首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The heterochromatin protein 1 (HP1) family of proteins is involved in gene silencing via the formation of heterochromatic structures. They are composed of two related domains: an N-terminal chromo domain and a C-terminal shadow chromo domain. Present results suggest that chromo domains may function as protein interaction motifs, bringing together different proteins in multi-protein complexes and locating them in heterochromatin. We have previously determined the structure of the chromo domain from the mouse HP1beta protein, MOD1. We show here that, in contrast to the chromo domain, the shadow chromo domain is a homodimer. The intact HP1beta protein is also dimeric, where the interaction is mediated by the shadow chromo domain, with the chromo domains moving independently of each other at the end of flexible linkers. Mapping studies, with fragments of the CAF1 and TIF1beta proteins, show that an intact, dimeric, shadow chromo domain structure is required for complex formation.  相似文献   

2.
Heterochromatin-associated protein 1 (HP1) is thought to affect chromatin structure through interactions with other proteins in heterochromatin. Chromo domains located near the amino (amino chromo) and carboxy (chromo shadow) termini of HP1 may mediate such interactions, as suggested by domain swapping, in vitro binding and 3D structural studies . Several HP1-associated proteins have been reported, providing candidates that might specifically complex with the chromo domains of HP1. However, such association studies provide little mechanistic insight and explore only a limited set of potential interactions in a largely non-competitive setting. To determine how chromo domains can selectively interact with other proteins, we probed random peptide phage display libraries using chromo domains from HP1. Our results demonstrate that a consensus pentapeptide is suffident for specific interaction with the HP1 chromo shadow domain. The pentapeptide is found in the amino acid sequence of reported HP1-associated proteins, including the shadow domain itself. Peptides that bind the shadow domain also disrupt shadow domain dimers. Our results suggest that HP1 dimerization, which is thought to mediate heterochromatin compaction and cohesion, occurs via pentapeptide binding. In general, chromo domains may function by avidly binding short peptides at the surface of chromatin-associated proteins.  相似文献   

3.
We report here the structure of the putative chromo domain from MOF, a member of the MYST family of histone acetyltransferases that acetylates histone H4 at Lys-16 and is part of the dosage compensation complex in Drosophila. We found that the structure of this domain is a beta-barrel that is distinct from the alpha + beta fold of the canonical chromo domain. Despite the differences, there are similarities that support an evolutionary relationship between the two domains, and we propose the name "chromo barrel." The chromo barrel domains may be divided into two groups, MSL3-like and MOF-like, on the basis of whether a group of conserved aromatic residues is present or not. The structure suggests that, although the MOF-like domains may have a role in RNA binding, the MSL3-like domains could instead bind methylated residues. The MOF chromo barrel shares a common fold with other chromatin-associated modules, including the MBT-like repeat, Tudor, and PWWP domains. This structural similarity suggests a probable evolutionary pathway from these other modules to the canonical chromo domains (or vice versa) with the chromo barrel domain representing an intermediate structure.  相似文献   

4.
HP1 family proteins are adaptor molecules, containing two related chromo domains that are required for chromatin packaging and gene silencing. Here we present the structure of the chromo shadow domain from mouse HP1beta bound to a peptide containing a consensus PXVXL motif found in many HP1 binding partners. The shadow domain exhibits a novel mode of peptide recognition, where the peptide binds across the dimer interface, sandwiched in a beta-sheet between strands from each monomer. The structure allows us to predict which other shadow domains bind similar PXVXL motif-containing peptides and provides a framework for predicting the sequence specificity of the others. We show that targeting of HP1beta to heterochromatin requires shadow domain interactions with PXVXL-containing proteins in addition to chromo domain recognition of Lys-9-methylated histone H3. Interestingly, it also appears to require the simultaneous recognition of two Lys-9-methylated histone H3 molecules. This finding implies a further complexity to the histone code for regulation of chromatin structure and suggests how binding of HP1 family proteins may lead to its condensation.  相似文献   

5.
DNA-binding and chromatin localization properties of CHD1.   总被引:8,自引:1,他引:7       下载免费PDF全文
CHD1 is a novel DNA-binding protein that contains both a chromatin organization modifier (chromo) domain and a helicase/ATPase domain. We show here that CHD1 preferentially binds to relatively long A.T tracts in double-stranded DNA via minor-groove interactions. Several CHD1-binding sites were found in a well-characterized nuclear-matrix attachment region, which is located adjacent to the intronic enhancer of the kappa immunoglobulin gene. The DNA-binding activity of CHD1 was localized to a 229-amino-acid segment in the C-terminal portion of the protein, which contains sequence motifs that have previously been implicated in the minor-groove binding of other proteins. We also demonstrate that CHD1 is a constituent of bulk chromatin and that it can be extracted from nuclei with 0.6 M NaCl or with 2 mM EDTA after mild digestion with micrococcal nuclease. In contrast to another chromo-domain protein, HP1, CHD1 is not preferentially located in condensed centromeric heterochromatin, even though centromeric DNA is highly enriched in (A+T)-rich tracts. Most interestingly, CHD1 is released into the cytoplasm when cells enter mitosis and is reincorporated into chromatin during telophase-cytokinesis. These observations lend credence to the idea that CHD1, like other proteins with chromo or helicase/ATPase domains, plays an important role in the determination of chromatin architecture.  相似文献   

6.
Proteins that possess a chromo domain are well‐known for their roles in heterochromatin assembly and maintenance. The Heterochromatin Protein 1 (HP1) family, with a chromo domain and carboxy‐terminal chromo shadow domain, targets heterochromatin through interaction with histone H3 methylated on lysine 9 (H3K9me2/3). The structural and functional diversity of these proteins observed in both fission yeast and metazoans correlate with chromatin specialization. To expand these studies, we examined chromo domain proteins in the ciliate Tetrahymena thermophila, which has functionally diverse and developmentally regulated heterochromatin domains. We identified thirteen proteins similar to HP1. Together they possess only a fraction of the possible chromo domain subtypes and most lack a recognizable chromo shadow domain. Using fluorescence microscopy to track chromatin localization of tagged proteins through the life cycle, we show evidence that in T. thermophila this family has diversified with biological roles in RNAi‐directed DNA elimination, germline genome structure, and somatic heterochromatin. Those proteins with H3K27me3 binding sequence characteristics localize to chromatin in mature nuclei, whereas those with H3K9me2/3 binding characteristics localize to developing nuclei undergoing DNA elimination. Findings point to an expanded and diversified family of chromo domain proteins that parallels heterochromatin diversity in ciliates.  相似文献   

7.
Heterochromatin protein 1 (HP1) proteins are highly conserved heterochromatin components required for genomic integrity. We have previously shown that the two HP1 isoforms expressed in Dictyostelium, HcpA and HcpB, are mainly localized to (peri-)centromeric heterochromatin and have largely overlapping functions. However, they cause distinct phenotypes when overexpressed. We show here that these isoforms display quantitative differences in dimerization behavior. Dimerization preference, as well as the mutant phenotype in overexpression strains, depends on the C-terminus containing the hinge and chromo shadow domains. Both Hcp proteins are targeted to distinct subnuclear regions by different chromo shadow domain-dependent and -independent mechanisms. In addition, both proteins bind to DNA and RNA in vitro and binding is independent of the chromo shadow domain. Thus, this DNA and/or RNA binding activity may contribute to protein targeting. To further characterize heterochromatin, we cloned the Dictyostelium homolog of the origin recognition complex subunit 2 (OrcB). OrcB localizes to distinct subnuclear foci that were also targeted by HcpA. In addition, it is associated with the centrosome throughout the cell cycle. The results indicate that, similar to Orc2 homologs from other organisms, it is required for different processes in chromosome inheritance.  相似文献   

8.
The structure of a chromatin binding domain from mouse chromatin modifier protein 1 (MoMOD1) was determined using nuclear magnetic resonance (NMR) spectroscopy. The protein consists of an N-terminal three-stranded anti-parallel beta-sheet which folds against a C-terminal alpha-helix. The structure reveals an unexpected homology to two archaebacterial DNA binding proteins which are also involved in chromatin structure. Structural comparisons suggest that chromo domains, of which more than 40 are now known, act as protein interaction motifs and that the MoMOD1 protein acts as an adaptor mediating interactions between different proteins.  相似文献   

9.
Human heterochromatin protein HP1(Hsalpha) possesses two evolutionarily conserved regions in the N- and C-terminal halves, so-called chromo and chromo-shadow domains, and DNA-binding domain in the internal non-conserved region. Here, to examine its in vivo properties, we expressed HP1(Hsalpha) as a fusion product with green fluorescent protein in human cells. HP1(Hsalpha) was observed to form discrete dots in interphase nuclei and to localize in the centromeric region of metaphase chromosomes by fluorescence microscopy. Interestingly, this dot-forming activity was also found in the N-terminal half retaining the chromo and DNA-binding domains and in the C-terminal chromo-shadow domain. However, the chromo domain alone stained nuclei homogeneously. To correlate this dot-forming activity with self-associating activity in vitro, the chromo and chromo-shadow domain peptides were independently expressed in Escherichia coli, affinity purified, and chemically cross-linked with glutaraldehyde. In a SDS-polyacrylamide gel, the former mainly produced a dimer, while the latter produced a ladder of bands up to a tetramer. When passed through a gel filtration column in a native state, these peptides were exclusively separated as a dimer and a tetramer, respectively. These results suggested that the internal DNA-binding and C-terminal chromo-shadow domains are both involved in heterochromatin formation in vivo.  相似文献   

10.
11.
Tudor, MBT and chromo domains gauge the degree of lysine methylation   总被引:15,自引:0,他引:15  
  相似文献   

12.
Chromatin-remodeling proteins have a pivotal role in normal cell function and development, catalyzing conformational changes in DNA that ultimately result in changes in gene expression patterns. Chromodomain helicase DNA-binding protein 4 (CHD4), the defining subunit of the nucleosome remodeling and deacetylase (NuRD) complex, is a nucleosome-remodeling protein of the SNF2/ISWI2 family, members of which contain two chromo domains and an ATP-dependent helicase module. CHD3, CHD4 and CHD5 also contain two contiguous PHD domains and have an extended N-terminal region that has not previously been characterized. We have identified a stable domain in the N-terminal region of CHD4 and report here the backbone and side chain resonance assignments for this domain at pH 7.5 and 25 °C (BMRB No. 18906).  相似文献   

13.
Among the many PWWP-containing proteins, the largest group of homologous proteins is related to hepatoma-derived growth factor (HDGF). Within a well-conserved region at the extreme N-terminus, HDGF and five HDGF-related proteins (HRPs) always have a PWWP domain, which is a module found in many chromatin-associated proteins. In this study, we determined the solution structure of the PWWP domain of HDGF-related protein-3 (HRP-3) by NMR spectroscopy. The structure consists of a five-stranded beta-barrel with a PWWP-specific long loop connecting beta2 and beta3 (PR-loop), followed by a helical region including two alpha-helices. Its structure was found to have a characteristic solvent-exposed hydrophobic cavity, which is composed of an abundance of aromatic residues in the beta1/beta2 loop (beta-beta arch) and the beta3/beta4 loop. A similar ligand binding cavity occurs at the corresponding position in the Tudor, chromo, and MBT domains, which have structural and probable evolutionary relationships with PWWP domains. These findings suggest that the PWWP domains of the HDGF family bind to some component of chromatin via the cavity.  相似文献   

14.
Functional analysis of the chromo domain of HP1.   总被引:26,自引:2,他引:24       下载免费PDF全文
Heterochromatin protein 1 (HP1) is a non-histone chromosomal protein in Drosophila with dosage-dependent effects on heterochromatin-mediated gene silencing. An evolutionarily conserved amino acid sequence in the N-terminal half of HP1 (the 'chromo domain') shares > 60% sequence identity with a motif found in the Polycomb protein, a silencer of homeotic genes. We report here that point mutations in the HP1 chromo domain abolish the ability of HP1 to promote gene silencing. We show that the HP1 chromo domain, like the Polycomb chromo domain, has chromosome binding activity, but to distinct chromosomal sites. We constructed a chimeric HP1-Polycomb protein, consisting of the chromo domain of Polycomb in the context of HP1, and show that it binds to both heterochromatin and Polycomb binding sites in polytene chromosomes. In flies expressing chimeric HP1-Polycomb protein, endogenous HP1 is mislocalized to Polycomb binding sites, and endogenous polycomb is misdirected to the heterochromatic chromocenter, suggesting that both proteins are recruited to their distinct chromosomal binding sites through protein-protein contacts. Chimeric HP1-Polycomb protein expression in transgenic flies promotes heterochromatin-mediated gene silencing, supporting the view that the chromo domain homology reflects a common mechanistic basis for homeotic and heterochromatic silencing.  相似文献   

15.
Drosophila heterochromatin-associated protein 1 (HP1) is an abundant component of heterochromatin, a highly condensed compartment of the nucleus that comprises a major fraction of complex genomes. Some organisms have been shown to harbor multiple HP1-like proteins, each exhibiting spatially distinct localization patterns within interphase nuclei. We have characterized the subnuclear localization patterns of two newly discovered Drosophila HP1-like proteins (HP1b and HP1c), comparing them with that of the originally described fly HP1 protein (here designated HP1a). While HP1a targets heterochromatin, HP1b localizes to both heterochromatin and euchromatin and HP1c is restricted exclusively to euchromatin. All HP1-like proteins contain an amino-terminal chromo domain, a connecting hinge, and a carboxyl-terminal chromo shadow domain. We expressed truncated and chimeric HP1 proteins in vivo to determine which of these segments might be responsible for heterochromatin-specific and euchromatin-specific localization. Both the HP1a hinge and chromo shadow domain independently target heterochromatin, while the HP1c chromo shadow domain is implicated solely in euchromatin localization. Comparative sequence analyses of HP1 homologs reveal a conserved sequence block within the hinge that contains an invariant sequence (KRK) and a nuclear localization motif. This block is not conserved in the HP1c hinge, possibly accounting for its failure to function as an independent targeting segment. We conclude that sequence variations within the hinge and shadow account for HP1 targeting distinctions. We propose that these targeting features allow different HP1 complexes to be distinctly sequestered in organisms that harbor multiple HP1-like proteins.  相似文献   

16.
17.
In eukaryotes, the segregation of chromosomes is co-ordinated by the centromere and must proceed accurately if aneuploidy and cell death are to be avoided. The fission yeast centromere is complex, containing highly repetitive regions of DNA showing the characteristics of heterochromatin. Two proteins, Swi6p and Clr4p, that are associated with the fission yeast centromere also contain a chromo (chromatin organisation modifier) domain and are required for centromere function. We have analysed a novel fission yeast gene encoding a putative chromo domain called chp 1(+) (chromo domain protein in Schizosaccharomyces p ombe ). In the absence of Chp1p protein, cells are viable but show chromosome segregation defects such as lagging chromosomes on the spindle during anaphase and high rates of minichromosome loss, phenotypes which are also displayed by swi 6 and clr 4. A fusion protein between green fluorescent protein (GFP) and Chp1p, like Swi6p, is localized to discrete sites within the nucleus. In contrast to Swi6p and Clr4p, Chp1p is not required to repress silent mating-type genes. We demonstrate a genetic interaction between chp 1(+) and alpha-tubulin ( nda 2(+)) and between swi 6(+) and beta-tubulin ( nda 3(+)). Chp1p and Swi6p proteins may be components of the kinetochore which captures and stabilizes the microtubules of the spindle.  相似文献   

18.
Cholesterol is not uniformly distributed in biological membranes. One of the factors influencing the formation of cholesterol-rich domains in membranes is the unequal lateral distribution of proteins in membranes. Certain proteins are found in cholesterol-rich domains. In some of these cases, it is as a consequence of the proteins interacting directly with cholesterol. There are several structural features of a protein that result in the protein preferentially associating with cholesterol-rich domains. One of the best documented of these is certain types of lipidations. In addition, however, there are segments of a protein that can preferentially sequester cholesterol. We discuss two examples of these cholesterol-recognition elements: the cholesterol recognition/interaction amino acid consensus (CRAC) domain and the sterol-sensing domain (SSD). The requirements for a CRAC motif are quite flexible and predict that a large number of sequences could recognize cholesterol. There are, however, certain proteins that are known to interact with cholesterol-rich domains of cell membranes that have CRAC motifs, and synthetic peptides corresponding to these segments also promote the formation of cholesterol-rich domains. Modeling studies have provided a rationale for certain requirements of the CRAC motif. The SSD is a larger protein segment comprising five transmembrane domains. The amino acid sequence YIYF is found in several SSD and in certain other proteins for which there is evidence that they interact with cholesterol-rich domains. The CRAC sequences as well as YIYF are generally found adjacent to a transmembrane helical segment. These regions appear to have a strong influence of the localization of certain proteins into domains in biological membranes. In addition to the SSD, there is also a domain found in soluble proteins, the START domain, that binds lipids. Certain proteins with START domains specifically bind cholesterol and are believed to function in intracellular cholesterol transport. One of these proteins is StAR-D1, that also has a mitochondrial targeting sequence and plays an important role in delivering cholesterol to the mitochondria of steroidogenic cells.  相似文献   

19.
Eaf3 is a component of both NuA4 histone acetyltransferase and Rpd3S histone deacetylase complexes in Saccharomyces cerevisiae. It is involved in the regulation of the global pattern of histone acetylation that distinguishes promoters from coding regions. Eaf3 contains a chromo domain at the N terminus that can bind to methylated Lys-36 of histone H3 (H3K36). We report here the crystal structures of the Eaf3 chromo domain in two truncation forms. Unlike the typical HP1 and Polycomb chromo domains, which contain a large groove to bind the modified histone tail, the Eaf3 chromo domain assumes an autoinhibited chromo barrel domain similar to the human MRG15 chromo domain. Compared with other chromo domains, the Eaf3 chromo domain contains a unique 38-residue insertion that folds into two short beta-strands and a long flexible loop to flank the beta-barrel core. Both isothermal titration calorimetry and surface plasmon resonance studies indicate that the interaction between the Eaf3 chromo domain and the trimethylated H3K36 peptide is relatively weak, with a K(D) of approximately 10(-4) m. NMR titration studies demonstrate that the methylated H3K36 peptide is bound to the cleft formed by the C-terminal alpha-helix and the beta-barrel core. Site-directed mutagenesis study and in vitro binding assay results show that the conserved aromatic residues Tyr-23, Tyr-81, Trp-84, and Trp-88, which form a hydrophobic pocket at one end of the beta-barrel, are essential for the binding of the methylated H3K36. These results reveal the molecular mechanism of the recognition and binding of the methylated H3K36 by Eaf3 and provide new insights into the functional roles of the Eaf3 chromo domain.  相似文献   

20.
Divergent evolution can explain how many proteins containing structurally similar domains, which perform a variety of related functions, have evolved from a relatively small number of modules or protein domains. However, it cannot explain how protein domains with similar, but distinguishable, functions and similar, but distinguishable, structures have evolved. Examples of this are the RNA-binding proteins containing the RNA-binding domain (RBD), and a newly established protein group, the cold-shock domain (CSD) protein family. Both protein domains contain conserved RNP motifs on similar single-stranded nucleic acid-binding surfaces. Apart from the RNP motifs, which have a similar function, the two families show little similarity in topology or amino acid sequence. This can be considered an interesting example of convergent evolution at the molecular level. Previously, a β-sheet surface was found to interact with RNA in non-homologous proteins from yeast, phage and man, revealing that this mode of RNA binding may be a widely recurring theme.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号