首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Historically, some fetuses for regulatory developmental toxicity studies have been stained with alizarin red S and cleared with glycerol to visualize the ossified portion of their skeletons. Interest in examining cartilage arose owing to its inclusion in some regulatory guidelines. Methods for double staining rat skeletons have been published previously. The method described here for staining mouse skeletons is fully automated and uses alizarin red S to stain bone and Alcian blue to stain cartilage. Pregnant mice (Crl:CD1) were euthanized on gestation day 18 to obtain fetal specimens. Day 0 post-partum mouse pups also were stained. Our method was developed using the Shandon Pathcentre , which is a fully enclosed automated staining system that allows staining to be carried out at 30° C with a final clearing at 35° C. Our method uses the same solutions as for fetal rat processing, but with reduced time periods for the smaller size of mice vs. rat specimens. Staining, maceration and clearing of the specimens requires approximately 2 days. The time required of laboratory personnel, however, is minimal, because all solutions are changed automatically and the specimens do not require examination or removal from the processor until processing is complete. After processing, the specimens are suitable for immediate assessment of bone and cartilage. A mouse developmental toxicity study using 20 animals/group and approximately 10 fetuses/animal could be processed in only three runs using one machine.  相似文献   

2.
Traditionally, cartilage is stained by alcian blue using acidic conditions to differentiate tissue staining. The acidic conditions are problematic when one wishes to stain the same specimen for mineralized bone with alizarin red, because acid demineralizes bone, which negatively affects bone staining. We have developed an acid-free method to stain cartilage and bone simultaneously in zebrafish larvae. This method has the additional advantage that PCR genotyping of stained specimens is possible.  相似文献   

3.
Young AD  Phipps DE  Astroff AB 《Teratology》2000,61(4):273-276
A critical component in the conduct of a prenatal developmental toxicity study is the evaluation of fetal skeletal development. As the developing rodent fetus is typically evaluated at gestation day 20, at a time when ossification of the skeleton is incomplete, a thorough assessment of skeletal development would include both ossified and cartilaginous structures. Current methods to double-stain the fetal skeleton using Alizarin Red S and Alcian Blue are typically described for small sample sizes or using time allotments for each processing step that are unsuitable for industry. In an industrial setting, there is a need for an effective means to double-stain fetal skeletons on a large scale (i.e., hundreds of fetuses simultaneously). This article describes a method used in our laboratory to stain both fetal bone and cartilage using solutions and procedures on an industrial scale.  相似文献   

4.
The following method for staining bone and cartilage allows study of the gross cleared specimen and does not injure the tissues for subsequent microscopic study: Fix in 10% neutral formalin; bleach thoroughly in 3% H2O2 in sunlight. Wash in distilled water. Stain bone 24 hours in 0.01 g. of Biebrich scarlet in 100 ml. of distilled water. Destain in 95% alcohol until soft tissues and cartilage are colorless. Stain cartilage 24 hours in a pH2 buffer solution of 2.1g. of citric acid per 100 ml. of water with 0.001 g. of methylene blue. Destain in pH2 buffer solution until soft tissues are pale. Dehydrate in two changes of 95% alcohol in preparation for clearing. (This completes the destaining and may remove too much stain from the cartilage if destaining in the pH2 solution has been carried too far.) Place in Groat's clearing fluid and cover loosely so that the alcohol may evaporate, or remove the alcohol in vacuo. Groat's Mixture No. 19 is usually satisfactory.

For a combined stain, first stain bone, as above, and then apply the cartilage stain.

Seal jars with an ordinary liquid wood glue such as LePage's.  相似文献   

5.
BACKGROUND: The most comprehensive evaluation of vertebrate skeletal development involves the use of Alizarin Red S dye to stain ossified bone and various other dyes to stain cartilage. The dye used most widely to stain fetal cartilage in rodents and rabbits is Alcian Blue 8GX. However, the global supply of this specific dye has been exhausted. Several forms of the dye marketed as Alcian Blue 8GX are now available, although they are not synthesized via the original 8GX manufacturing process. METHODS: One new Alcian Blue 8GX form and two Alcian Blue dye variants were evaluated in rats and rabbits using standard staining procedures. The staining quality of these dyes were evaluated relative to the original form of Alcian Blue 8GX based on cartilage uptake of the dye, clarity of the cartilaginous components, staining intensity of the dye, and overall readability of the specimens under stereomicroscopic evaluation. RESULTS: Staining with the newer form of Alcian Blue 8GX resulted in poor staining quality. The Alcian Blue-Pyridine variant performed well, although staining intensity was less than optimal. The Alcian Blue-Tetrakis variant provided staining characteristics that were most similar to the original form of Alcian Blue 8GX. CONCLUSIONS: Alcian Blue-Tetrakis was markedly better in its ability to stain fetal cartilage than the newer form of Alcian Blue 8GX.  相似文献   

6.
A novel staining technique has been devised that permits a cartilage examination of unskinned fetal rats that have been previously processed for skeletal examination with alizarin red S. The procedure consists of rinsing alizarin red S-stained specimens in distilled water and placing the specimens in a 3% acetic acid solution. A transfer of the stain from bone to adjacent cartilage occurs, producing purple-stained cartilaginous structures that can be differentiated from still-discernible bone structures.  相似文献   

7.
Specialized adaptations for application of Goldner's Masson trichrome stain to plastic embedded undecalcified bone specimens are presented. This stain can be used successfully on methyl-glycol methacrylate, glycol methacrylate and Spurr embedded bones. The stain affords the advantage of good cellular staining due to the hematoxylin component with concomitant sharp discrimination of mature bone matrix which stains green, immature new bone matrix which stains red, and calcified cartilage which stains very pale green. Use of red filters during photomicrography aids in bone-osteoid discrimination in black and white photographs.  相似文献   

8.
This paper describes a modification of the Simons and Van Horn (1971) procedure for rendering cartilage blue, bone red, and soft tissue translucent or transparent in whole vertebrate specimens. Alcian blue and alizarin red S are used to stain cartilage and bone respectively. In our procedure formalin is used as a fixative. This is a significant modification because formalin is the common fixative for museum specimens. This clearing and staining procedure is thus readily applicable to comparative studies in anatomy, embryology and systematic zoology.  相似文献   

9.
Undecalcified embedment of large bone specimens is often challenging. A method is presented here that is suitable for methacrylate embedment of sections of canine vertebrae while retaining the ability to localize tartrate-resistant acid phosphatase and alkaline phosphatase activity. Specimens also retained tetracycline labelling, and sectioned preparations were readily stained with routine bone procedures. A modification of the Bodian silver stain, used for examining the nerves and spinal cord in these specimens, provided a useful stain for canaliculi and cement lines in trabecular and cortical bone. This stain is advantageous when both bone and nerve tissue are of interest, as in spinal fusion studies.  相似文献   

10.
Undecalcified embedment of large bone specimens is often challenging. A method is presented here that is suitable for methacrylate embedment of sections of canine vertebrae while retaining the ability to localize tartrate-resistant acid phosphatase and alkaline phosphatase activity. Specimens also retained tetracycline labelling, and sectioned preparations were readily stained with routine bone procedures. A modification of the Bodian silver stain, used for examining the nerves and spinal cord in these specimens, provided a useful stain for canaliculi and cement lines in trabecular and cortical bone. This stain is advantageous when both bone and nerve tissue are of interest, as in spinal fusion studies.  相似文献   

11.
An automated, rapid procedure for differential staining of cartilage and bone of vertebrates is described. The process involves rapid, complete staining of freshly skinned, eviscerated specimens after 30 sec immersion in a 70 C water bath, fixation in formol acetic alcohol and a rinse in 70% alcohol. Using an automatic tissue processor, the specimen is stained in alcian blue for 24 hr and macerated in 3% potassium hydroxide for 8 hr. Staining in alizarin red with maceration in 3% potassium hydroxide is completed manually. The specimens are cleared and preserved in glycerol. Good quality evenly stained specimens can be examined in less than three days and up to 600 fetuses can be processed in less than five days.  相似文献   

12.
An automated, rapid procedure for differential staining of cartilage and bone of vertebrates is described. The process involves rapid, complete staining of freshly skinned, eviscerated specimens after 30 sec immersion in a 70 C water bath, fixation in formol acetic alcohol and a rinse in 70% alcohol. Using an automatic tissue processor, the specimen is stained in alcian blue for 24 hr and macerated in 3% potassium hydroxide for 8 hr. Staining in alizarin red with maceration in 3% potassium hydroxide is completed manually. The specimens are cleared and preserved in glycerol. Good quality evenly stained specimens can be examined in less than three days and up to 600 fetuses can be processed in less than five days.  相似文献   

13.
Cryofixation is generally believed to provide optimal tissue preservation. However, certain post-embedding cytochemical reactions, such as high-iron diamine (HID) staining for sulfated glycoconjugates, are not applicable to cryofixed and freeze-substituted tissues. In the present study, the HID technique was therefore adapted for post-embedding staining. HID staining was performed on thin sections of chemically and cryofixed kidney and growth plate cartilage, embedded in Epon and various acrylic-based resins. All resins and most tissue preparation conditions allowed post-embedding staining with HID, albeit to variable degrees. However, no significant cytochemical reaction was obtained with tissue sections of osmicated kidney embedded in Epon. Profile views of re-embedded sections showed that large stain deposits were usually restricted to the surface, whereas small ones were observed throughout the entire thickness of the section. The staining pattern was essentially similar between chemically fixed and cryofixed specimens. In the glomerulus, stain deposits were mainly seen over the free surface of podocyte foot processes and over the lamina rara externa. The pericellular cartilage matrix of chemically fixed specimens often appeared as condensed elements, usually stained with large deposits. In cryofixed tissues this matrix formed a meshwork composed of thin, extended filamentous structures, many of which showed linear arrays of smaller stain deposits. The data presented here indicate that post-embedding HID-TCH-SP staining can be successfully performed on thin sections of tissues embedded in various resins and, as a result, can be further adapted to cryo-prepared specimens to give a high resolution localization of sulfated glycoconjugates in tissues with optimal molecular preservation.  相似文献   

14.
Movat's pentachrome I stain has been adapted and modified as a stain for undecalcified bone sections. After embedding in methyl methacrylate, this procedure yields consistently good results, with an excellent and colorful contrast between mineralized and unmineralized compartments of both cartilage and bone. In addition, osteoblasts, osteoclasts, and other cells and tissue components can easily be differentiated. The staining properties of the lacunar wall surrounding the osteocytes are considered to reflect various states of osteocytic activity. The method is especially useful for the study of bone growth and bone repair, and as a stain for conventional histomorphometry and computer-assisted image analysis in bone biopsies.  相似文献   

15.
T Yamada 《Teratology》1991,43(6):615-619
A convenient method for staining cartilage with several basic stains after alizarin red S staining of bone was investigated in rat fetuses. It was found that bromophenol blue was useful and effective for staining of the margin and center areas of cartilage, even in specimens stored in glycerin for over 10 years. The specimens were washed in running tap water for 1 hr, and subsequently were immersed in water or in 70% ethanol at pH 4 for 1 hr or longer. The specimens were then stained with 0.005% bromophenol blue in 40% ethanol adjusted to pH 4 for 2 hr, or with 0.001% bromophenol blue in 40% ethanol adjusted to pH 4 for 24 hr. Furthermore, the bromophenol blue stain color actually faded when the specimens were immersed in water or in 70% ethanol at pH 8. Descending order of the stain-effective action on fetal rat cartilage for the basic stains tested was bromophenol blue, aniline blue, Evans blue, methyl violet, trypan blue, and water blue.  相似文献   

16.
Movat's pentachrome I stain has been adapted and modified as a stain for Undecalcified bone sections. After embedding in methyl methacrylate, this procedure yields consistently good results, with an excellent and colorful contrast between mineralized and unmineralized compartments of both cartilage and bone. in addition, osteoblats, osteoclasts, and other cells and tissue components can easily be differentiated. the staining properties of the lacunar wall surrounding the osteocytes are considered to reflect various states of osteocytic activity. the method is especially useful for the study of bone growth and bone repair, and as a stain for conventional histomorphometry and computer-assisted image analysis in bone biopsies.  相似文献   

17.
Differential skeletal staining is an important part of developmental toxicologic studies. Traditionally these studies have required time-consuming differentiation of one or both stains used and careful attention to the maceration step to prevent specimen destruction. We present a fully automated protocol which does not require differentiation of either dye and incorporates a controlled maceration step which is highly reproducible. This has resulted in high quality staining that is reproducible, stable, and can be done in volume with minimal personnel time. The process involves the staining of skinned, eviscerated specimens fixed in 95% ethanol. Using an automated tissue processor, the specimen is stained in alcian blue for 24 hr, macerated in 3% potassium hydroxide for 24 hr and stained with murexide for 24 hr. The specimens are cleared and preserved in glycerol. Within three days specimens have red stained bone and blue stained cartilage. The procedure was developed using 20-day-old Sprague-Dawley rat fetuses to evaluate the feasibility of using the procedure for teratology studies involving the fetal skeleton. Evenly stained specimens can be examined within three days and stored for years without loss of staining.  相似文献   

18.
According to mechanobiologic theories, persistent intermittent mechanical stimulation is required to maintain differentiated cartilage. In a rat model for bone repair, we studied the fate of mechanically induced cartilage after unloading. In three groups of rats, regenerating mesenchymal tissue was submitted to different loading conditions in bone chambers. Two groups were immediately killed after loading periods of 3 or 6 weeks (the 3-group and the 6-group). The third group was loaded for 3 weeks and then kept unloaded for another 3 weeks (the (3 + 3)-group). Cartilage was found in all loaded groups. Without loading, cartilage does not appear in this model. In the 3-group there was no clear ongoing endochondral ossification, the 6-group showed ossification in 2 out of 5 cartilage containing specimens, and in the (3 + 3)-group all cartilage was undergoing ossification. These results suggest a tendency of the cartilage to be maintained also under unloaded conditions until it is reached by bone that can replace it through endochondral ossification.Additional measurements showed less amount of new bone in the loaded specimens. In most of the loaded specimens in the 3-group, necrotic bone fragments were seen embedded in the fibrous tissue layer close to the loading piston, indicating that bone tissue had been resorbed due to the hydrostatic compressive load. In some specimens, a continuous cartilage layer covered the end of the specimen and seemed to protect the underlying bone from pressure-induced resorption. We suggest that one of the functions of the cartilage forming in the compressive loaded parts of a bone callus is to protect the surrounding bone callus from pressure-induced fluid flow leading to resorption.  相似文献   

19.
Cleared and stained specimens may become faded and/or opaque after long periods in preservative solutions. We developed a technique to revitalize faded and/or destained specimens regardless of their age. By adapting and revising Wassersug's procedure for differential staining of bone and cartilage, we successfully cleared and restained numerous small amphibian specimens of various ages. After rehydrating, specimens were bleached in potassium hydroxide and hydrogen peroxide, stained with alcian blue, and macerated with trypsin as needed. Alizarin red stain was applied or reapplied, although staining occasionally was unsuccessful in old formalin fixed specimens. After restaining, the specimens were dehydrated and placed in glycerol.  相似文献   

20.
A method is presented to find orthotropic elastic symmetries and constants directly from the elastic coefficients in the overall stiffness matrix of trabecular bone test specimens. Contrary to earlier developed techniques, this method does not require pure orthotropic behavior or additional fabric measurements. The method uses high-resolution computer reconstructions of trabecular bone specimens as input for large-scale FE-analyses to determine all the 21 elastic coefficients in the overall stiffness matrix of the specimen, using a direct mechanics approach. An optimization procedure is then used to find the coordinate transformation that yields the best orthotropic representation of this matrix. The method is illustrated here relative to two trabecular bone specimens. The techniques developed here can be used to obtain a complete characterization of the mechanical properties of trabecular architecture. With the development of in vivo reconstruction techniques, even in vivo measurements will be possible.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号