首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Phylogenetic relationships of populations and species within Potamorrhaphis, a genus of freshwater South American needlefishes, were assessed using mitochondrial cytochrome b sequences. Samples were obtained from eight widely distributed localities in the Amazon and Orinoco rivers, and represented all three currently recognized species of Potamorrhaphis. The phylogeny of haplotypes corresponded imperfectly to current morphological species identities: haplotypes from P. guianensis, the most widespread species, did not make up a monophyletic clade. Geography played a strong role in structuring genetic variation: no haplotypes were shared between any localities, indicating restricted gene flow. Possible causes of this pattern include limited dispersal and the effects of current and past geographical barriers. The haplotype phylogeny also showed a complex relationship between fishes from different river basins. Based on the geographical distribution of clades, we hypothesize a connection between the middle Orinoco and Amazon via rivers of the Guianas. More ancient divergence events may have resulted from Miocene alterations of river drainage patterns. We also present limited data for two other Neotropical freshwater needlefish genera: Belonion and Pseudotylosurus. Pseudotylosurus showed evidence of substantial gene flow between distant localities, indicating ecological differences from Potamorrhaphis.  相似文献   

2.
The use of genetic methods to quantify the effects of anthropogenic habitat fragmentation on population structure has become increasingly common. However, in today’s highly fragmented habitats, researchers have sometimes concluded that populations are currently genetically isolated due to habitat fragmentation without testing the possibility that populations were genetically isolated before European settlement. Etheostoma raneyi is a benthic headwater fish restricted to river drainages in northern Mississippi, USA, that has a suite of adaptive traits that correlate with poor dispersal ability. Aquatic habitat within this area has been extensively modified, primarily by flood-control projects, and populations in headwater streams have possibly become genetically isolated from one another. We used microsatellite markers to quantify genetic structure as well as contemporary and historical gene flow across the range of the species. Results indicated that genetically distinct populations exist in each headwater stream analyzed, current gene flow rates are lower than historical rates, most genetic variation is partitioned among populations, and populations in the Yocona River drainage show lower levels of genetic diversity than populations in the Tallahatchie River drainage and other Etheostoma species. All populations have negative FIS scores, of which roughly half are significant relative to Hardy–Weinberg expectations, perhaps due to small population sizes. We conclude that anthropogenic habitat alteration and fragmentation has had a profoundly negative impact on the species by isolating E. raneyi within headwater stream reaches. Further research is needed to inform conservation strategies, but populations in the Yocona River drainage are in dire need of management action. Carefully planned human-mediated dispersal and habitat restoration should be explored as management options across the range of the species.  相似文献   

3.
We examined the genetic structure and phylogeography of populations of the stonefly Peltoperla tarteri in the Southern Appalachians to determine the extent and likely mechanism for dispersal of this stream insect. A 454-base-pair (bp) portion of the mitochondrial control region was sequenced from a minimum of 20 individuals from eight populations. Pairwise FST and exact tests showed high levels of differentiation among almost all populations except those on the same stream. amova analysis detected significant genetic differentiation between streams within drainages (phi(SD) = 0.14, P < 0.001), and there was a slight positive correlation between aquatic distance and genetic distance (r = 0.295, P = 0.03). According to nested clade analysis, the present day pattern of genetic variation in P. tarteri is the result of a historical range expansion coupled with restricted gene flow with isolation by distance. Together, these analyses suggest that adult dispersal is limited and that movement by larvae is the primary dispersal mechanism for P. tarteri.  相似文献   

4.
The deserts of southwestern North America have undergone dramatic changes over their recent geological history including large changes in size and connectivity during the Pleistocene glaciopluvial cycles. This study examines the population history of the rare spider Saltonia incerta, once thought to be extinct, to determine the role of past climatological events in shaping the structure of the species. This species is restricted to salt crusts of intermittent or dry lakes, streams or rivers in the desert southwest, a region that was much wetter during glacial periods. We examine the distribution and genetic variability of populations to test whether there is recent dispersal throughout the range of the species. Analyses of mitochondrial and nuclear DNA indicate significant population structure, with one major clade comprising New Mexico localities and one comprising California‐northern Baja California localities. Finer‐scale structure is evident within the California clade, although not all of the subclades are reciprocally monophyletic. However, isolation with migration analysis suggests that migration is very low to non‐existent. These results extend the known distribution of Saltonia, provide genetic evidence of strong isolation among localities within drainage basins and between drainage basins and provide a mechanistic understanding of population connectivity after the aridification of the American southwest. The implication is that although the species' distribution has been fragmented, populations have persisted throughout this area, suggesting that desert salt flats may have served as refugia for at least some terrestrial species.  相似文献   

5.
1. Populations of a number of sub‐tropical stream insect species have been found to show unexpected patterns of genetic variation, with more differences between samples from the same stream than between whole streams or between subcatchments. Many samples also showed deviations from Hardy–Weinberg proportions. It has been proposed that these patterns result from limited numbers of matings contributing to a given stream reach, because adults emerge throughout the year, and low levels of larval drift between reaches. These patterns may be less likely in a northern hemisphere montane species with synchronous emergence of adults and high levels of drift. We tested the hypothesis that patterns of genetic variation in a montane mayfly from the Rocky Mountains, Colorado, would reflect a pattern of ‘isolation by distance’ with samples from the same creek being more similar than samples from different creeks and that deviations from Hardy–Weinberg proportions would be minimal. 2. Based on allozyme variation, the hypothesis of minimal deviations from Hardy–Weinberg proportions was not supported and there was no evidence of isolation by distance. Nevertheless the levels of differentiation among samples from within the same stream were less than those reported for most subtropical species. 3. Results from analysis of a fragment of the cytochrome oxidase gene (subunit 1) revealed contrasting patterns. The levels of genetic differentiation were an order of magnitude higher between streams than among samples within streams. In addition, although there was no significant isolation by distance effect overall, a nested clade analysis provided evidence for restricted gene flow with isolation by distance for some clades. 4. We suggest that these contrasting results may reflect the differences in male and female dispersal patterns. While differentiation at nuclear gene markers (allozymes) give information about both male and female dispersal, mitochondrial DNA markers reflect only female dispersal. We suggest that in this species, female dispersal may be more restricted, perhaps mostly along stream channels, whereas male dispersal is more widespread. An alternative explanation for the different results is the different evolutionary rates of the mitochondrial and nuclear markers.  相似文献   

6.
A phylogeographic survey was used to elucidate the relative roles of historical processes and contemporary gene flow in structuring the genetic pattern observed with Mogurnda adspersa. This species of freshwater fish is found in the rivers and streams of the northeastern highlands of Queensland, Australia. Specifically, this project focused on populations in the Tully and Herbert Rivers in the Atherton Tablelands. Sequence analysis indicated that three distinct clades exist in the headwaters of the Tully River. The population sampled from one of the Tully River streams (Cheetah Creek) contained haplotypes that displayed ≈ 3.4% sequence divergence from other haplotypes detected in this river. Furthermore, these haplotypes formed part of the clade which exists throughout not only the Herbert River but other surrounding drainages in the area. These results support the hypothesis that the current genetic structure is strongly affected by changes in drainage patterns due to geomorphological processes that occurred in the recent past.  相似文献   

7.
We examined genetic structure and levels of connectivity among subpopulations within each of four cryptic species belonging to the freshwater mussel genus Velesunio. We used allozymes and a fragment of the mitochondrial cytochrome c oxidase I gene to examine genetic variation in populations from isolated waterholes, belonging to four major inland drainages in eastern Australia. Based on evidence from other invertebrates in the region we predicted that, in each species, we would find evidence of historical connectivity among populations from different drainages. This was clearly not the case, as for the two species that occurred in more than one drainage there was evidence of both current and past restriction to gene flow. Moreover, given the potential for extensive dispersal of these mussels through the river systems during flood times via their fish hosts, we predicted low levels of genetic variation among populations from waterholes in the same drainage. Contrary to our expectations, all four species showed some evidence of restricted gene flow among waterholes within drainages. This suggests that either (a) mussel larvae are not produced during flood times, when their fish hosts would be free to move between waterholes, or (b) mussel larvae are attached to their hosts at these times, but the fish movement is limited between waterholes.  相似文献   

8.
Terrestrial environments allow the adults of some aquatic insects to disperse between headwater streams, which may be important for maintaining population connectivity and persistence. Winged adult stages of aquatic insects are particularly sensitive to degradation of terrestrial habitat, relying on it for food, reproduction and dispersal. In this study we examined the genetic pattern of the Australian mayfly Ulmerophlebia sp. AV2, in north‐eastern New South Wales, and compared the genetic diversity in forested and partially deforested sub‐catchments. Our hypotheses were (i) patterns of mitochondrial DNA (mtDNA) variation in the Leptophlebiidae mayfly Ulmerophlebia sp. AV2 show a pattern of structuring that reflects low or widespread dispersal along the stream network and across catchments; and (ii) genetic diversity will be lower in partially deforested sub‐catchments compared to forested sub‐catchments. We found gene flow was not restricted among headwater streams within sub‐catchments but was restricted at distances >15 km. Genetic diversity was high (mean haplotype diversity >0.85) in both control and harvested sub‐catchments. Instead, a historical signature of population expansion was detected which is consistent with findings for other aquatic insect taxa of eastern Australia. Our results suggest that the selective harvesting management strategy, including the use of riparian buffer zones, within these sub‐catchments does not appear to restrict dispersal between streams or erode diversity within streams for Ulmerophlebia sp. AV2. Selective harvesting therefore appears to have minimal impacts on terrestrial/aquatic links in the life cycle of this insect.  相似文献   

9.
Baker AM  Hurwood DA  Krogh M  Hughes JM 《Heredity》2004,93(2):196-207
We measured spatial genetic structure within three previously described mitochondrial lineages of the atyid shrimp, Paratya australiensis, occurring in upland streams of two major catchments within the Sydney Water Supply Catchment, New South Wales, Australia. In all three lineages, there was significant spatial structuring of genetic variation between catchments. In two lineages, recurrent but restricted maternal gene flow has apparently predominated in shaping within-catchment genetic structure, although this framework may be overlaid with episodic contiguous/long-distance expansion events. In the third lineage, there was no evidence of spatial genetic structuring within one of the catchments, because one haplotype was both common and widespread throughout the sampled area. High-frequency haplotypes were also shared among subcatchments in the other two lineages, and we discuss both historical and contemporary processes that may have left these genetic signatures. Our results are generally concordant with previous reports of significant population structuring in P. australiensis, occurring in upland river reaches elsewhere in eastern Australia. We propose that restricted dispersal and gene flow among upland populations of P. australiensis is linked to dramatic architectural structuring within and among mountain streams.  相似文献   

10.
The genetic structure of small semiaquatic animals may be influenced by dispersal across both rivers and land. The relative importance of these two modes of dispersal may vary across different species and with ecological conditions and evolutionary periods. The Pyrenean desman (Galemys pyrenaicus) is an endemic mammal of the Iberian Peninsula with a strong phylogeographic structure and semiaquatic habits, thus making it an ideal model to study the effects of river and overland dispersal on its genetic structure. Thanks to different types of noninvasive samples, we obtained an extensive sampling of the Pyrenean desman from the northwestern region of the Iberian Peninsula and sequenced two mitochondrial DNA fragments. We then analyzed, using an isolation‐by‐distance approach, the correlation between phylogenetic distances and geographical distances measured along both river networks and land to infer the relative importance of river and overland dispersal. We found that the correlations in the whole area and in a large basin were consistent with an effect of overland dispersal, which may be due to the postglacial colonization of new territories using terrestrial corridors and, possibly, a more extensive fluvial network that may have been present during the Holocene. However, in a small basin, likely to be less influenced by the impact of ancient postglacial dispersal, the correlations suggested significant overall effects of both overland and river dispersal, as expected for a semiaquatic mammal. Therefore, different scales and geographical regions reflect different aspects of the evolutionary history and ecology of this semiaquatic species using this isolation‐by‐distance method. The results we obtained may have crucial implications for the conservation of the Pyrenean desman because they reinforce the importance of interbasin dispersal for this species in the studied area and the need to protect the whole riverine ecosystem, including rivers, upland streams and terrestrial corridors between basins.  相似文献   

11.
We assessed levels of mitochondrial genetic spatial structuring in the hydropsychid caddisfly Cheumatopsyche sp. AV1 in southeastern New South Wales, Australia. No significant spatial structuring was detected within or between catchments using analysis of molecular variance, and nested clade contingency analysis suggested no strong relationship between haplotypes and geographical location, at any clade level. However, tests for association among haplotypes incorporating geographical distance in the nested clade analysis, revealed patterns of historical range expansion and recent restricted gene flow. Most likely, population fragmentation preceded range expansion, although subsequent recontact and gene flow among the previously sundered populations has apparently obscured the geographical signature of the former fragmentation. Taken together, our analyses suggest that a number of populations fragmented during the Pleistocene evolved in isolation for a time and subsequently expanded into secondary contact. Since expansion, there has apparently been substantial (albeit somewhat restricted) dispersal and gene flow of adult female Cheumatopsyche sp. AV1, throughout the study area.  相似文献   

12.
Using the mitochondrial cytochrome oxidase I (COI) gene, we assessed the phylogeographic structure of Prosimulium neomacropyga, a black fly (Simuliidae) whose distribution in the US Southern Rockies ecoregion is limited to alpine tundra streams. Given high habitat specificity, lack of hydrological connection between streams, and a terrestrial environment restrictive to insect flight, we hypothesized limited gene flow. A spatially nested sampling design showed that grouping populations according to high-elevation 'islands' of alpine tundra (which typically include headwater streams of > 1 watershed) explained a significant proportion of genetic variation while grouping streams according to major watershed (across islands) did not. Nested clade analysis and isolation-by-distance (IBD) relationships further implicated limited ongoing gene flow within but not among the isolated alpine islands. IBD was strong among five streams within an individual island using each of four alternative models of pairwise landscape connectivity for flying insects. Results of all landscape models were positively correlated, suggesting that straight-line distance is an acceptable surrogate for presumably more biologically meaningful connectivity measures in this system. IBD was significantly weaker across the entire study area, comprised of three separate islands. Overall, population structure was significant with F(ST) = 0.38, suggesting limited dispersal across a small spatial extent.  相似文献   

13.
The endemic Puerto Rican crab, Epilobocera sinuatifrons (Pseudothelphusidae), has a freshwater-dependant life-history strategy, although the species has some capabilities for terrestrial movement as adults. In contrast to all other freshwater decapods on the island (e.g., caridean shrimp), E. sinuatifrons does not undertake amphidromous migration, and is restricted to purely freshwater habitats and adjacent riparian zones. As Puerto Rico has a dynamic geologic history, we predicted that both the life history of E. sinuatifrons and the geological history of the island would be important determinants of phylogeographic structuring in the species. Using a fragment of the cytochrome c oxidase subunit 1 mtDNA (mitochondrial DNA) gene, we tested for deviations from panmixia among and within rivers draining Puerto Rico and used statistical phylogeography to explore processes that may explain extant patterns of genetic variation in the species. While populations of E. sinuatifrons were significantly differentiated among rivers, they were likely to be recently derived because nested clade analysis (NCA) indicated evolutionarily recent restricted gene flow with isolation by distance (IBD) and contiguous range expansion at various spatial scales. Ongoing drainage rearrangements associated with faulting and land slippage were invoked as processes involved in sporadic gene flow among rivers throughout the Pleistocene. Patterns of genetic differentiation conformed to IBD and population demographic statistics were nonsignificant, indicating that although recently derived, populations from different rivers were in drift-mutation equilibrium. A shallow (0.6 million years ago), paraphyletic split was observed in the haplotype network, which NCA indicated arose via allopatric fragmentation. This split coincides with an area of high relief in central Puerto Rico that may have experienced relatively little drainage rearrangements. Shallow but significant genetic isolation of populations of E. sinuatifrons among Puerto Rican rivers suggests phylogeographic patterns that are intermediate to terrestrial habitat specialists (highly divergent populations) and other freshwater biota, such as amphidromous species and insects with aerial adult dispersal (highly connected populations).  相似文献   

14.
Freshwater fishes often display a marked phylogeographic structure strongly associated with historical and ecological changes in the aquatic environment. Different ecological conditions in the same river drainage may act as permeable barriers to dispersion and gene flow. Previous studies recognized two discrete spatial components for the ichthyofauna in the freshwater coastal drainages of southern Brazil: the lowland fish fauna in the lagoons and the fish fauna of the rivers flowing in the valleys. In order to test if the coastal lagoons may limit the dispersion of a riverine species, we describe the phylogeographic structure among populations of Cyanocharax itaimbe, a species endemic to this region. We analysed 55 specimens characterized for two mitochondrial and one nuclear genes. Sequences were analysed using gene trees and species tree approaches, together with standard population genetics methods. Molecular analyses indicated three evolutionary groups which diverged from each other between an estimated 1,600,000 and 450,000 years before the present. However, two currently isolated river systems share the same evolutionary clade, whereas a single drainage contains two different lineages. Our results indicate strong genetic structure among populations along with generally conserved morphology. The strong genetic structure among populations living in the same drainage system may be explained by ecological differences between lagoons and rivers (or palaeochannels) that act as barriers to dispersion.  相似文献   

15.
The widespread distribution of the eastern rainbow fish Melanotaenia splendida splendida throughout the isolated headwaters of the rivers on the Atherton Tableland, north-eastern Australia, suggests multiple colonization events from the eastern lowlands via each respective river channel, or a single colonization event on to the tableland with subsequent dispersal between the headwaters. To explore the likely processes that resulted in the current distribution on the tableland, two models of gene flow were tested: (a) the hierarchical gene flow model that tests the hypothesis for contemporary gene flow via stream channels and (b) the stepping stone model that tests for dispersal between streams. Neither of these models explained the observed genetic structure, adequately. However, there is support for extensive historical dispersal across the headwaters of the isolated drainages. If this dispersal followed a single colonization event, the subsequent range expansion could have facilitated a rapid rise in population size due to an increase in suitable habitat. The genetic data indicates an eight-fold increase in population size c. 100 thousand years ago.  相似文献   

16.
In 1995, an allozyme study was conducted on the genetic structure of a population of the common atyid shrimp, Paratya australiensis, in the Conondale Range, south-eastern Queensland with two subcatchments each within two river drainages sampled. The allozyme study revealed a high degree of population structure, with the data interpreted as reflecting a pattern of restricted contemporary gene flow, primarily between streams within subcatchments. High levels of differentiation occurred between all subcatchments. In this study, we analysed a partial fragment of the mitochondrial COI gene in order to further test and verify these results. The mtDNA data largely conflicted with the hypothesis of restricted gene flow indicating that contemporary dispersal was highly unlikely, even between streams within subcatchments, with many sites fixed for unique mtDNA haplotypes. Additionally, the level of divergence between the Stony Creek subcatchment and all other sampling sites indicated that it had been isolated for approximately 2-3 million years, while low levels of divergence were detected across the Conondale Range between the Kilcoy and Booloumba Creek subcatchments. The sharing of alleles at certain allozyme loci between all subcatchments is, therefore, likely to be the result of ancestral retention and possibly because of the effects of balancing selection.  相似文献   

17.
18.
The Iberian cyprinid fauna, characterized by the presence of numerous endemic species, has suffered from significant habitat degradation. The critically endangered Squalius aradensis is restricted to small drainages of southern Portugal, habitats that typically exhibit a characteristic Mediterranean-type heterogeneous hydrological system throughout the year, including alternation of flooding events during winter and complete drought in large river sections during summer. To assess the effect of historical and recent processes on genetic diversity in S. aradensis we examined within- and among-population variability in cytochrome b and six polymorphic microsatellite loci. Estimates of genetic diversity in time and space through the combined use of traditional Phi-/F-statistics, phylogenetic trees, ordination methods and nested clade analysis indicated significant and congruent structuring among populations. Data suggest that the Arade drainage represent the evolutionary centre of the species, with subsequent allopatric fragmentation across drainages. Factors other than isolation by distance strongly affected the within-drainage genetic differentiation observed in these Mediterranean-type drainages, including recent population expansion from a bottleneck event and restricted gene flow imposed by a long-term barrier (brackish water area). Significant correlation was found between S. aradensis allelic diversity and upstream drainage area. The relevance of findings for conservation issues is discussed in relation to local intermittent hydrological conditions, the highly restricted distribution and the critically endangered status of the species.  相似文献   

19.
DOES FISH ECOLOGY PREDICT DISPERSAL ACROSS A RIVER DRAINAGE DIVIDE?   总被引:1,自引:0,他引:1  
Obligate freshwater taxa are frequently distributed among catchments isolated by marine and terrestrial barriers. Such distributions can arise through vicariant changes in drainage geometry, or dispersal via intermittent freshwater connections. We employed two adjacent rivers in southern New Zealand to test for interdrainage dispersal while controlling for historical drainage geometry, and analyzed four ecologically distinct freshwater-limited fish taxa to assess any relationship with habitat preference. Individuals from the Mararoa and Oreti catchments (n >100 per species) were sequenced for a minimum of 1297 bp of mitochondrial DNA (cytochrome b and control region). Phylogeographic relationships were consistent with ecological expectations of interdrainage dispersal capability, with the two obligate riverine taxa each exhibiting reciprocal monophyly between catchments, whereas the two facultative swamp dwellers revealed paraphyletic relationships, one of which shared a haplotype between catchments. Statistical phylogeography, accommodating taxon-specific mutation rates and the known age of the last major riverine connection between these catchments, rejected complete isolation of populations for one of the swamp dwellers. Therefore, dispersal across a young (145-240 kyr) drainage divide is inferred for one species, and can be predicted to some extent by species ecology. Moreover, our study highlights the importance of historical drainage geometry when assessing the causes of contemporary genetic structuring in freshwater taxa.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号