-resistant mutants fall into two general phenotypic classes: class 1 and class 2. Class 1 mutants are cross-resistant to a variety of inhibitors and uncoupling agents which affect mitochondrial membranes (oligomycin, ossamycin, valinomycin, antimycin, erythromycin, chloramphenicol, '1799', tetrachlorotrifluoromethyl benzimidazole carbonylcyanide-m-chlorophenylhydrazone and cycloheximide). Class 2 mutants are specifically resistant to trithyl tin and the uncoupling agent "1799' [bis-(hexafluoroacetonyl)-acetone]. Triethyl tin at neutral pH values is a specific inhibitor of mitochondrial energy conservation reactions and prevents growth on oxidisable substrates such as glycerol and ethanol. Triethyl-tin-resistant mutants grow normally on glucose and ethanol in the presence of triethyl tin (10 muM). Biochemical studies indicate that the mutation involves a modification of the triethyl tin binding site on the mitochondrial inner membrane, probably the ATP-synthetase complex. Triethyl tin resistance/sensitivity in yeast is determined by cytoplasmic (mitochondrial) and nuclear genes. The mutants fall into a nuclear and a cytoplasmic (mitochondrial) class corresponding to the phenotypic cross-resistance classes 1 and 2. In the cytoplasmic mutants the triethyl tin resistance segregates mitotically and the resistance determinat is deleted by the action of ethidium bromide during petite induction. Recombination studies indicate that the triethyl tin mutations are not allelic with the other mitochondrial mutations at the loci RI, RIII and OLI. This indicates that the binding or inhibitory sites of oligomycin and triethyl tin are not identical and that the triethyl tin binding site is located on a different mitochondrial gene product to those which are involved in oligomycin binding. Interaction and cooperative effects between different binding sites on the mitochondrial inner membrane have been demonstrated in studies of the effect of the insertion of the TETr phenotype into mitochondrial oligomycin-resistant mutants and provide an experimental basis for complementation studies at the ATP-synthetase level.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号