首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
DNA primase activity of the yeast DNA polymerase-primase complex is related to two polypeptides, p58 and p48. The reciprocal role of these protein species has not yet been clarified, although both participate in formation of the active center of the enzyme. The gene encoding the p58 subunit has been cloned by screening of a lambda gt11 yeast genomic DNA library, using specific anti-p58 antiserum. Antibodies that inhibited DNA primase activity could be purified by lysates of Escherichia coli cells infected with a recombinant bacteriophage containing the entire gene, which we designate PR12. The gene was found to be transcribed in a 1.7-kilobase mRNA whose level appeared to fluctuate during the mitotic cell cycle. Nucleotide sequence determination indicated that PR12 encodes a 528-amino-acid polypeptide with a calculated molecular weight of 62,262. The gene is unique in the haploid yeast genome, and its product is essential for cell viability, as has been shown for other components of the yeast DNA polymerase-primase complex.  相似文献   

2.
An immunoaffinity chromatographic procedure was developed to purify DNA polymerase-DNA primase complex from crude soluble extracts of yeast cells. The immunoabsorbent column is made of mouse monoclonal antibody to yeast DNA polymerase I covalently linked to Protein A-Sepharose. Purification of the complex involves binding of the complex to the immunoabsorbent column and elution with concentrated MgCl2 solutions. After rebinding to the monoclonal antibody column free primase activity is selectively eluted with a lower concentration of MgCl2. Polyacrylamide gel electrophoresis in the presence of sodium dodecyl sulfate showed the presence of five major peptides, p180, p140, p74, p58, and p48 in the immunoaffinity-purified DNA polymerase-DNA primase complex. Free primase and free polymerase fractions obtained by fractionation on the immunoabsorbent column were analyzed on activity gels and immunoblots. These analyses showed that p180 and p140 are DNA polymerase peptides. Two polypeptides of 58 and 48 kDa co-fractionated with the free yeast DNA primase. From sucrose gradient analysis we estimate a molecular weight of 110 kDa for the native DNA primase.  相似文献   

3.
A highly selective affinity labeling procedure has been applied to map the active center of DNA primase from the yeast Saccharomyces cerevisiae. Enzyme molecules that have been modified by covalent attachment of benzaldehyde derivatives of adenine nucleotides are autocatalytically labeled by incubation with a radioactive ribonucleoside triphosphate. The affinity labeling of primase requires a template DNA, is not affected by DNase and RNase treatments, but is sensitive to proteinase K. Both the p58 and p48 subunits of yeast DNA primase appear to participate in the formation of the catalytic site of the enzyme, although UV-photocross-linking with [alpha-32P]ATP locates the ribonucleoside triphosphate binding site exclusively on the p48 polypeptide. The fixation of the radioactive product has been carried out also after the enzymatic reaction. Under this condition the RNA primers synthesized by the DNA polymerase-primase complex under uncoupled DNA synthesis conditions are linked to both DNA primase and DNA polymerase. When DNA synthesis is allowed to proceed first, the labeled RNA chains are fixed exclusively to the DNA polymerase polypeptide. These results, in accord with previous data, have been used to propose a model illustrating the interactions and the putative roles of the polypeptides of the DNA polymerase-primase complex.  相似文献   

4.
The yeast DNA polymerase-primase complex: genes and proteins   总被引:3,自引:0,他引:3  
The yeast DNA polymerase-primase complex is composed of four polypeptides designated p180, p74, p58 and p48. All the genes coding for these polypeptides have now been cloned. By protein sequence comparison we found that yeast DNA polymerase I (alpha) shares three major regions of homology with several DNA polymerases. A fourth region, called region P, is conserved in yeast and human DNA polymerase alpha. The site of a temperature-sensitive mutation in the POL1 gene which causes decreased stability of the polymerase-primase complex has been sequenced and falls in this region. We hypothesize that region P is important for protein-protein interactions. Highly selective biochemical methods might be similarly important to distinguish functional domains in the polymerase-primase complex. An autocatalytic affinity labeling procedure has been applied to map the active center of yeast DNA primase. From this approach we conclude that both primase subunits (p48 and p58) participate in the formation of the catalytic site of the enzyme.  相似文献   

5.
The PRI1 gene of Saccharomyces cerevisiae encodes for the p48 polypeptide of DNA primase. We have determined the nucleotide sequence of a 1,965 bp DNA fragment containing the PRI1 locus. The entire coding sequence of the gene lies within an open reading frame, and there are 409 amino acids in the single polypeptide protein if translation is assumed to start at the first ATG in this frame. The 5' and 3' end-points of PRI1 mRNA have been determined by S1 mapping and primer extension analysis. The primary structure and the codon usage of PRI1 suggest that this essential gene is poorly expressed in yeast cells.  相似文献   

6.
The yeast DNA polymerase-primase complex is composed of four polypeptides designated p180, p74, p58 and p48. All the genes coding for these polypeptides have now been cloned. By protein sequence comparison we found that yeast DNA polymerase I (α) shares three major regions of homology with several DNA polymerases. A fourth region, called region P, is conserved in yeast and human DNA polymerase α. The site of a temperature-sensitive mutation in the POL1 gene which causes decreased stability of the polymerase-primase complex has been sequenced and falls in this region. We hypothesize that region P is important for protein—protein interactions. Highly selective biochemical methods might be similarly important to distinguish functional domains in the polymerase-primase complex. An autocatalytic affinity labeling procedure has been applied to map the active center of yeast DNA primase. From this approach we conclude that both primase subunits (p48 and p58) participate in the formation of the catalytic site of the enzyme.  相似文献   

7.
DNA polymerases cannot synthesize DNA without a primer, and DNA primase is the only specialized enzyme capable of de novo synthesis of short RNA primers. In eukaryotes, primase functions within a heterotetrameric complex in concert with a tightly bound DNA polymerase α (Pol α). In humans, the Pol α part is comprised of a catalytic subunit (p180) and an accessory subunit B (p70), and the primase part consists of a small catalytic subunit (p49) and a large essential subunit (p58). The latter subunit participates in primer synthesis, counts the number of nucleotides in a primer, assists the release of the primer-template from primase and transfers it to the Pol α active site. Recently reported crystal structures of the C-terminal domains of the yeast and human enzymes’ large subunits provided critical information related to their structure, possible sites for binding of nucleotides and template DNA, as well as the overall organization of eukaryotic primases. However, the structures also revealed a difference in the folding of their proposed DNA-binding fragments, raising the possibility that yeast and human proteins are functionally different. Here we report new structure of the C-terminal domain of the human primase p58 subunit. This structure exhibits a fold similar to a fold reported for the yeast protein but different than a fold reported for the human protein. Based on a comparative analysis of all three C-terminal domain structures, we propose a mechanism of RNA primer length counting and dissociation of the primer-template from primase by a switch in conformation of the ssDNA-binding region of p58.  相似文献   

8.
DNA polymerase I and DNA primase complex in yeast   总被引:10,自引:0,他引:10  
Chromatographic analysis of poly(dT) replication activity in fresh yeast extracts showed that the activities required co-fractionate with the yeast DNA polymerase I. Since poly(dT) replication requires both a primase and a DNA polymerase, the results of the fractionation studies suggest that these two enzymes might exist as a complex in the yeast extract. Sucrose gradient analysis of concentrated purified yeast DNA polymerase I preparations demonstrates that the yeast DNA polymerase I does sediment as a complex with DNA primase activity. Two DNA polymerase I peptides estimated at 78,000 and 140,000 Da were found in the complex that were absent from the primase-free DNA polymerase fraction. Rabbit anti-yeast DNA polymerase I antibody inhibits DNA polymerase I but not DNA primase although rabbit antibodies are shown to remove DNA primase activity from solution by binding to the complex. Mouse monoclonal antibody to yeast DNA polymerase I binds to free yeast DNA polymerase I as well as the complex, but not to the free DNA primase activity. These results suggest that these two activities exist as a complex and reside on the different polypeptides. Replication of poly(dT) and single-stranded circular phage DNA by yeast DNA polymerase I and primase requires ATP and dNTPs. The size of the primer produced is 8 to 9 nucleotides in the presence of dNTPs and somewhat larger in the absence of dNTPs. Aphidicolin, an inhibitor of yeast DNA polymerase I, is not inhibitory to the yeast DNA primase activity. The primase activity is inhibited by adenosine 5'-(3-thio)tri-phosphate but not by alpha-amanitin. The association of yeast DNA polymerase I and yeast DNA primase can be demonstrated directly by isolation of the complex on a column containing yeast DNA polymerase I mouse monoclonal antibody covalently linked to Protein A-Sepharose. Both DNA polymerase I and DNA primase activities are retained by the column and can be eluted with 3.5 M MgCl2. Part of the primase activity can be dissociated from DNA polymerase on the column with 1 M MgCl2 and this free primase activity can be detected as poly(dT) replication activity in the presence of Escherichia coli polymerase I.  相似文献   

9.
A primase activity which permits DNA synthesis by yeast DNA polymerase I on a single-stranded circular phi X174 or M13 DNA or on poly(dT)n has been extensively purified by fractionation of a yeast enzyme extract which supports in vitro replication of the yeast 2-microns plasmid DNA (Kojo, H., Greenberg, B. D., and Sugino, A. (1981) Proc. Natl. Acad. Sci. U.S.A. 78, 7261-7265). Most of this DNA primase activity was separated from DNA polymerase activity, although a small amount remained associated with DNA polymerase I. The primase, active as a monomer, has a molecular weight of about 60,000. The primase synthesizes oligoribonucleotides of discrete size, mainly eight or nine nucleotides, in the presence of single-stranded template DNA and ribonucleoside 5'-triphosphates; it utilizes deoxyribonucleoside 5'-triphosphates as substrate with 10-fold lower efficiency. Product size, chromatographic properties, alpha-amanitin resistance, and molecular weight of the primase activity distinguish it from RNA polymerases I, II, and III. The DNA products synthesized by both primase and DNA polymerase I on a single-stranded DNA template were 200-500 nucleotides long and covalently linked to oligoribonucleotides at their 5'-ends. Addition of yeast single-stranded DNA-binding protein (Arendes, J., Kim, K. C., and Sugino, A. (1983) Proc. Natl. Acad. Sci. U.S. A. 80, 673-677) stimulated the DNA synthesis 2-3-fold.  相似文献   

10.
In the evolution of life, DNA replication is a fundamental process, by which species transfer their genetic information to their offspring. DNA polymerases, including bacterial and eukaryotic replicases, are incapable of de novo DNA synthesis. DNA primases are required for this function, which is sine qua non to DNA replication. In Escherichia coli, the DNA primase (DnaG) exists as a monomer and synthesizes a short RNA primer. In Eukarya, however, the primase activity resides within the DNA polymerase alpha-primase complex (Pol alpha-pri) on the p48 subunit, which synthesizes the short RNA segment of a hybrid RNA-DNA primer. To date, very little information is available regarding the priming of DNA replication in organisms in Archaea. Available sequenced genomes indicate that the archaeal DNA primase is a homolog of the eukaryotic p48 subunit. Here, we report investigations of a p48-like DNA primase from Pyrococcus furiosus, a hyperthermophilic euryarchaeote. P. furiosus p48-like protein (Pfup41), unlike hitherto-reported primases, does not catalyze by itself the synthesis of short RNA primers but preferentially utilizes deoxynucleotides to synthesize DNA fragments up to several kilobases in length. Pfup41 is the first DNA polymerase that does not require primers for the synthesis of long DNA strands.  相似文献   

11.
E E Biswas  P E Joseph  S B Biswas 《Biochemistry》1987,26(17):5377-5382
The DNA primase from the yeast Saccharomyces cerevisiae has been purified 9200-fold to homogeneity. The yeast DNA primase is a monomeric protein of molecular weight 59,000, and under conditions described in this report, it is stable at 4 or -80 degrees C. The primase does not bind to DEAE-cellulose, is not inhibited by a high concentration of alpha-amanitin (4 mg/mL), and is capable of synthesizing small (up to 15 nucleotides in length) ribo or ribo-deoxy mixed initiator RNA primers. The primer synthesis is stimulated by ATP; however, other ribonucleotides could be replaced by deoxynucleotides without any measurable effect on the overall DNA synthesis. Thus, the purified primase is distinct from the RNA polymerases of S. cerevisiae. Immunoblot analysis of the polypeptides in a crude cell extract using a mouse polyclonal antibody prepared against the highly purified primase indicates that the 59-kilodalton polypeptide is the native form and not a degraded form of a larger polypeptide; however, primase is degraded rapidly to smaller polypeptides by yeast proteases especially in the absence of protease inhibitors.  相似文献   

12.
DNA primase synthesizes short RNA primers that are required to initiate DNA synthesis on the parental template strands during DNA replication. Eukaryotic primase contains two subunits, p48 and p58, and is normally tightly associated with DNA polymerase alpha. Despite the fundamental importance of primase in DNA replication, structural data on eukaryotic DNA primase are lacking. The p48/p58 dimer was subjected to limited proteolysis, which produced two stable structural domains: one containing the bulk of p48 and the other corresponding to the C-terminal fragment of p58. These domains were identified by mass spectrometry and N-terminal sequencing. The C-terminal p58 domain (p58C) was expressed, purified, and characterized. CD and NMR spectroscopy experiments demonstrated that p58C forms a well folded structure. The protein has a distinctive brownish color, and evidence from inductively coupled plasma mass spectrometry, UV-visible spectrophotometry, and EPR spectroscopy revealed characteristics consistent with the presence of a [4Fe-4S] high potential iron protein cluster. Four putative cysteine ligands were identified using a multiple sequence alignment, and substitution of just one was sufficient to cause loss of the iron-sulfur cluster and a reduction in primase enzymatic activity relative to the wild-type protein. The discovery of an iron-sulfur cluster in DNA primase that contributes to enzymatic activity provides the first suggestion that the DNA replication machinery may have redox-sensitive activities. Our results offer new horizons in which to investigate the function of high potential [4Fe-4S] clusters in DNA-processing machinery.  相似文献   

13.
A DNA primase from yeast. Purification and partial characterization   总被引:5,自引:0,他引:5  
A DNA primase activity has been purified from the budding yeast Saccharomyces. The resulting preparation was nearly homogeneous and was devoid of DNA and RNA polymerase activities. The primase activity cofractionated with a Mr 65,000 polypeptide in sedimentation and chromatography procedures, and the native molecular weight of the enzyme corresponded closely to this value suggesting that the primase or an active proteolytic fragment of the protein exists as a monomer. Both heat-denatured calf thymus DNA and poly(dT) could be utilized by the enzyme as templates. Primase exhibited an absolute requirement for divalent cations and for rATP on a poly(dT) template. Although it required the ribonucleotide to initiate primer chains, the enzyme could incorporate the deoxynucleotide into primers. The product of the primase-catalyzed reaction was an oligonucleotide of discrete length (11-13 nucleotides), and oligonucleotides that were apparently dimers of this unit length were also observed. Primers that were synthesized were virtually identical in size in both the presence and absence of dATP incorporation. Although the bulk of DNA primase activity was isolated as a "free" enzyme, a portion of cellular primase activity co-chromatographed with DNA polymerase suggesting an association between these enzymes similar to that found in several higher eukaryotes.  相似文献   

14.
We report the identification and characterisation of a DNA primase from the thermophilic methanogenic archaeon Methanococcus jannaschii (Mjpri). The analysis of the complete genome sequence of this organism has identified an open reading frame coding for a protein with sequence similarity to the small subunit of the eukaryotic DNA primase (the p50 subunit of the polymerase alpha-primase complex). This protein has been overexpressed in Escherichia coli and purified to near homogeneity. Recombinant Mjpri is able to synthesise oligoribonucleotides on various pyrimidine single-stranded DNA templates [poly(dT) and poly(dC)]. This activity requires divalent cations such Mg(2+), Mn(2+)or Zn(2+), and is additionally stimulated by the monovalent cation K(+). A multiple sequence alignment has revealed that most of the regions that are conserved in eukaryotic p50 subunits are also present in the archaeal primases, including the conserved negatively charged residues, which have been shown to be essential for catalysis in the mouse primase. Of the four cysteine residues that have been postulated to make up a putative Zn-binding motif, two are not present in the archaeal homologue. This is the first report on the biochemical characterisation of an archaeal DNA primase.  相似文献   

15.
We have utilized immunoaffinity chromatography as a means of efficiently isolating a stable yeast DNA primase from the DNA primase-DNA polymerase complex, allowing identification of the polypeptides associated with this DNA primase activity and comparison of its enzymatic properties with those of the larger protein complex. A mouse monoclonal antibody specifically recognizing the DNA polymerase subunit was used to purify the complex. Stable DNA primase was subsequently separated from the complex in high yield. The highly purified protein fraction which bound to the DNA polymerase antibody column consisted of polypeptides with apparent molecular masses of 180, 86, 70, 58, 49, and 47 kDa. DNA primase activity eluted with a fraction containing only the 58-, 49-, and 47-kDa polypeptides. Partial chemical cleavage analysis of these three proteins demonstrated that the 49- and 47-kDa polypeptides are structurally related while the 58-kDa protein is unrelated to the other two. A DNA primase inhibitory monoclonal antibody was able to inhibit the activity of the purified DNA primase as well as the activity of the enzyme in the larger complex. In immunoprecipitation experiments, all three polypeptides were found in the immune complex. Thus, these three polypeptides are sufficient for DNA primase activity. In reactions using ribonucleotide substrates and natural as well as synthetic DNA templates, the purified DNA primase exhibited the same precise synthesis of unit length oligomers as did the larger protein complex and was able to extend these RNA oligomers by one additional unit length. An examination of the effects of deoxynucleotides on these DNA primase-catalyzed reactions revealed that the yeast DNA primase is an RNA-polymerizing enzyme and lacks significant DNA-polymerizing activity under the conditions tested.  相似文献   

16.
Primase is a specialized RNA polymerase that synthesizes RNA primers for initiation of DNA synthesis. A full cDNA clone of the p49 subunit of mouse primase, a heterodimeric enzyme, has been isolated using a primase p49-specific polyclonal antibody to screen a lambda gt11 mouse cDNA expression library. The cDNA indicated the subunit is a 417-amino acid polypeptide with a calculated molecular mass of 49,295 daltons. The p49 mRNA is approximately 1500 nucleotides long with a 5'-untranslated region of 74 nucleotides and a 3'-untranslated region of 200 nucleotides. Comparison with a similar sized primase subunit from yeast showed highly conserved amino acid sequences in the N-terminal halves of the polypeptides and included a potential metal-binding domain suggesting the functional importance of this region for DNA binding. In contrast, the 3' portion of the cDNA has rapidly diverged in nucleotide sequence, as primase mRNA can be detected in mouse and rat cells with a 3' probe (including coding and noncoding) but not in RNA from hamster or human cells. A full-length cDNA probe detected mRNA from hamster and human cell lines, indicating a conserved 5' portion and divergent 3' region of the expressed gene. The rapid divergence may be related to the species-specific protein interactions found for the DNA polymerase alpha-primase complex. The mRNA is detected in proliferating but not in quiescent cells consistent with its function in DNA replication.  相似文献   

17.
The temperature-sensitive yeast DNA primase mutant pri1-M4 fails to execute an early step of DNA replication and exhibits a dominant, allele-specific sensitivity to DNA-damaging agents. pri1-M4 is defective in slowing down the rate of S phase progression and partially delaying the G1-S transition in response to DNA damage. Conversely, the G2 DNA damage response and the S-M checkpoint coupling completion of DNA replication to mitosis are unaffected. The signal transduction pathway leading to Rad53p phosphorylation induced by DNA damage is proficient in pri1-M4, and cell cycle delay caused by Rad53p overexpression is counteracted by the pri1-M4 mutation. Altogether, our results suggest that DNA primase plays an essential role in a subset of the Rad53p-dependent checkpoint pathways controlling cell cycle progression in response to DNA damage.  相似文献   

18.
It has been shown that DNA primase activity is tightly associated with 10S DNA polymerase alpha from calf thymus (Yoshida, S. et al. (1983) Biochim. Biophys. Acta 741, 348-357). In the present study, the primase activity was separated from DNA polymerase alpha by treating purified 10S DNA polymerase alpha with 3.4 M urea followed by a fast column chromatography (Pharmacia FPLC, Mono Q column equilibrated with 2 M urea). Ten to 20 % of the primase activity was separated from 10S DNA polymerase alpha by this procedure but 80-90% remained in the complex. The separated primase activity sedimented at 5.6S through a gradient of glycerol. The separated primase was strongly inhibited by araATP (Ki = 10 microM) and was also sensitive to salts such as KCl (50% inhibition at 30 mM). The primase used poly(dT) or poly(dC) as templates efficiently, but showed little activity with poly(dA) or poly(dI). These properties agree well with those of the primase activity in the DNA polymerase alpha-primase complex (10S DNA polymerase alpha). These results indicate that the calf thymus primase may be a part of the 10S DNA polymerase alpha and its enzymological characters are preserved after separation from the complex.  相似文献   

19.
The gene for the DNA primase encoded by Salmonella typhimurium bacteriophage SP6 has been cloned and expressed in Escherichia coli and its 74-kDa protein product purified to homogeneity. The SP6 primase is a DNA-dependent RNA polymerase that synthesizes short oligoribonucleotides containing each of the four canonical ribonucleotides. GTP and CTP are both required for the initiation of oligoribonucleotide synthesis. In reactions containing only GTP and CTP, SP6 primase incorporates GTP at the 5'-end of oligoribonucleotides and CMP at the second position. On synthetic DNA templates, pppGpC dinucleotides are synthesized most rapidly in the presence of the sequence 5'-GCA-3'. This trinucleotide sequence, containing a cryptic dA at the 3'-end, differs from other known bacterial and phage primase recognition sites. SP6 primase shares some properties with the well-characterized E. colibacteriophage T7 primase. The T7 DNA polymerase can use oligoribonucleotides synthesized by SP6 primase as primers for DNA synthesis. However, oligoribonucleotide synthesis by SP6 primase is not stimulated by either the E. coli- or the T7-encoded ssDNA binding protein. An amino acid sequence alignment of the SP6 and T7 primases, which share only 22.4% amino acid identity, indicates amino acids likely critical for oligoribonucleotide synthesis as well as a putative Cys(3)His zinc finger motif that may be involved in DNA binding.  相似文献   

20.
DNA polymerase alpha and primase are two key enzymatic components of the eukaryotic DNA replication complex. In situ hybridization of cloned cDNAs for mouse DNA polymerase alpha and for the two subunits of mouse primase has been utilized to physically map these genes in the mouse genome. The DNA polymerase alpha gene (Pola) was mapped to the mouse X chromosome in region C-D. The gene encoding the p58 subunit of primase (Prim2) was located to mouse chromosome 1 in region A5-B and the p49 subunit gene (Prim1) was found to be on mouse chromosome 10 in the distal part of band D that is close to the telomere. Current knowledge of mouse and human conserved chromosomal regions along with the findings presented here lead to predictions of where the genes for the DNA primase subunits may be found in the human genome: the p58 subunit gene may be on human chromosome 2 and the p49 subunit gene on human chromosome 12. The mapping of Pola to region C-D of the mouse X chromosome adds a new marker in a conserved region between the mouse X chromosome and region Xp21-22.1 of the human X chromosome.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号