首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Doublecortin association with actin filaments is regulated by neurabin II   总被引:1,自引:0,他引:1  
Mutations in the human Doublecortin (DCX) gene cause X-linked lissencephaly, a neuronal migration disorder affecting the neocortex and characterized by mental retardation and epilepsy. Because dynamic cellular asymmetries such as those seen in cell migration critically depend on a cooperation between the microtubule and actin cytoskeletal filament systems, we investigated whether Dcx, a microtubule-associated protein, is engaged in cytoskeletal cross-talk. We now demonstrate that Dcx co-sediments with actin filaments (F-actin), and using light and electron microscopy and spin down assays, we show that Dcx induces bundling and cross-linking of microtubules and F-actin in vitro. It has recently been shown that binding of Dcx to microtubules is negatively regulated by phosphorylation of the Dcx at Ser-47 or Ser-297. Although the phosphomimetic green fluorescent protein (GFP)-Dcx(S47E) transfected into COS-7 cells had a reduced affinity for microtubules, we found that pseudophosphorylation was not sufficient to cause Dcx to bind to F-actin. When cells were co-transfected with neurabin II, a protein that binds F-actin as well as Dcx, GFP-Dcx and to an even greater extent GFP-Dcx(S47E) became predominantly associated with filamentous actin. Thus Dcx phosphorylation and neurabin II combinatorially enhance Dcx binding to F-actin. Our findings raise the possibility that Dcx acts as a molecular link between microtubule and actin cytoskeletal filaments that is regulated by phosphorylation and neurabin II.  相似文献   

2.
The neuronal migration protein doublecortin (DCX) that associates with microtubules through a tandem DCX repeat, is required for the development of the complex architecture of the human cerebral cortex. Using a yeast two-hybrid screen with Dcx as bait, we have isolated neurabin II/spinophilin, an F-actin binding protein known to play a role in dendritic spine formation. The coiled-coil domain of neurabin II binds to a DCX region encompassing the C-terminal portion of the second DCX repeat and the N-terminal portion of the Ser/Pro-rich domain. Immunoprecipitation experiments with brain extracts show that neurabin II and Dcx interact in vivo. Several Dcx constructs that mimic human DCX mutant alleles failed to interact with neurabin II. Since Dcx and neurabin II colocalized in the developing and adult brain, a neurabin II-DCX heterodimer may be involved in neuronal migration and dendritic spine formation.  相似文献   

3.
Doublecortin (DCX) is a microtubule (MT) binding protein that induces growth arrest at the G2–M phase of cell cycle in glioma and suppresses tumor xenograft in immunocompromised hosts. DCX expression was found in neuronal cells, but lacking in glioma cells. We tested the hypothesis that DCX inhibits glioma U87 cell mitosis and invasion. Our data showed that DCX synthesizing U87 cells underwent mitotic MT spindle catastrophe in a neurabin II dependent pathway. Synthesis of both DCX and neurabin II were required to induce apoptosis in U87 and human embryonic kidney 293T cells. In DCX expressing U87 cells, association of phosphorylated DCX with protein phosphatase-1 (PP1) in the cytosol disrupted the interaction between kinesin-13 and PP1 in the nucleus and yielded spontaneously active kinesin-13. The activated kinesin-13 caused mitotic MT catastrophe in spindle checkpoint. Phosphorylated-DCX induced depolymerization of actin filaments in U87 cells, down-regulated matrix metalloproteinases-2 and -9, and inhibited glioma U87 cell invasion in a neurabin II dependent pathway. Thus, localization of the DCX–neurabin II–PP1 complex in the cytosol of U87 tumor cells inhibited PP1 phosphatase activities leading to anti-glioma effects via (1) mitotic MT spindle catastrophe that blocks mitosis and (2) depolymerization of actin that inhibits glioma cell invasion.  相似文献   

4.
Inhibitor-2 (I-2) bound protein phosphatase-1 (PP1) and several PP1-binding proteins from rat brain extracts, including the actin-binding proteins, neurabin I and neurabin II. Neurabins from rat brain lysates were sedimented by I-2 and its structural homologue, I-4. The central domain of both neurabins bound PP1 and I-2, and mutation of a conserved PP1-binding motif abolished neurabin binding to both proteins. Microcystin-LR, a PP1 inhibitor, also attenuated I-2 binding to neurabins. Immunoprecipitation of neurabin I established its association with PP1 and I-2 in HEK293T cells and suggested that PP1 mediated I-2 binding to neurabins. The C terminus of I-2, although not required for PP1 binding, facilitated PP1 recruitment by neurabins, which also targeted I-2 to polymerized F-actin. Mutations that attenuated PP1 binding to I-2 and neurabin I suggested distinct and overlapping sites for these two proteins on the PP1 catalytic subunit. Immunocytochemistry in epithelial cells and cultured hippocampal neurons showed that endogenous neurabin II and I-2 colocalized at actin-rich structures, consistent with the ability of neurabins to target the PP1.I-2 complex to actin cytoskeleton and regulate cell morphology.  相似文献   

5.
Neurabin I, a neuronal actin-binding protein, binds protein phosphatase 1 (PP1) and p70 ribosomal S6 protein kinase (p70S6K), both proteins implicated in cytoskeletal dynamics. We expressed wild-type and mutant neurabins fused to green fluorescent protein in Cos7, HEK293, and hippocampal neurons. Biochemical and cellular studies showed that an N-terminal F-actin-binding domain dictated neurabin I localization at actin cytoskeleton and promoted disassembly of stress fibers. Deletion of the C-terminal coiled-coil and sterile alpha motif domains abolished neurabin I dimerization and induced filopodium extension. Immune complex assays showed that neurabin I recruited an active PP1 via a PP1-docking sequence,(457)KIKF(460). Mutation of the PP1-binding motif or PP1 inhibition by okadaic acid and calyculin A abolished filopodia and restored stress fibers in cells expressing neurabin I. In vitro and in vivo studies suggested that the actin-binding domain attenuated protein kinase A (PKA) phosphorylation of neurabin I. Modification of a major PKA site, serine-461, impaired PP1 binding. Finally, p70S6K was excluded from neurabin I/PP1 complexes and required the displacement of PP1 for recruitment to neurabin I. These studies provided new insights into the assembly and regulation of a neurabin I/PP1 complex that controls actin rearrangement to promote spine development in mammalian neurons.  相似文献   

6.
Mutations in the doublecortin (DCX) gene in human or targeted disruption of the cdk5 gene in mouse lead to similar cortical lamination defects in the developing brain. Here we show that Dcx is phosphorylated by Cdk5. Dcx phosphorylation is developmentally regulated and corresponds to the timing of expression of p35, the major activating subunit for Cdk5. Mass spectrometry and Western blot analysis indicate phosphorylation at Dcx residue Ser297. Phosphorylation of Dcx lowers its affinity to microtubules in vitro, reduces its effect on polymerization, and displaces it from microtubules in cultured neurons. Mutation of Ser297 blocks the effect of Dcx on migration in a fashion similar to pharmacological inhibition of Cdk5 activity. These results suggest that Dcx phosphorylation by Cdk5 regulates its actions on migration through an effect on microtubules.  相似文献   

7.
Protein phosphatase-1 (PP1) constrains learning and memory formation in part through its effects on the induction threshold of long-term potentiation (LTP) and depression (LTD). LTD induction requires both the enzymatic activity of PP1 and its proper anchoring to synaptic spines. We have shown previously that neurabin, a major synaptic scaffolding protein, targets PP1 to synapses for LTD induction. Here, we show that PP1 bound on spinophilin, a close homolog of neurabin and another major synaptic PP1 anchoring protein, does not play a role in LTD induction, which suggests that neurabin plays a privileged role in nanodomain targeting of PP1 in LTD induction. We found that protein kinase A can significantly weaken the neurabin-PP1 interaction in neurons via phosphorylation of neurabin at serine 461, a phosphorylation site adjacent to the PP1-binding motif that is not conserved in spinophilin. Finally, we found that a neurabin mutation (S461E), which mimics phosphorylation, blocked AMPA receptor endocytosis and LTD induction. The results indicate the critical importance of nanodomain targeting of PP1 within synaptic spines and its regulation in LTD induction.  相似文献   

8.
Neurabin and spinophilin are neuronal scaffolding proteins that play important roles in the regulation of synaptic transmission through their ability to target protein phosphatase 1 (PP1) to dendritic spines where PP1 dephosphorylates and inactivates glutamate receptors. However, thus far, it is still unknown how neurabin and spinophilin themselves are targeted to these membrane receptors. Spinophilin and neurabin contain a single PDZ domain, a common protein-protein interaction recognition motif, which are 86% identical in sequence. We report the structures of both the neurabin and spinophilin PDZ domains determined using biomolecular NMR spectroscopy. These proteins form the canonical PDZ domain fold. However, despite their high degree of sequence identity, there are distinct and significant structural differences between them, especially between the peptide binding pockets. Using two-dimensional 1H-15N HSQC NMR analysis, we demonstrate that C-terminal peptide ligands derived from glutamatergic AMPA and NMDA receptors and cytosolic proteins directly and differentially bind spinophilin and neurabin PDZ domains. This peptide binding data also allowed us to classify the neurabin and spinophilin PDZ domains as the first identified neuronal hybrid class V PDZ domains, which are capable of binding both class I and II peptides. Finally, the ability to bind to glutamate receptor subunits suggests that the PDZ domains of neurabin and spinophilin are important for targeting PP1 to C-terminal phosphorylation sites in AMPA and NMDA receptor subunits.  相似文献   

9.
Neurabin and spinophilin are homologous protein phosphatase 1 and actin binding proteins that regulate dendritic spine function. A yeast two-hybrid analysis using the coiled-coil domain of neurabin revealed an interaction with Lfc, a Rho GEF. Lfc was highly expressed in brain, where it interacted with either neurabin or spinophilin. In neurons, Lfc was largely found in the shaft of dendrites in association with microtubules but translocated to spines upon neuronal stimulation. Moreover, expression of Lfc resulted in reduction in spine length and size. Both the translocation and the effect on spine morphology depended on the coiled-coil domain of Lfc. Coexpression of neurabin or spinophilin with Lfc resulted in their clustering together with F-actin, a process that depended on Rho activity. Thus, interaction between Lfc and neurabin/spinophilin selectively regulates Rho-dependent organization of F-actin in spines and is a link between the microtubule and F-actin cytoskeletons in dendrites.  相似文献   

10.
Neurabin I is a brain-specific actin-binding protein. Here we show that neurabin I binds protein phosphatase 1 (PP1) and inhibits PP1 activity. Neurabin I interacted with PP1alpha in an overlay assay, in yeast two-hybrid interaction analysis, and in coprecipitation and co-immunoprecipitation experiments. Neurabin I also copurified with both the alpha and gamma isoforms of PP1. A glutathione S-transferase (GST)-neurabin I fusion protein (residues 318-661) containing the putative PP1 binding domain (residues 456-460) inhibited PP1 activity (K(i) = 2.7 +/- 1.2 nM). This fusion protein was also rapidly phosphorylated in vitro by PKA (K(m) = 6 microM) to a stoichiomtry of 1 mol/mol. The phosphorylated residue was identified as serine 461 by HPLC-MS analysis of a tryptic digest. Phosphorylation of GST-neurabin I (residues 318-661) by PKA significantly reduced its binding to PP1 by overlay and by glutathione-Sepharose coprecipitation assays. A 35-fold decrease in inhibitory potency was also observed using a S461E mutant, which mimics phosphorylation of S461. These findings identify a signaling mechanism involving the regulation of PP1 activity and localization mediated by the cAMP pathway.  相似文献   

11.
Neurabins are protein phosphatase-1 (PP1) targeting subunits that are highly concentrated in dendritic spines and post-synaptic densities. Immunoprecipitation of neurabin I and neurabin II/spinophilin from rat brain extracts sedimented PP1gamma1 and PP1alpha but not PP1beta. In vitro studies showed that recombinant peptides representing central regions of neurabins also preferentially bound PP1gamma1 and PP1alpha from brain extracts and associated poorly with PP1beta. Analysis of PP1 binding to chimeric neurabins suggested that sequences flanking a conserved PP1-binding motif altered their selectivity for PP1beta and their activity as regulators of PP1 in vitro. Assays using recombinant PP1 catalytic subunits and a chimera of PP1 and protein phosphatase-2A indicated that the C-terminal sequences unique to the PP1 isoforms contributed to their recognition by neurabins. Collectively, the results from several different in vitro assays established the rank order of PP1 isoform selection by neurabins to be PP1gamma1 > PP1alpha > PP1beta. This PP1 isoform selectivity was confirmed by immunoprecipitation of neurabin I and II from brain extracts from wild type and mutant PP1gamma null mice. In the absence of PP1gamma1, both neurabins showed enhanced association with PP1alpha but not PP1beta. These studies identified some of the structural determinants in PP1 and neurabins that together contribute to preferential targeting of PP1gamma1 and PP1alpha to the mammalian synapse.  相似文献   

12.
TGN38 is a type I integral membrane protein that constitutively cycles between the trans-Golgi network (TGN) and plasma membrane. The cytosolic domain of TGN38 interacts with AP2 clathrin adaptor complexes via the tyrosine-containing motif (-SDYQRL-) to direct internalization from the plasma membrane. This motif has previously been shown to direct both internalization and subsequent TGN targeting of TGN38. We have used the cytosolic domain of TGN38 in a two-hybrid screen, and we have identified the brain-specific F-actin binding protein neurabin-I as a TGN38-binding protein. We demonstrate a direct interaction between TGN38 and the ubiquitous homologue of neurabin-I, neurabin-II (also called spinophilin). We have used a combination of yeast two-hybrid and in vitro protein interaction assays to show that this interaction is dependent on the serine (but not tyrosine) residue of the known TGN38 trafficking motif. We show that TGN38 interacts with the coiled coil region of neurabin in vitro and binds preferentially with the dimeric form of neurabin. TGN38 and neurabin also interact in vivo as demonstrated by coimmunoprecipitation from stably transfected PC12 cells. These data suggest that neurabin provides a direct physical link between TGN38-containing membranes and the actin cytoskeleton.  相似文献   

13.
Mapping the microtubule binding regions of calponin   总被引:3,自引:0,他引:3  
The smooth muscle basic calponin interacts with F-actin and inhibits the actomyosin ATPase in a calmodulin or phosphorylation modulated manner. It also binds in vitro to microtubules and its acidic isoform, present in nonmuscle cells, and co-localizes with microfilaments and microtubules in cultured neurons. To assess the physiological significance and the molecular basis of the calponin-microtubule interaction, we have first studied the solution binding of recombinant acidic calponin to microtubules using quantitative cosedimentation analyses. We have also characterized, for the first time, the ability of both calponin isoforms to induce the inhibition of the microtubule-stimulated ATPase activity of the cytoskeletal, kinesin-related nonclaret dysjunctional motor protein (ncd) and the abolition of this effect by calcium calmodulin. This property makes calponin a potent inhibitor of all filament-activated motor ATPases and, therefore, a potential regulatory factor of many motor-based biological events. By combining the enzymatic measurements of the ncd-microtubules system with various in vitro binding assays employing proteolytic, recombinant and synthetic fragments of basic calponin, we further unambiguously identified the interaction of microtubules at two distinct calponin sites. One is inhibitory and resides in the segment 145-182, which also binds F-actin and calmodulin. The other one is noninhibitory, specific for microtubules, and is located on the COOH-terminal repeat-containing region 183-292. Finally, quantitative fluorescence studies of the binding of basic calponin to the skeletal pyrenyl F-actin in the presence of microtubules did not reveal a noticeable competition between the two sets of filaments for calponin. This result implies that calponin undergoes a concomitant binding to both F-actin and microtubules by interaction at the former site with actin and at the second site with microtubules. Thus, in the living cells, calponin could potentially behave as a cross-linking protein between the two major cytoskeletal filaments.  相似文献   

14.
Drebrin is an actin filament (F-actin)–binding protein with crucial roles in neuritogenesis and synaptic plasticity. Drebrin couples dynamic microtubules to F-actin in growth cone filopodia via binding to the microtubule-binding +TIP protein EB3 and organizes F-actin in dendritic spines. Precisely how drebrin interacts with F-actin and how this is regulated is unknown. We used cellular and in vitro assays with a library of drebrin deletion constructs to map F-actin binding sites. We discovered two domains in the N-terminal half of drebrin—a coiled-coil domain and a helical domain—that independently bound to F-actin and cooperatively bundled F-actin. However, this activity was repressed by an intramolecular interaction relieved by Cdk5 phosphorylation of serine 142 located in the coiled-coil domain. Phospho-mimetic and phospho-dead mutants of serine 142 interfered with neuritogenesis and coupling of microtubules to F-actin in growth cone filopodia. These findings show that drebrin contains a cryptic F-actin–bundling activity regulated by phosphorylation and provide a mechanistic model for microtubule–F-actin coupling.  相似文献   

15.
Humans with mutations in either DCX or LIS1 display nearly identical neuronal migration defects, known as lissencephaly. To define subcellular mechanisms, we have combined in vitro neuronal migration assays with retroviral transduction. Overexpression of wild-type Dcx or Lis1, but not patient-related mutant versions, increased migration rates. Dcx overexpression rescued the migration defect in Lis1+/- neurons. Lis1 localized predominantly to the centrosome, and after disruption of microtubules, redistributed to the perinuclear region. Dcx outlined microtubules extending from the perinuclear "cage" to the centrosome. Lis1+/- neurons displayed increased and more variable separation between the nucleus and the preceding centrosome during migration. Dynein inhibition resulted in similar defects in both nucleus-centrosome (N-C) coupling and neuronal migration. These N-C coupling defects were rescued by Dcx overexpression, and Dcx was found to complex with dynein. These data indicate Lis1 and Dcx function with dynein to mediate N-C coupling during migration, and suggest defects in this coupling may contribute to migration defects in lissencephaly.  相似文献   

16.
Neurons, like all cells, face the problem that tubulin forms microtubules with too many or too few protofilaments (pfs). Cells overcome this heterogeneity with the γ-tubulin ring complex, which provides a nucleation template for 13-pf microtubules. Doublecortin (DCX), a protein that stabilizes microtubules in developing neurons, also nucleates 13-pf microtubules in?vitro. Using fluorescence microscopy assays, we show that the binding of DCX to microtubules is optimized for the lateral curvature of the 13-pf lattice. This sensitivity depends on a cooperative interaction wherein DCX molecules decrease the dissociation rate of their neighbors. Mutations in DCX found in patients with subcortical band heterotopia weaken these cooperative interactions. Using assays with dynamic microtubules, we discovered that DCX binds to polymerization intermediates at growing microtubule ends. These results support a mechanism for stabilizing 13-pf microtubules that allows DCX to template new 13-pf microtubules through associations with the sides of the microtubule lattice.  相似文献   

17.
We reported previously that the protein SB401 from Solanum berthaultii binds to and bundles both microtubules and F-actin. In the current study, we investigated the regulation of SB401 activity by its phosphorylation. Our experimental results showed that the phosphorylation of SB401 by casein kinase Ⅱ (CKII) downregulates the activities of SB401, namely the bundling of microtubules and enhancement of the polymerization of tubulin. However, phosphorylation of SB401 had no observable effect on its bundling of F-actin. Further investigation using extract of potato pollen indicated that a CKII-like kinase may exist in potato pollen. Antibodies against CKII alpha recognized specifically a major band from the pollen extract and the pollen extract was able to phosphorylate the SB401 protein in vitro. The CKII-like kinase showed a similar ability to downregulate the bundling of microtubules. Our experiments demonstrated that phosphorylation plays an important role in the regulation of SB401 activity. We propose that this phosphorylation may regulate the effects of SB401 on microtubules and the actin cytoskeleton.  相似文献   

18.
The doublecortin-like domains (DCX), which typically occur in tandem, are novel microtubule-binding modules. DCX tandems are found in doublecortin, a 360-residue protein expressed in migrating neurons; the doublecortin-like kinase (DCLK); the product of the RP1 gene that is responsible for a form of inherited blindness; and several other proteins. Mutations in the gene encoding doublecortin cause lissencephaly in males and the 'double-cortex syndrome' in females. We here report a solution structure of the N-terminal DCX domain of human doublecortin and a 1.5 A resolution crystal structure of the equivalent domain from human DCLK. Both show a stable, ubiquitin-like tertiary fold with distinct structural similarities to GTPase-binding domains. We also show that the C-terminal DCX domains of both proteins are only partially folded. In functional assays, the N-terminal DCX domain of doublecortin binds only to assembled microtubules, whereas the C-terminal domain binds to both microtubules and unpolymerized tubulin.  相似文献   

19.
The majority of excitatory synapses in the mammalian brain form on filopodia and spines, actin-rich membrane protrusions present on neuronal dendrites. The biochemical events that induce filopodia and remodel these structures into dendritic spines remain poorly understood. Here, we show that the neuronal actin- and protein phosphatase-1-binding protein, neurabin-I, promotes filopodia in neurons and nonneuronal cells. Neurabin-I actin-binding domain bundled F-actin, promoted filopodia, and delayed the maturation of dendritic spines in cultured hippocampal neurons. In contrast, dimerization of neurabin-I via C-terminal coiled-coil domains and association of protein phosphatase-1 (PP1) with neurabin-I through a canonical KIXF motif inhibited filopodia. Furthermore, the expression of a neurabin-I polypeptide unable to bind PP1 delayed the maturation of neuronal filopodia into spines, reduced the synaptic targeting of AMPA-type glutamate (GluR1) receptors, and decreased AMPA receptor-mediated synaptic transmission. Reduction of endogenous neurabin levels by interference RNA (RNAi)-mediated knockdown also inhibited the surface expression of GluR1 receptors. Together, our studies suggested that disrupting the functions of a cytoskeletal neurabin/PP1 complex enhanced filopodia and impaired surface GluR1 expression in hippocampal neurons, thereby hindering the morphological and functional maturation of dendritic spines.  相似文献   

20.
Doublecortin (Dcx) is a microtubule-associated protein that is mutated in X-linked lissencephaly (X-LIS), a neuronal migration disorder associated with epilepsy and mental retardation. Although Dcx can bind ubiquitously to microtubules in nonneuronal cells, Dcx is highly enriched in the leading processes of migrating neurons and the growth cone region of differentiating neurons. We present evidence that Dcx/microtubule interactions are negatively controlled by Protein Kinase A (PKA) and the MARK/PAR-1 family of protein kinases. In addition to a consensus MARK site, we identified a serine within a novel sequence that is crucial for the PKA- and MARK-dependent regulation of Dcx's microtubule binding activity in vitro. This serine is mutated in two families affected by X-LIS. Immunostaining neurons with an antibody that recognizes phosphorylated substrates of MARK supports the conclusion that Dcx localization and function are regulated at the leading edge of migrating cells by a balance of kinase and phosphatase activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号