首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
目的:研究IQGAP1基因干扰对人食管癌细胞同质粘附能力的影响。方法:体外培养人食管癌KYSE150和 EC9706细胞,利用Western blot方法检测两株细胞IQGAP1蛋白的表达,利用缓慢聚集和细胞分离实验比较两株细胞同质粘附能力的差异;进一步在KYSE150和EC9706细胞中构建IQGAP1基因干扰的稳定细胞系,观察IQGAP1基因干扰后细胞同质粘附能力的改变。结果:KYSE150细胞IQGAP1蛋白表达量低于EC9706细胞,而同质粘附能力高于EC9706细胞;IQGAP1基因干扰后,其蛋白表达量明显降低,而细胞同质粘附能力明显增强。结论:IQGAP1 基因干扰能够显著增强食管癌细胞的同质粘附能力,从而降低肿瘤细胞的恶性表型。  相似文献   

2.
EndoCAM: a novel endothelial cell-cell adhesion molecule   总被引:39,自引:10,他引:29       下载免费PDF全文
Cell-cell adhesion is controlled by many molecules found on the cell surface. In addition to the constituents of well-defined junctional structures, there are the molecules that are thought to play a role in the initial interactions of cells and that appear at precise times during development. These include the cadherins and cell adhesion molecules (CAMs). Representatives of these families of adhesion molecules have been isolated from most of the major tissues. The notable exception is the vascular endothelium. Here we report the identification of a cell surface molecule designated "endoCAM" (endothelial Cell Adhesion Molecule), which may function as an endothelial cell-cell adhesion molecule. EndoCAM is a 130-kD glycoprotein expressed on the surface of endothelial cells both in culture and in situ. It is localized to the borders of contiguous endothelial cells. It is also present on platelets and white blood cells. Antibodies against endoCAM prevent the initial formation of endothelial cell-cell contacts. Despite similarities in size and intercellular location, endoCAM does not appear to be a member of the cadherin family of adhesion receptors. The serologic and protease susceptibility characteristics of endoCAM are different from those of the known cadherins, including an endogenous endothelial cadherin. Although the precise biologic function of endoCAM has not been determined, it appears to be one of the molecules responsible for regulating endothelial cell-cell adhesion processes and may be involved in platelet and white blood cell interactions with the endothelium.  相似文献   

3.
CD43 (leukosialin, sialophorin), a prominent component of the hemopoietic cell surface, has an enigmatic role in cell-cell interaction. The observation that CD43 ligation triggers homotypic aggregation of monoblastoid U937 cells has permitted analysis of this: CD43-induced aggregation was distinguishable from CD29- (also known as beta1 integrin) or CD98- (also known as 4F2, or fusion-related protein 1) induced aggregation, with different energy requirements and with partial dependence on beta2 integrins. Previous studies have focused on the role of CD43 ligation in tyrosine phosphorylation. However, in the homotypic adhesion assay, although there is initial tyrosine phosphorylation, protein tyrosine kinase inhibitors did not block aggregation. Therefore, other signaling pathways were examined. CD43 ligation induced protein tyrosine dephosphorylation, and protein tyrosine phosphatase inhibitors blocked aggregation. Activation of MAP kinases was not necessary. Cytoskeletal inhibitors amplified aggregation. Protein kinase C (PKC) inhibitors amplified aggregation, implicating PKC as a negative regulator. CD43 ligation up-regulated surface adhesion molecules and enhanced CD29- and CD98-induced aggregation. Thus, CD43 participation in cell-cell adhesion is under stringent control, involving both surface events and several different intracellular signaling pathways, acting together to regulate the process. These mechanisms add a further dimension to the potential role of CD43 in tissue immune responses.  相似文献   

4.
In multicellular organisms, cells are interconnected by cell adhesion molecules. Nectins are immunoglobulin (Ig)-like cell adhesion molecules that mediate homotypic and heterotypic cell-cell adhesion, playing key roles in tissue organization. To mediate cell-cell adhesion, nectin molecules dimerize in cis on the surface of the same cell, followed by trans-dimerization of the cis-dimers between the neighboring cells. Previous cell biological studies deduced that the first Ig-like domain of nectin and the second Ig-like domain are involved in trans-dimerization and cis-dimerization, respectively. However, to understand better the steps involved in nectin adhesion, the structural basis for the dimerization of nectin must be determined. In this study, we determined the first crystal structure of the entire extracellular region of nectin-1. In the crystal, nectin-1 formed a V-shaped homophilic dimer through the first Ig-like domain. Structure-based site-directed mutagenesis of the first Ig-like domain identified four essential residues that are involved in the homophilic dimerization. Upon mutating the four residues, nectin-1 significantly decreased cis-dimerization on the surface of cultured cells and abolished the homophilic and heterophilic adhesion activities. These results indicate that, in contrast with the previous notion, our structure represents a cis-dimer. Thus, our findings clearly reveal the structural basis for the cis-dimerization of nectins through the first Ig-like domains.  相似文献   

5.
Carbohydrate-carbohydrate interactions are rarely considered in biologically relevant situations such as cell recognition and adhesion. One Ca(2+)-mediated homotypic interaction between two Lewis(x) determinants (Le(x)) has been proposed to drive cell adhesion in murine embryogenesis. Here, we confirm the existence of this specific interaction by reporting the first direct quantitative measurements in an environment akin to that provided by membranes. The adhesion between giant vesicles functionalized with Le(x) was obtained by micropipette aspiration and contact angle measurements. This interaction is below the thermal energy, and cell-cell adhesion will require a large number of molecules, as illustrated by the Le(x) concentration peak observed at the cell membranes during the morula stage of the embryo. This adhesion is ultralow and therefore difficult to measure. Such small interactions explain why the concept of specific interactions between carbohydrates is often neglected.  相似文献   

6.
7.
8.
Anti-CD9 mAb are known agonists of platelet aggregation, but have not been implicated in cell-cell adhesion. We show here in an experimental system that the anti-CD9 mAb 50H.19, ALB6, and BA-2 can induce rapid, and irreversible, homotypic aggregation of the CD9-positive pre-B lymphoblastoid cell lines NALM-6 and HOON, but not of the CD9-negative B cell line Raji. The specificity of the response is indicated by the failure to effect aggregation with mAb directed to CD24, or to HLA class I Ag. The initiation of strong homotypic aggregates of lymphoid cells is a property ascribed to lymphocyte function-associated Ag-1 (LFA-1), a member of the beta 2 subfamily of leukocyte integrins. We show that CD9-induced aggregation is an active process which proceeds at 37 degrees C, but not at 4 degrees C, requires the expenditure of metabolic energy, and a functioning cytoskeleton, and is not inhibited by Arg-Gly-Asp-Ser peptide. These are properties described for LFA-1-mediated aggregation. However, because beta 2-integrins are not expressed on NALM-6 or HOON cells, they are not the mediators of CD9-induced aggregation. In contrast to LFA-1-mediated adhesion which is Mg2+ dependent, CD9-induced adhesion has an absolute requirement for Ca2+, but not Mg2+, indicating that a Ca2(+)-dependent event is sufficient for adhesion. However, Mg2+ enhances adhesion even at optimal concentrations of Ca2+, implicating an additional Mg2(+)-dependent event which requires Ca2+ to be effective. These findings suggest that CD9 Ag regulates a novel mechanism for promoting tight cell-cell adhesion which requires both Ca2+ and Mg2+ for optimal expression.  相似文献   

9.
Ksp- and LI-cadherin are structurally homologous proteins coexpressed with E-cadherin in renal and intestinal epithelia, respectively. Whereas LI-cadherin has been shown to mediate Ca2+-dependent homotypic cell-cell adhesion independent of stable interactions with the cytoskeleton, little is known about the physiological role of Ksp-cadherin. To analyze its potential adhesive and morphoregulatory functions, we expressed murine Ksp-cadherin in CHO cells. In this report, we show that Ksp-cadherin induces homotypic and Ca2+-dependent cell-cell adhesion that can be specifically blocked with antibodies raised against the cadherin repeats EC1 and EC2. Ksp-cadherin mediates about the same quantitative adhesive effect (aggregation index) as LI- and E-cadherin. However, the cellular phenotype induced by Ksp-cadherin resembles more closely that of LI- than E-cadherin. This could reflect our observation, that Ksp-cadherin, as well as LI-cadherin, does not directly interact with beta-catenin. In conclusion, both cadherins are thus not only structurally but also functionally related and may share other functions within their respective epithelia.  相似文献   

10.
Cadherins are cell adhesion molecules concentrated at intercellular adherens junctions, where they form a multiprotein complex with cytoplasmic catenins. Although cell-cell interactions affect many aspects of cell behavior, little is known about signaling pathways triggered by cadherin engagement. We show here that E-cadherin-mediated cell-cell adhesion leads to a rapid increase in tyrosine phosphorylation at sites of cell-cell contact and that this stimulation of tyrosine phosphorylation can be mimicked by aggregation of E-cadherin with antibodies. The proteins that become phosphorylated are distinct from those previously shown to be tyrosine phosphorylated in response to integrin-mediated adhesion and include ras-GAP. We also find that E-cadherin-mediated tyrosine phosphorylation is not required for the assembly of adherens-type junctions.  相似文献   

11.
We develop a discrete model of malignant invasion using a thermodynamic argument. An extension of the Potts model is used to simulate a population of malignant cells experiencing interactions due to both homotypic and heterotypic adhesion while also secreting proteolytic enzymes and experiencing a haptotactic gradient. In this way we investigate the influence of changes in cell-cell adhesion on the invasion process. We demonstrate that the morphology of the invading front is influenced by changes in the adhesiveness parameters, and detail how the invasiveness of the tumour is related to adhesion. We show that cell-cell adhesion has less of an influence on invasion compared with cell-medium adhesion, and that increases in both proteolytic enzyme secretion rate and the coefficient of haptotaxis act in synergy to promote invasion. We extend the simulation by including proliferation, and, following experimental evidence, develop an algorithm for cell division in which the mitotic rate is explicitly related to changes in the relative magnitudes of homotypic and heterotypic adhesiveness. We show that although an increased proliferation rate usually results in an increased depth of invasion into the extracellular matrix, it does not invariably do so, and may, indeed, cause invasiveness to be reduced.  相似文献   

12.
Histamine is an important agent of innate immunity, transiently increasing the flux of immune-competent molecules from the vascular space to the tissues and then allowing rapid restoration of the integrity of the endothelial barrier. In previous work we found that histamine alters the endothelial barrier by disrupting cell-cell adhesion and identified VE-cadherin as an essential participant in this process. The previous work did not determine whether histamine directly interrupted VE-cadherin adhesion, whether the effects of histamine were selective for cadherin adhesion, or whether capacitive calcium flux across the cell membrane was necessary for the effects of histamine on cell-cell adhesion. In the current work we found that histamine directly interrupts adhesion of L cells expressing the type 1 histamine (H1) receptor and VE-cadherin to a VE-cadherin-Fc fusion protein. In contrast, integrin-mediated adhesion to fibronectin of the same L cells expressing the H1 receptor was not affected by histamine, demonstrating that the effects of histamine are selective for cadherin adhesion. Some of the effects of many edemagenic agonists on endothelium are dependent on the capacitive flux of calcium across the endothelial cell membrane. Blocking capacitive calcium flux with LaCl3 did not prevent histamine from interrupting VE-cadherin adhesion of transfected L cells, nor did it prevent histamine from interrupting cell-cell adhesion of human umbilical vein endothelial cells. These data support the contentions that histamine directly and selectively interrupts cadherin adhesion and this effect on cadherin adhesion is independent of capacitive calcium flux.  相似文献   

13.
Cell adhesion molecules were classically known to be key players in a whole array of biological functions during development through cell-cell and cell-substratum adhesion. Accumulating evidence suggests, however, that the functional significance of adhesion molecules may extend well beyond embryonic development into adult stage. The aim of this article is to review our current knowledge on the implications of adhesion molecules in various cognitive processes. Particular emphasis was placed on the immunoglobulin superfamily of adhesion molecules, which are found to be involved in activity-dependent plasticity of the nervous system, and hence promising candidates in modulating cognitive functions.  相似文献   

14.
Cadherins are cell adhesion molecules concentrated at intercellular adherens junctions, where they form a multiprotein complex with cytoplasmic catenins. Although cell-cell interactions affect many aspects of cell behavior, little is known about signaling pathways triggered by cadherin engagement. We show here that E-cadherin-mediated cell-cell adhesion leads to a rapid increase in tyrosine phosphorylation at sites of cell-cell contact and that this stimulation of tyrosine phosphorylation can be mimicked by aggregation of E-cadherin with antibodies. The proteins that become phosphorylated are distinct from those previously shown to be tyrosine phosphorylated in response to integrin-mediated adhesion and include ras-GAP. We also find that E-cadherin-mediated tyrosine phosphorylation is not required for the assembly of adherens-type junctions.  相似文献   

15.
Actin-based cell-cell adherens junctions (AJs) are crucial not only for mechanical adhesion but also for cell morphogenesis and differentiation. While organization of homotypic AJs is attributed mostly to classic cadherins, the adhesive mechanism of heterotypic AJs in more complex tissues remains to be clarified. Nectin, a member of a family of immunoglobulin-like adhesion molecules at various AJs, is a possible organizer of heterotypic AJs because of its unique heterophilic trans-interaction property. Recently, nectin-2 (-/-) mice have been shown to exhibit the defective sperm morphogenesis and the male-specific infertility, but the role of nectin in testicular AJs has not been investigated. We show here the heterotypic trans-interaction between nectin-2 in Sertoli cells and nectin-3 in spermatids at Sertoli-spermatid junctions (SspJs), heterotypic AJs in testes. Moreover, each nectin-based adhesive membrane domain exhibits one-to-one colocalization with each actin bundle underlying SspJs. Inactivation of the mouse nectin-2 gene causes not only impaired adhesion but also loss of the junctional actin scaffold at SspJs, resulting in aberrant morphogenesis and positioning of spermatids. Localization of afadin, an adaptor protein of nectin with the actin cytoskeleton, is also nectin-2 dependent at SspJs. These results indicate that the nectin-afadin system plays essential roles in coupling cell-cell adhesion and the cortical actin scaffold at SspJs and in subsequent sperm morphogenesis.  相似文献   

16.
Cell-cell adhesion plays an important role in monocyte function. To investigate the molecular basis for monocyte adhesion, we used recombinant interferon-gamma to induce the formation of homotypic monocyte adhesions. The induction of homotypic adhesions correlated with the increased expression of the LFA-1 membrane molecule. LFA-1 surface expression was increased twofold, whereas expression levels of other monocyte surface molecules including CR3 and p150,95 were unchanged. The direct involvement of LFA-1 in monocyte adhesion was addressed by anti-LFA-1 monoclonal antibody inhibition of homotypic adhesions. Two monoclonal antibodies to distinct epitopes on the LFA-1 alpha-chain completely inhibited homotypic adhesions. Antibodies to a variety of other monocyte surface molecules, often present at higher cell surface density than LFA-1, did not inhibit homotypic adhesion. A panel of monoclonal antibodies that recognized different functional epitopes on the LFA-1 alpha-chain inhibited homotypic monocyte in a hierarchy identical to that observed in previous studies of cell-mediated cytotoxicity. These findings suggest that LFA-1 serves an adhesive function for human mononuclear phagocytes. In addition to providing a molecular basis for homotypic monocyte adhesions, the results suggest a more general role for LFA-1 in monocyte adhesion reactions.  相似文献   

17.
The immunoglobulin supergene family members have been shown to be involved in cell-cell recognition and interaction during cell growth and differentiation. Neural cell adhesion molecule, myelin-associated glycoprotein, and carcinoembryonic antigen (CEA) are immunoglobulin supergene family members which can mediate cell adhesion. We show here that nonspecific cross-reacting antigen (NCA), a closely related CEA family member, is found on the surface of rodent cells transfected with functional NCA complementary DNA in different glycosylated forms, all of which can be deglycosylated to an Mr 35,000 core protein. Furthermore, NCA can mediate Ca2(+)-independent, homotypic aggregation of these NCA-producing transfectant cells. Since CEA has three internal repeated C2-set, immunoglobulin-like domains, whereas NCA has one, only one such domain is required for the intercellular adhesive function. We also demonstrate that NCA- and CEA-producing transfectants can form heterotypic aggregates, whereas mixtures of CEA or NCA transfectants and neural cell adhesion molecule or long form-myelin-associated glycoprotein transfectants sort themselves out into homotypic aggregates. The results suggest that subsets of the immunoglobulin superfamily, such as the CEA family, can be used in both homotypic and heterotypic cellular interactions, whereas less closely related members of the family can be used to separate different cell types by strictly homotypic interactions.  相似文献   

18.
Lipoxins are formed by leukocytes during cell-cell interactions with epithelial or endothelial cells. Native lipoxin A(4) (LXA(4)) binds to the G protein-coupled lipoxin receptors formyl peptide receptor 2 (FPR2)/ALX and CysLT1. Furthermore, LXA(4) inhibits recruitment of neutrophils, by attenuating chemotaxis, adhesion, and transmigration across vascular endothelial cells. LXA(4) thus appears to serve as an endogenous "stop signal" for immune cell-mediated tissue injury (Serhan CN; Annu Rev Immunol 25: 101-137, 2007). The role of LXA(4) has not been addressed in salivary epithelium, and little is known about its effects on vascular endothelium. Here, we determined that interleukin-1β (IL-1β) and tumor necrosis factor-α (TNF-α) receptor activation in vascular endothelium and salivary epithelium upregulated the expression of adhesion molecules that facilitates the binding of immune cells. We hypothesize that the activation of the ALX/FPR2 and/or CysLT1 receptors by LXA(4) decreases this cytokine-mediated upregulation of cell adhesion molecules that enhance lymphocyte binding to both the vascular endothelium and salivary epithelium. In agreement with this hypothesis, we observed that nanomolar concentrations of LXA(4) blocked IL-1β- and TNF-α-mediated upregulation of E-selectin and intercellular cell adhesion molecule-1 (ICAM-1) on human umbilical vein endothelial cells (HUVECs). Binding of Jurkat cells to stimulated HUVECs was abrogated by LXA(4). Furthermore, LXA(4) preincubation with human submandibular gland cell line (HSG) also blocked TNF-α-mediated upregulation of vascular cell adhesion molecule-1 (VCAM-1) in these cells, and it reduced lymphocyte adhesion. These findings suggest that ALX/FPR2 and/or CysLT1 receptor activation in endothelial and epithelial cells blocks cytokine-induced adhesion molecule expression and consequent binding of lymphocytes, a critical event in the pathogenesis of Sj?gren's syndrome (SS).  相似文献   

19.
Bone marrow stroma is the physical basis of the haematopoietic microenvironment and regulates several key features of stem cell proliferation and differentiation. It plays a crucial role in maintaining haematopoietic homeostasis. Earlier studies have shown that this is achieved through interactions with the extracellular matrix and specific molecules called the cell adhesion molecules (CAMs). In this paper, we show that E-cadherin, a cell adhesion molecule which plays a crucial role in cell-cell aggregation during development, is also present in the bone marrow stroma. The expression of the CAM can also be demonstrated on a subset of CD34(+)stem cells. Stromal expression of E-cadherin is decreased when treated with lymphokine mixture, phytohaemagglutinin-treated-leukocyte-conditioned medium (PHA-LCM). This is the reverse of ICAM-I expression, which increases with PHA-LCM treatment. E-cadherin shows homotypic and homophilic interaction and its presence on a subset of CD34(+)cells leads to speculation on whether this CAM has a role in adherence of primitive stem cells to the marrow stroma.  相似文献   

20.
Classical cadherins.   总被引:15,自引:0,他引:15  
Cadherins represent a gene family of Ca(2+)-dependent cell adhesion molecules (CAMs) identified during development and in adult organs. They generally mediate cell-cell adhesion by homotypic interaction, although heterotypic binding between different cadherin molecules is possible. Molecular cloning and sequence comparison has led to the characterization of a highly homologous group of 'classical' cadherins and more distantly related members, together composing a gene superfamily. The classical cadherins are transmembrane glycoproteins which exhibit, in addition to the structural homologies, a very similar overall protein topology. Protein sequence comparison has led to the identification of domains of common functional importance. The cytoplasmic domains of cadherins associate with peripheral cytoplasmic proteins termed catenin alpha, beta and gamma with molecular weights of 102, 88 and 80 kDa respectively. This complex formation seems to regulate the adhesive function of cadherins, most likely by connecting cadherins with actin microfilaments. Possible implications of catenins for cadherin function are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号