首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 452 毫秒
1.
西双版纳不同土地利用方式下土壤氮矿化作用研究   总被引:21,自引:4,他引:17  
氮在森林生态系统的养分循环中很重要,常把土壤氮矿化速率作为生态系统中氮有效性和氮损失的指标.在云南省中国科学院西双版纳热带生态站周围,用顶盖埋管法,对季风常绿阔叶林、季节雨林、橡胶林、受过严重干扰的季节雨林、鸡血藤次生林和旱谷地的氮矿化速率进行研究.结果表明,在6种土地利用方式下,净氮矿化速率和硝化速率由大到小依次为受过严重干扰的季节雨林>鸡血藤次生林>季节雨林>季风常绿阔叶林>橡胶林>旱谷地.在西双版纳地区橡胶林和旱谷地被认为是受人为干扰较严重的土地利用方式,这两种土地利用方式与各种森林下土壤中的氮矿化速率和氮储量相比均低,达到显著水平.较低的氮矿化速率与土壤本底氮储量低有关,也与土壤中真菌数量较少有关.对西双版纳6种常见土地利用方式的土壤氮储量和氮循环速率的研究表明,受过严重干扰的季节雨林在恢复多年后土壤中养分的转化速率与原生林接近,而林地被转化为农业或经济林用地后氮储量和氮矿化速率均显著降低.  相似文献   

2.
In many areas of China, tidal wetlands have been converted into agricultural land for rice cultivation. However, the consequences of land use changes for soil microbial communities are poorly understood. Therefore, we investigated bacterial and archaeal communities involved in inorganic nitrogen turnover (nitrogen fixation, nitrification, and denitrification) based on abundances and relative species richness of the corresponding functional genes along a soil chronosequence ranging between 50 and 2,000 years of paddy soil management compared to findings for a tidal wetland. Changes in abundance and diversity of the functional groups could be observed, reflecting the different chemical and physical properties of the soils, which changed in terms of soil development. The tidal wetland was characterized by a low microbial biomass and relatively high abundances of ammonia-oxidizing microbes. Conversion of the tidal wetlands into paddy soils was followed by a significant increase in microbial biomass. Fifty years of paddy management resulted in a higher abundance of nitrogen-fixing microbes than was found in the tidal wetland, whereas dominant genes of nitrification and denitrification in the paddy soils showed no differences. With ongoing rice cultivation, copy numbers of archaeal ammonia oxidizers did not change, while that of their bacterial counterparts declined. The nirK gene, coding for nitrite reductase, increased with rice cultivation time and dominated its functionally redundant counterpart, nirS, at all sites under investigation. Relative species richness showed significant differences between all soils with the exception of the archaeal ammonia oxidizers in the paddy soils cultivated for 100 and 300 years. In general, changes in diversity patterns were more pronounced than those in functional gene abundances.  相似文献   

3.
碱(化)土是指土壤胶体中含交换性钠较多(碱化度>15%)、呈强碱性反应(pH>8.5)、土壤结构性差、含盐量不高的一类土壤,常与盐土相伴存在,两者统称为盐碱土。与盐土中中性盐(NaCl)对作物造成的胁迫不同的是,碱土中碱性盐(NaHCO3和Na2CO3)对作物造成的胁迫不仅包括离子毒害和渗透胁迫,更严重的是根外高pH值对作物的伤害。利用"以稻治碱"的传统方法可以大规模改良碱(化)土壤,增加农业耕地面积。因此,了解和掌握水稻对碱胁迫的适应性,创建碱地水稻高效栽培技术,培育水稻耐碱新品种,对提高碱(化)土地利用率,保障区域粮食安全具有重要的现实意义。本文基于近年来国内外研究报道,从水稻耐碱形态和生理特性、耐碱基因定位与克隆、耐碱种质鉴定筛选以及水稻耐碱性遗传改良等4个方面进行综述,并对未来水稻耐碱性研究进行展望,以期为"以稻治碱"、改土增粮提供一定的理论依据。  相似文献   

4.
Agricultural soils have tremendous potential to sequester soil organic carbon (SOC) and mitigate global climate change. However, agricultural land use has a profound impact on SOC dynamics, and few studies have explored how agricultural land use combined with soil conditions affect SOC changes throughout the soil profile. Based on a paired soil resampling campaign in the 1980s and 2010s, this study investigated the SOC changes of the soil profile caused by agricultural land use and the correlations with parent material and topography across the Chengdu Plain of China. The results showed that the SOC content increased by 3.78 g C/kg in the topsoil (0–20 cm), but decreased in the 20–40 cm and 40–60 cm soil layers by 0.90 and 1.26 g C/kg respectively. SOC increases in topsoil were observed for all types of agricultural land. Afforestation on former agricultural land also caused SOC decreases in the 20–60 cm soil layers, while SOC decreases only occurred in the 40–60 cm soil layer for agricultural land using a traditional crop rotation (i.e. traditional rice–wheat/rapeseed rotation) and with rice–vegetable rotations converted from the traditional rotations. For each agricultural land use, SOC decreases in deep soils only occurred in high relief areas and in soils formed from Q4 (Quaternary Holocene) grey‐brown alluvium and Q4 grey alluvium that had a relatively low soil bulk density and clay content. The results indicated that SOC change caused by agricultural land use was depth dependent and that the effects of agricultural land use on soil profile SOC dynamics varied with soil characteristics and topography. Subsoil SOC decreases were more likely to occur in high relief areas and in soils with low soil bulk density and low clay content.  相似文献   

5.
Agricultural land use changes differentially affect soil fertility and crop production potential of wetlands. We studied East African wetlands with contrasting hydro-geological characteristics (high- and lowland floodplains and valley swamps). Land uses ranged from no use and grazing over crop production in flooded and drained fields to abandonment. We classified the dynamics of wetlands’ conversion into agricultural sites and assessed selected soil fertility attributes associated with land use changes, and their effect on the crop production potential in aerobic and anaerobic soils. A conversion of pristine wetlands, differing in soil physical and chemical attributes, into sites of production tended to negatively affect soil total C and N. Effects were stronger with soil drainage and in the coarse-textured soils of the lowland floodplain and the mid-hill valleys. Mineral P application in drained valleys significantly increased available soil P. Crop response followed these patterns with usually higher biomass accumulation and nutrient uptake in flooded than aerobic soils. Wetlands of fine soil texture in the highlands appeared more resilient than coarse-textured soils, particularly when drained. Enhanced crop performance in flooded soils indicates the possibility for partial recovery of the production potential and the rehabilitation of some wetlands.  相似文献   

6.
Agricultural activities promote the explosion of diverse pest populations. In Argentina, the ant Camponotus punctulatus invades agricultural fields after production ceases. The temporal demography and spatial distribution of colonies of C. punctulatus were studied over a five year period using replicated plots of different land use types representing a gradient of increasing agricultural disturbance. We experimentally tested the hypothesis that the increase in C. punctulatus colony density was related to increasing levels of agricultural disturbance. Abandoned rice fields represented the situation with greatest disturbance. Sown pastures were intermediate. Natural grasslands represented no agricultural disturbance. The predictions were (1) the greater the soil disturbance produced by agriculture, the greater the susceptibility for invasion by C. punctulatus, (2) rice fields offers greater opportunities for establishment of colonizing species than sown pastures, and (3) disturbed land use areas that were more recently colonized as well as land use areas with greater soil disturbance will exhibit patterns of colony aggregation at a small scale but with time the patterns will become uniform. Initially, colonies in the abandoned rice fields had a higher annual mortality and larger turnover than in sown pastures. Over five years, abandoned rice fields sustained higher densities of colonies than sown pastures. The colonies were the largest and had the longest lifespans in abandoned ricefields. Natural grasslands had the lowest colony density, survivorship, and size but had variable levels of colonization. More than one type of spatial distribution was found in field replicates. At small spatial scales across disturbed land use types, replicates exhibited regular distributions. At greater spatial scales, spatial distributions were mostly random in sown pastures, there were many cases of aggregation in rice fields, although some cases of uniform distributions were also found in all disturbed land uses. These results highlight significant intraspecific variation in ant demography across types of land use, space, and time, and show a clear predisposition of C. punctulatus to invade and successfully establish in the most disturbed land use types. Hypotheses that can account for the changes in demography across land use types are discussed. Received 20 January 2006; revised 3 August 2006; accepted 26 October 2006.  相似文献   

7.
滩涂围垦和土地利用对土壤微生物群落的影响   总被引:8,自引:0,他引:8  
林黎  崔军  陈学萍  方长明 《生态学报》2014,34(4):899-906
土壤微生物在生态系统营养物质循环过程,特别是碳、氮循环过程中扮演着重要的角色。上海市崇明岛位于长江入海口,因其土壤发育时间较短、土地利用历史背景清晰、土壤本底均一,不同土壤围垦年代的土壤,代表了土壤发育年代的不同时期。以空间变化代替时间变化,对崇明岛稻田和旱地6个不同围垦年代土壤的磷酸脂肪酸(PLFA)指纹图谱研究表明,湿地滩涂围垦16a后土壤微生物总PLFA、细菌PLFA、革兰氏阳性菌(G+)PLFA和革兰氏阴性菌(G-)PLFA含量显著降低。随着围垦时间的逐步增加,PLFA含量逐步上升。经过长时间的农业种植,G+PLFA在围垦120a和300a稻田和旱地土壤中没有显著性差异;而总PLFA、细菌和G-PLFA在围垦75、120a和300a的土壤中含量趋于稳定且没有显著性差异。围垦16a和40a稻田土壤中总PLFA和G+PLFA显著高于旱地土壤;围垦40a稻田土壤中细菌和G-PLFA显著高于旱地土壤。不同围垦年代土壤总PLFA、细菌PLFA与土壤总氮、粘土含量成显著的正相关关系。河口湿地围垦后微生物数量的变化与土壤营养含量存在强烈相关关系,提示土壤围垦及演替过程中微生物与土壤肥力之间的紧密关系,对探讨土壤演替过程中微生物群落的变化具有重要意义。  相似文献   

8.
Agricultural activities contribute significantly to the global methane budget. Agricultural sources of methane are influenced by land‐use change, including changes in agricultural area, livestock keeping and agricultural management practices. A spatially explicit inventory of methane emissions from agriculture is made for China taking the interconnections between the different agricultural sources into account. The influence of land‐use change on methane emissions is studied by linking a dynamic land‐use change model with emission calculations. The land‐use change model calculates changes in rice area and livestock numbers for a base‐line scenario. Emissions are calculated for 1991 based on land‐use statistics and for 2010 based on simulated changes in land‐use patterns. Emissions from enteric fermentation and manure management are based on emission factors, while emissions from rice paddies involve the calculation of total organic carbon added to rice paddy soils and assume that a constant fraction is emitted as methane. Spatial patterns of emissions are presented for the different sources. For the land‐use scenario considered it is expected that total methane emissions from agricultural sources in China increase by 11% while the relative contribution of rice fields to the emission decreases. Emissions from manure management are expected to become more important. These results indicate that agencies should anticipate changes in source strengths as a consequence of land‐use changes when proposing mitigation strategies and future national greenhouse gas budgets.  相似文献   

9.
Aims Although many studies have reported net gains of soil organic carbon (SOC) after afforestation on croplands, this is uncertain for Chinese paddy rice croplands. Here, we aimed to evaluate the effects of afforestation of paddy rice croplands on SOC sequestration and soil respiration (R s). Such knowledge would improve our understanding of the effectiveness of various land use options on greenhouse gas mitigation in China.Methods The investigation was conducted on the Chongming Island, north subtropical China. Field sites were reclaimed from coastal salt marshes in the 1960s, and soils were homogeneous with simple land use histories. SOC stocks and R s levels were monitored over one year in a paddy rice cropland, an evergreen and a deciduous broad-leaved plantation established on previous paddy fields and a reference fallow land site never cultivated. Laboratory incubation of soil under fast-changing temperatures was used to compare the temperature sensitivity (Q 10) of SOC decomposition across land uses.Important findings After 15–20 years of afforestation on paddy fields, SOC concentration only slightly increased at the depth of 0–5cm but decreased in deeper layers, which resulted in a net loss of SOC stock in the top 40cm. Seasonal increase of SOC was observed during the rice-growing period in croplands but not in afforested soils, suggesting a stronger SOC sequestration by paddy rice cropping. However, SOC sequestered under cropping was more labile, as indicated by its higher contents of dissolved organic carbon and microbial biomass. Also, paddy soils had higher annual R s than afforested soils; R s abruptly increased after paddy fields were drained and plowed and remained distinctively high throughout the dry farming period. Laboratory incubation revealed that paddy soils had a much higher Q 10 of SOC decomposition than afforested soils. Given that temperature was the primary controller of R s in this region, it was concluded that despite the stronger SOC sequestration by paddy rice cropping, its SOC was less stable than in afforested systems and might be more easily released into the atmosphere under global warming.  相似文献   

10.
海南稻田土壤硒与重金属的含量、分布及其安全性   总被引:8,自引:0,他引:8  
采集了海南省18个市(县)代表性的稻田土壤耕作层(0—20cm)样品280个,研究了硒(Se)和5种有毒重金属元素(Hg、Cd、Cr、Pb和As)的含量、分布及其相关关系,并对Se和重金属的安全性进行评价,可为合理区划清洁且富Se稻田提供理论依据。结果表明:海南稻田土壤中Hg、Cd、Cr、Pb和As平均含量均低于国家土壤环境质量一级标准值和全国土壤背景值,以绿色食品产地环境技术条件限量标准为标准,用单项污染指数法和内梅罗综合污染指数法评价海南稻田土壤重金属的污染状况,结果都是清洁的。但以海南省土壤背景值做参比值,Hakanson潜在生态危害指数达到211.54,属于强生态危害,从潜在生态危害系数来看,Hg(102.61)和Cd(98.89)达到强生态危害,分别比海南省土壤背景值增加1.56和2.3倍,今后应注意控制Hg和Cd污染源。稻田土壤Se含量从痕量到1.532mg/kg之间,平均值为0.211mg/kg,占47.5%的稻田土壤Se含量处于中等及以上水平(>0.175mg/kg)。Se含量高的稻田土壤主要集中在东北部的海口及其周边的澄迈、定安、文昌和琼海,还有东南部的万宁和保亭。由于重金属平均含量还比较低,可暂时忽略重金属污染,故可在上述Se含量高的稻田土壤上种植富Se水稻。稻田土壤Se含量与Hg、Cd和As含量呈极显著或显著正相关,因此今后应加强研究稻田土壤Se与Hg、Cd和As的有效性及其相互作用,以便生产出绿色的富Se优质大米。  相似文献   

11.
不同土地利用方式土下岩溶溶蚀速率及影响因素   总被引:8,自引:0,他引:8  
以重庆中梁山为例,通过野外埋放标准溶蚀试片、土壤CO2收集装置和进行亮蓝染色示踪试验,测试不同土地利用方式下不同土层碳酸盐岩溶蚀速率、土壤CO2浓度、土壤溶解性有机碳(DOC)含量及土壤含水量、土壤pH值和孔L隙度等性质,探讨不同土地利用方式土下溶蚀速率差异及其影响因素.结果表明不同土地利用方式对土壤理化性质产生影响,形成特定的岩溶微环境,进而影响土下不同层次的岩溶作用:土壤CO2浓度是影响林地和草地旱季土下溶蚀速率的重要驱动力;土壤含水量和供水能力是影响旱季不同土地利用方式溶蚀速率的关键因素;菜地产生的酸性物质较多,土壤pH值最低,其平均溶蚀速率高于林地;土壤DOC随水下渗迁移性强,是林地土下50 cm处溶蚀速率高于土下20 cm处的原因之一.该文为西南岩溶区土下岩溶机理、岩溶碳汇提供理论依据和数据参考.  相似文献   

12.
城市化对土壤生态环境的影响研究进展   总被引:6,自引:0,他引:6  
城市土壤是城市生态系统中最重要的组成部分之一,发挥着重要的生态系统服务功能。在全球快速城市化的背景下,城市土壤受到人类活动的强烈干扰,土壤物理、化学性质发生改变,土壤退化与污染日益加重。城市土壤退化导致土壤动物生态特征与行为模式发生变化,城市景观格局与土地利用类型的变化强烈影响了土壤动物的栖息地,为土壤动物的生存与生物多样性带来潜在威胁;另一方面,城市化过程改变了土壤微生物群落组成与功能特征。城市化直接影响了城市土壤维持植物生长、土壤自然消减能力以及碳储存功能等重要的生态系统服务功能。针对城市化过程对土壤生态环境产生的一系列影响,需要采用科学的管理方式,改善土壤理化性质,提高土壤环境质量,保护和恢复土壤生物多样性,从而增强城市土壤的生态系统服务功能。  相似文献   

13.
Shipibo Indians, who formed a village to establish a school and health clinic, are gradually depleting local fish and game resources. Men, recently adopting rice as a cash crop, tend to fish and hunt less than other men working only their subsistence gardens. Sale of fish and game in the village is becoming common, and pigs, once raised exclusively for sale to non-Shipibo, are now more regularly eaten and used for attracting agricultural labor. Other research has indicated that cash cropping often competes for workers' time in subsistence and so dietary change usually accompanies changing activity patterns. This paper explores the latter possibility by examining the relationship between cash cropping, wild meat procurement, and diet among the Shipibo. Time allocation and food consumption data are analyzed statistically to test a mathematical theory and model which relates indigenous work patterns to diet.  相似文献   

14.
The extent of soil microbial diversity in agricultural soils is critical to the maintenance of soil health and quality. The aim of this study was to investigate the influence of land use intensification on soil microbial diversity and thus the level of soil suppressiveness of cucumber Fusarium wilt. We examined three typical microbial populations, Bacillus spp., Pseudomonas spp. and Fuasarium oxysporum, and bacterial functional diversity in soils from three different land use types in China’s Yangtze River Delta, and related those to suppressiveness of cucumber Fusarium wilt. The land use types were a traditional rice wheat (or rape) rotation land, an open field vegetable land, and a polytunnel greenhouse vegetable land that had been transformed from the above two land use types since 1995. Results generated from the field soils showed similar counts for Bacillus spp. (log 5.87–6.01 CFU g−1 dw soil) among the three soils of different land use types, significantly lower counts for Pseudomonas spp. (log 5.44 CFU g−1 dw soil) in the polytunnel greenhouse vegetable land whilst significantly lower counts for Fusarium oxysporum (log 3.21 CFU g−1 dw soil) in the traditional rice wheat (or rape) rotation land. A significant lower dehydrogenase activity (33.56 mg TPF kg−1 dw day−1) was observed in the polytunnel greenhouse vegetable land. Community level physiological profiles (CLPP) of the bacterial communities in soils showed that the average well color development (AWCD) and three functional diversity indices of Shannon index (H′), Simpson index (D) and McIntosh index (U) at 96 h incubation in BIOLOG Eco Micro plates were significantly lower in the polytunnel greenhouse vegetable land than in both the traditional rice wheat (or rape) rotation land and the open field vegetable land. A further greenhouse experiment with the air-dried and sieved soils displayed significantly lower plant growth parameters of 10-old cucumber seedlings as well as significantly lower biomass and total fresh fruit yield at the end of harvesting at day 70 in the polytunnel greenhouse vegetable soil sources. The percentages of Fusarium wilt plant death were greatly increased in the polytunnel greenhouse vegetable plants, irrespective of being inoculated with or without Fusarium oxysporum f. sp. cucumerinum. Our results could provide a better understanding of the effects of land use intensification on soil microbial population and functional diversity as well as the level of soil suppressiveness of cucumber Fusarium wilt.  相似文献   

15.
上海世博会规划区是工厂和居民区混杂的典型老城区.对其主要土地利用方式下附属绿地土壤的重金属进行调查分析.结果表明:部分样点的Ni、Cr、Cu、Zn、Pb和Cd含量超标,Hg和As的含量均没有超标;大部分绿地土壤没有出现重金属的污染,其中清洁安全和尚清洁占了69.83%和6.94%,轻度污染、中度污染和重度污染的分别占了12.87%、2.56%和7.81%;周边利用类型不同的附属绿地土壤重金属含量差别很大,居民办公区的绿地土壤没有出现重金属污染,试剂溶剂类工厂局部有重金属污染,重金属污染主要集中在造船厂、机械厂、钢铁厂等重型工厂的附属绿地;利用类型不同绿地土壤重金属的相关性也不同,重金属的相关性基本与产生污染的土地利用类型一致;污染源的距离以及对污染源保护不当是导致绿地土壤重金属污染的主要因素,注意对污染源的集中堆置或采取隔离措施,能有效减少重金属对绿地的污染.  相似文献   

16.
红壤丘陵区粮食生产的生态成本   总被引:2,自引:0,他引:2  
人类的生产活动必然对资源与环境造成影响,以红壤丘陵区的湖南省祁阳县为研究对象,应用经济学和生态学方法,对粮食生产中的生态成本进行了研究。结果表明:2008年该区粮食生产生态损失总价值相当于当年农业总产值的4.85%;早、中、晚稻生态成本已分别达到3.18、2.44、3.02元/kg,而出售单价分别为1.76、1.90、1.84元/kg,高成本低收益的情况对该区域的可持续发展产生着不利影响;在当前生产力水平条件下,适度提高化肥、农药、农业机械、农膜、劳动力的投入,提高水稻产量,扩大家庭种植规模,可降低生产单位水稻的生态成本。  相似文献   

17.
稻田甲烷排放模型研究——模型及其修正   总被引:9,自引:3,他引:6  
张稳  黄耀  郑循华  李晶  于永强 《生态学报》2004,24(11):2347-2352
在过去十多年内 ,关于稻田甲烷排放的模拟已经进行了不少有益的探索并且开发出了数个有关的模型。模型的成功研制是准确定量估计不同区域范围内稻田甲烷排放的前提。以往大部分模型由于模拟精度不高 ,或者是其要求太多的输入参数 ,因而限制了它在大尺度范围内的广泛应用。在一个比较成熟的模型基础上 ,进行了必要的修正与扩充。增加了稻田甲烷通过气泡方式排放的模拟模块 ,并修正了原模型中关于土壤氧化还原电位变化的模拟 ,使之能适应于多种稻田水管理方式。新修正的模型 (CH4 MOD)不仅保留了原模型输入参数较少和易于获得的优点 ,而且能适应多种水稻耕作方式 ,这为进一步利用模型技术准确估计大尺度区域稻田甲烷排放提供了一种新的科学方法  相似文献   

18.
Zhao D  Li F  Wang R S 《农业工程》2012,32(3):144-149
Soil microbes are affected by various abiotic and biotic factors in urban ecosystem due to land use change. The effects of different land use patterns on soil microbial properties and soil quality are, however, largely unknown. This study compared soil nutrient status, microbial biomass nitrogen and enzyme activities under five different land use patterns—nature forest, park, farmland, street green, and roadside tree sites at various soil depths in Beijing, China. The results showed that soil properties were significantly affected by urban land use patterns and soil depths in the urban environment. Compared to forest sites, soil nutrients were markedly decreased in other land use patterns, except the highest soil organic matter content in roadside tree sites in 0–10 cm soil layer. Soil microbial biomass nitrogen showed the order as follows: nature forest > park > farmland > street green > roadside tree in 0–10 cm soil layer, and it decreased along with the soil depth gradient. Furthermore, urease activity was highest in nature forest and lowest in street green and roadside tree soils in each depth, while the activity of protease ranged between 0.84 and 3.94 mg g?1 with the peak appeared in roadside tree at 30–40 cm soil layers. Nitrate reductase activity was also extremely higher in street green than other land use patterns. Correlation analyses suggested that change of soil microbial biomass and enzyme activity in different land use patterns were mainly controlled by nutrient availability and soil fertility in urban soils.  相似文献   

19.
Aim Climate, topography and soils drive many patterns of plant distribution and abundance across landscapes, but current plant communities may also reflect a legacy of past disturbance such as agricultural land use. To assess the relative influences of environmental conditions and disturbance history on vegetation, it is important to understand how these forces interact. This study relates the geographical distribution of land uses to variation in topography and soils; evaluates the consequences of land‐use decisions for current forests; and examines the effects of agricultural land use on the chemical properties of forest soils. Location Tompkins County occupies 1250 km2 in central New York's Finger Lakes region. Like much of eastern North America, this area underwent forest clearance for agriculture during the 1800s and widespread field abandonment and forest recovery during the 1900s. The current landscape consists of a patchwork of forests that were never cleared, forests that developed on old fields and active agricultural lands. Methods We investigated relationships among topography, soils and land‐use decisions by gathering information about land‐use history, slope, aspect, elevation, soil lime content, soil drainage and accessibility in a geographic information system (GIS). To assess the effects of agriculture on forest soil chemistry, we measured pH, organic matter content and extractable nutrient concentrations in field‐collected soil samples from 47 post‐agricultural and uncleared forests. Results Steeper slopes, less accessible lands and lower‐lime soils tended to remain forested, and farmers were more likely to abandon fields that were steeper, farther from roads, lower in lime and more poorly drained. Slope had by far the greatest impact on patterns of clearance and abandonment, and accessibility had a surprisingly strong influence on the distribution of land uses. The effects of other factors varied more, depending for example on location within the county. Current forest types differed accordingly in topography and soil attributes, particularly slope, but they also showed much overlap. Post‐agricultural and uncleared forest soils had similar chemical properties. Forests on lands abandoned from agriculture 80–100 years before had slightly higher pH and nutrient concentrations than adjacent, uncleared forests, but these changes were small compared to environmental variation across the county. Main conclusions Despite differential use of lands according to their topography and soils, the substantial influence of accessibility and the relatively small scale of land‐use decisions allowed for broad similarity among forest types. Thus, the topography and soil differences created by land‐use decisions probably contribute little to landscape‐level patterns of diversity. Subtle changes in forest soil chemistry left from past agriculture may nevertheless affect plant distribution and abundance at finer scales.  相似文献   

20.
In the southeastern-forest region of Madagascar, the year-around anaerobic condition of most lowlands favors soil organic matter (SOM) accumulation, while the inherently nutrient-poor soils limit rice yields. Accelerating decomposition of the accumulated SOM through the soil surface drainage before transplanting is a conceivable approach to improve rice production. However, the effect of soil drying on rice growth has been little studied in highly weathered Ferralsols. A pot experiment was conducted to examine the soil-drying effect on rice growth. One-month period of the soil drying before transplanting substantially increased the biomass production compared to those grown in the continuously submerged soils, which was mainly attributable to the large N uptakes derived from the ‘soil-drying effect’. However, soil-drying treatment decreased the physiological nitrogen use efficiency (PNUE: gBiomass/gNuptake) associated with the reduced plant P and K concentrations. Application of NPK fertilizer ameliorated the PNUE, and plant P and K concentrations. However, the plant K and Si dilution with soil-drying treatment and plant Si dilution with NPK fertilizer application negatively affected grain fertility due to blast infection. Our study indicated balanced nutrient management would be important to maximize the benefit of the soil-drying effect, and to prevent biotic damages to rice plants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号