首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
S L Gonias  S V Pizzo 《Biochemistry》1983,22(21):4933-4940
Human alpha 2-macroglobulin (alpha 2M) half-molecules were prepared by limited reduction and alkylation of the native protein. Reaction with plasmin resulted in nearly quantitative cleavage of the half-molecule Mr approximately 180000 subunits into Mr approximately 90000 fragments. Subunit cleavage was significantly less complete when plasmin was reacted with alpha 2M whole molecules. The plasmin and trypsin binding capacities of the two forms of alpha 2M were compared by using radioiodinated proteases. alpha 2M half-molecules bound an equivalent number of moles of plasmin or trypsin. Native unreduced alpha 2M bound only half as much plasmin as trypsin. These data are consistent with the hypothesis that the two protease binding sites are adjacent in native alpha 2M. alpha 2M half-molecule-plasmin complexes reassociated less readily than half-molecule-trypsin complexes, supporting this interpretation. The frequency of covalent bond formation between plasmin and alpha 2M was considerably higher than that previously observed with other proteases. Approximately 80-90% of the plasmin that reacted with alpha 2M whole molecules or half-molecules became covalently bound. The reactivities of purified alpha 2M-plasmin complexes were compared with small and large substrates. Equivalent kcat/Km values were determined at 22 degrees C for the hydrolysis of H-D-Val-Leu-Lys-p-nitroanilide dihydrochloride by whole molecule-plasmin complex and half-molecule-plasmin complex (40 mM-1 s-1 and 39 mM-1 s-1, respectively, compared with 66 mM-1 s-1 determined for free plasmin).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

2.
1. alpha(2)-Macroglobulin is known to bind and inhibit a number of serine proteinases. We show that it binds thiol and carboxyl proteinases, and there is now reason to believe that alpha(2)-macroglobulin can bind essentially all proteinases. 2. Radiochemically labelled trypsin, chymotrypsin, cathepsin B1 and papain are bound by alpha(2)-macroglobulin in an approximately equimolar ratio. Equimolar binding was confirmed for trypsin by activesite titration. 3. Pretreatment of alpha(2)-macroglobulin with a saturating amount of one proteinase prevented the subsequent binding of another. We conclude that each molecule of alpha(2)-macroglobulin is able to react with one molecule of proteinase only. 4. alpha(2)-Macroglobulin did not react with exopeptidases, non-proteolytic hydrolases or inactive forms of endopeptidases. 5. The literature on binding and inhibition of proteinases by alpha(2)-macroglobulin is reviewed, and from consideration of this and our own work several general characteristics of the interaction can be discerned. 6. A model is proposed for the molecular mechanism of the interaction of alpha(2)-macroglobulin with proteinases. It is suggested that the enzyme cleaves a peptide bond in a sensitive region of the macroglobulin, and that this results in a conformational change in the alpha(2)-macroglobulin molecule that traps the enzyme irreversibly. Access of substrates to the active site of the enzyme becomes sterically hindered, causing inhibition that is most pronounced with large substrate molecules. 7. The possible physiological importance of the unique binding characteristics of alpha(2)-macroglobulin is discussed.  相似文献   

3.
1. A high mol. wt proteinase inhibitor has been purified from the haemolymph of the freshwater crayfish Astacus astacus. 2. The protein is a disulphide-bonded dimer (Mr 390,000) of two identical polypeptide chains (Mr 185,000). 3. The inhibitor displays a broad specificity and protects trypsin from inhibition by soybean trypsin inhibitor and thus is similar to vertebrate alpha 2-macroglobulin. 4. The alpha 2-macroglobulin-like inhibitor from Astacus interacts with bovine trypsin in an equimolar stoichiometry thereby decreasing tryptic hydrolysis of N-benzoyl-L-arginine-ethylester to 50% residual activity. In contrast, the activity of Astacus protease, a digestive zinc proteinase from crayfish toward succinyl-alanyl-alanyl-alanyl-4-nitroanilide is inhibited almost completely. 5. Sensitivity of the inhibitor to methylamine and autolytic cleavage suggests the presence of an internal thioester bond. 6. The N-terminal amino acid sequence of Astacus alpha 2-macroglobulin is strongly related to the alpha 2-macroglobulins from Pacifastacus leniusculus (91% identity) and from the lobster Homarus americanus (72% identity). In contrast, only 25% of the residues are identical with the alpha 2-macroglobulin from the horseshoe crab Limulus polyphemus. There is also a faint similarity to human complement protein C3 and human alpha 2-macroglobulin.  相似文献   

4.
The interaction alpha 2-macroglobulin with four proteinases has been investigated by binding assays and by gel electrophoresis. At pH 7.65 the binding ratios of the proteinase-alpha 2-macroglobulin complexes were found to be 2:1 (trypsin and papain), 1.4:1 (chymotrypsin), and 1:1 (plasmin). The progressive decrease in the stoichiometry of the three seryl proteinase complexes was paralleled by a concomitant decrease in the proteinase-dependent specific cleavage of the alpha 2-macroglobulin peptide chains. Rate studies have shown that the relative rates of reaction of the proteinases with alpha 2-macroglobulin also varied greatly: papain greater than trypsin greater than chymotrypsin greater than plasmin. The data suggest that the ability of a proteinase to saturate the second proteinase binding site is a reflection of its ability to bind to alpha 2-macroglobulin and cleave the second pair of scissile alpha 2-macroglobulin peptide bonds before the alpha 2-macroglobulin has undergone the conformational change initiated by the formation of the 1:1 proteinase alpha 2-macroglobulin complex.  相似文献   

5.
The binding of trypsin to alpha 2-macroglobulin, the appearance of free beta-cysteinyl thiol groups of the formed complexes, the steady-state kinetics of their enzymic hydrolysis of carbobenzoxy-L-valyl-glycyl-L-arginyl-4-nitroanilide and finally their reactions with soybean trypsin inhibitor leading to the formation of ternary alpha 2-macroglobulin-trypsin-soybean trypsin inhibitor complexes were investigated. Each alpha 2-macroglobulin molecule binds two trypsin tightly; the dissociation constants were found to be unmeasureably small, but the extent of formation of 1:1 and 1:2 complexes at different molar ratios of alpha 2-macroglobulin to trypsin as determined from the appearance of thiol groups clearly indicated that binding of trypsin to alpha 2-macroglobulin shows negative cooperativity. Binding of the first trypsin makes the access of the second less easy. The kinetic results showed a decrease of the kc/Km value of hydrolysis of the tripeptide substrate by approx. 4-fold compared to that of free trypsin for each alpha 2-macroglobulin-bound trypsin. Here no differences were seen between the bound trypsins. The analysis of the reactions between the alpha 2-macroglobulin-trypsin complexes and soybean trypsin inhibitor shows that ternary complexes do form, although slowly, and that two processes occur, not only when 1:2 complexes but also when 1:1 complexes react with soybean trypsin inhibitor. Soybean trypsin inhibitor apparently discriminates between two distinct binding modes of trypsin to alpha 2-macroglobulin, the covalently and the noncovalently alpha 2-macroglobulin-bound trypsins.  相似文献   

6.
Hyperimmune sera against human alpha 2 macroglobulin were raised in rabbits following immunization with 's' alpha 2-macroglobulin over half a year. Immunoglobulins were prepared by DEAE-Sephacel anion exchange chromatography. The immunoglobulin preparations showed a remarkably high and equal titer for 's' and 'f' alpha 2-macroglobulin (plasma alpha 2-macroglobulin fully saturated with pig pancreas trypsin), which amounted to 6.4 X 10(-6) as revealed by passive hemagglutination. Immunoimmobilization experiments revealed that at equilibrium, 's' alpha 2-macroglobulin and both 'f' alpha 2-macroglobulins (27 and 82% saturation of 's' alpha 2-macroglobulin with trypsin) had been bound to the same degree from the fluid phase to the monospecific antibodies that had been adsorbed to polystyrene tubes. Comparison of quantitative gel scans for disappearance of the intact alpha 2-macroglobulin subunit (Mr 182000) with 125I-labeled trypsin binding capacity of immunoimmobilized alpha 2-macroglobulin-trypsin complexes showed conspicuous agreement. Rocket immunoelectrophoresis did not give significant differences between 's' alpha 2-macroglobulin and 'f' alpha 2-macroglobulin. In the fluid phase, a binding ratio of 2.4 mol trypsin/mol alpha 2-macroglobulin was observed. Saturation of solid phase immunoimmobilized 's' alpha 2-macroglobulin with trypsin could be accomplished by incubation with a 100-200-fold molar excess of enzyme for 10 min. The solid-phase experiments showed a binding ratio of 2.0 mol trypsin/mol alpha 2-macroglobulin. The high molar excess of trypsin needed to saturate solid-phase immunoimmobilized alpha 2-macroglobulin, which binds 20% less trypsin than in the liquid phase, is partially explained by an enhancement of the negative cooperativity of trypsin binding to alpha 2-macroglobulin found in the liquid-phase system. Assessment of the trypsin-binding capacity of alpha 2-macroglobulin immunoadsorbed from synovial fluids (n = 19) of patients with seropositive rheumatoid arthritis yielded an inactive alpha 2-macroglobulin of 0-53% when compared to the trypsin-binding capacity of normal plasma alpha 2-macroglobulin.  相似文献   

7.
The interaction between four Crotalus atrox hemorrhagic metalloproteinases and human alpha 2-macroglobulin was investigated. The proteolytic activity of the hemorrhagic toxins Ht-c, -d, and -e against the large molecular weight protein substrates, gelatin type I and collagen type IV, was completely inhibited by alpha 2-macroglobulin. The proteolytic activity of Ht-a against the same substrates was not significantly inhibited. Each mole of alpha 2-macroglobulin bound maximally 2 mol of Ht-e and 1.1 mol of Ht-c and Ht-d. These proteinases interacted with alpha 2-macroglobulin rapidly at 22 degrees C. Rate constants based on intrinsic fluorescence measurements were 0.62 X 10(5) M-1 s-1 for interaction of alpha 2-macroglobulin with Ht-c and -d and 2.3 X 10(5) M-1 s-1 for the interaction of alpha 2-macroglobulin with Ht-e. Ht-a interacted with alpha 2-macroglobulin very slowly at 22 degrees C. Increasing the temperature to 37 degrees C and prolonging the time of interaction with alpha 2-macroglobulin resulted in the formation of Mr 90,000 fragments and high molecular weight complexes (Mr greater than 180,000), in which Ht-a is covalently bound to the carboxy-terminal fragment of alpha 2-M. The identification of the sites of specific proteolysis of alpha 2-macroglobulin shows that the cleavage sites for the four metalloproteinases are within the bait region of alpha 2-macroglobulin. Ht-c and -d cleave only at one site, the Arg696-Leu697 peptide bond, which is also the site of cleavage for plasmin, thrombin, trypsin, and thermolysin. Ht-a cleaves alpha 2-macroglobulin primarily at the same site, but a secondary cleavage site at the His694-Ala695 peptide bond was also identified.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

8.
Human alpha 2-macroglobulin (alpha 2M) undergoes a conformational change after reaction with proteases. In this report, it is shown that although two trypsin molecules may bind simultaneously to each alpha 2M, only one trypsin is necessary to induce alpha 2M conformational change. Ternary complexes of alpha 2M and either two radioiodinated trypsins or two nonradioiodinated trypsins were purified by gel filtration chromatography. The nonradioactive complex did not bind 125I-trypsin, even after incubation for 24 h with the free protease present at a large molar excess. Under comparable conditions, a large molar excess of nonradioactive trypsin did not cause significant dissociation of the complex prepared with radioiodinated protease. Equations are presented that distinguish between two separate models of protease binding and demonstrate that binary alpha 2M-trypsin complex retains no significant trypsin binding activity despite the presence of a vacant protease binding site. Purified alpha 2M-plasmin complex, with 1.10 mol of plasmin/mol of inhibitor, also retained no trypsin binding activity as assessed with radioiodinated protein binding experiments. These studies suggest that reactions of alpha 2M with proteases are accurately described by the "trap hypothesis" (Barrett, A. J., and Starkey, P. M. (1973) Biochem. J. 133, 709-724) independent of protease size or binding stoichiometry.  相似文献   

9.
Radiolabelled anhydrotrypsin was bound by alpha 2M (alpha 2-macroglobulin) sufficiently tightly to resist separation during gel electrophoresis; 2 mol of anhydrotrypsin were bound/mol of alpha 2M, but the interaction differed in important respects from that between active proteinases and alpha 2M. Anhydrotrypsin was bound by the electrophoretically 'fast' form of alpha 2M, although much less effectively than by the 'slow' form. The inactive enzyme was displaced from alpha 2M by trypsin inhibitor, the order of effectiveness being aprotinin > soya-bean trypsin inhibitor > benzamidine. Saturation of alpha 2M with anhydrotrypsin did not prevent subsequent binding and inhibition of active trypsin by the alpha 2M, and the anhydrotrypsin was not displaced during this reaction. Anhydrotrypsin bound by alpha 2M retained its ability to react with antibodies against trypsin, whereas bound trypsin did not.  相似文献   

10.
The binding of 125I-transforming growth factors-beta 1 and beta 2 (TGF-beta 1 and TGF-beta 2) to alpha 2-macroglobulin (alpha 2M) was studied before and after reaction with plasmin, thrombin, trypsin, or methylamine. Complex formation between TGF-beta and native or reacted forms of alpha 2M was demonstrated by non-denaturing polyacrylamide gel electrophoresis and autoradiography. Reaction of native alpha 2M with plasmin or methylamine markedly increased the binding of 125I-TGF-beta 1 and 125I-TGF-beta 2 to alpha 2M. The alpha 2M-plasmin/TGF-beta complexes were minimally dissociated by heparin. Reaction of alpha 2M with thrombin or trypsin reduced the binding of 125I-TGF-beta 1 and 125I-TGF-beta 2; the resulting complexes were readily dissociated by heparin. Complexes between TGF-beta 2 and native or reacted forms of alpha 2M were less dissociable by heparin than the equivalent complexes with TGF-beta 1. These studies demonstrate that the TGF-beta-binding activity of alpha 2M is significantly affected by plasmin, thrombin, trypsin and methylamine. Observations that alpha 2M-plasmin preferentially binds TGFs-beta suggest a mechanism by which alpha 2M may regulate availability of TGFs-beta to target cells in vivo.  相似文献   

11.
Physicochemical studies performed on alpha-2-macroglobulin were correlated with the biological activities of this protein. Equilibrium dialysis of the binding of 65Zn by alpha-2-macroglobulin at pH 7.9 showed heterogeneous binding which could be attributed to two classes of binding sites. The site of greatest affinity for zinc had an apparent stoichiometry (n1 in gatoms/mol of alpha-2-macroglobulin monomer) of 12 and an apparent association constant (K1) of 3.06.10(7). The second binding site had an n2 of 60 and K2 of 1.32.10(5). The trypsin binding activity of alpha-2-macroglobulin did not depend on the presence of zinc in this protein since all but traces of this metal could be removed by EDTA without loss of trypsin binding activity. Saturation of site 1 with zinc did not affect the trypsin binding activity of alpha-2-macroglobulin, but binding of the metal by site 2 progressively decreased the trypsin binding activity by causing an irreversable association of the alpha-2-macroglobulin molecules. Removal of excess zinc from alpha-2-macroglobulin did not restore its trypsin binding activity. Our results also indicate that the high zinc content of alpha-2-macroglobulin (320--770 microgram/g protein) reported in the literature is an artifact and that native alpha-2-macroglobulin contains approximately 150--180 microgram Zn/g protein.  相似文献   

12.
Zinc binding to human alpha 2-macroglobulin was studied to assess its involvement in the structure and function alpha 2-macroglobulin. Equilibrium dialysis experiments indicated multiple classes of zinc-binding sites, the one of highest affinity having a site number of 20 and a Kd value of 8 X 10(-7) M. Native alpha 2-macroglobulin and alpha 2-macroglobulin-trypsin complexes bound comparable amount of zinc. The proteinase inhibitory activity of alpha 2-macroglobulin was not affected by zinc binding at physiological concentrations nor by the removal of zinc by EDTA. Above 25 microM zinc, alpha 2-macroglobulin activity decreased, although binding of [125I]trypsin was not affected. When nondenaturing gel electrophoresis was performed, the preparation of alpha 2-macroglobulin migrated as half-molecules at increasing zinc concentration. Experiments with other divalent cations correlated decreases in alpha 2-macroglobulin activity with apparent dissociation of the alpha 2-macroglobulin tetramer in the presence of copper and mercury, but not barium, cadmium or nickel. While zinc binding to alpha 2-macroglobulin does not function in proteinase inhibition, it might be involved in zinc transport in vivo. At nonphysiological concentrations, zinc and other divalent cations are useful as probes of protein quaternary structure.  相似文献   

13.
Soybean trypsin inhibitor, a protein of Mr = 20,000, has been used to assess the degree of inaccessibility of porcine trypsin within the alpha 2-macroglobulin-trypsin complex. The interaction between alpha 2-macroglobulin-bound trypsin and the inhibitor was demonstrated by affinity chromatography and trypsin inhibition. Whereas the free trypsin-inhibitor association is very fast (k = 1.2 X 10(7) M-1 s-1), the reaction between complexed trypsin and inhibitor takes 10 h to reach equilibrium. In addition, alpha 2-macroglobulin reduces, by several orders of magnitude, the affinity of trypsin for the inhibitor. Only one of the two trypsin molecules of the ternary (trypsin)2-alpha 2-macroglobulin complex is readily accessible to soybean inhibitor. It is postulated that the recently discovered proximity of the alpha 2-macroglobulin binding sites (Pochon, F., Favaudon, V., Tourbez-Perrin, M., and Bieth, J. (1981) J. Biol. Chem. 256, 547-550) accounts for this behavior. In the light of these results it is concluded that the proteinase binding sites are localized on the alpha 2-macroglobulin surface and that the two subunits of this protein are either not identical or not symmetrically arranged.  相似文献   

14.
A monoclonal antibody was obtained from the fusion of spleen cells of mice, immunized with methylamine-treated alpha 2-macroglobulin (alpha 2M), with the myeloma cell line P3-X63-Ag8.653. A competitive binding assay demonstrated that the antibody was specific for a neoantigen expressed on alpha 2M when the inhibitor reacts with proteinases or with methylamine. When immobilized, the monoclonal antibody retained its ability to specifically bind alpha 2M-proteinase complexes or methylamine-treated alpha 2M, both of which could be quantitatively recovered from the immunoaffinity column by lowering the pH to 5.0. Binary alpha 2M-proteinase complexes of trypsin, plasmin, and thrombin, prepared by incubating large amounts of alpha 2M with a small amount of enzyme, were isolated by immunoaffinity chromatography. Each purified complex was characterized with regard to proteinase content, extent of alpha 2M subunit cleavage, extent of thiol ester hydrolysis, and extent of conformational change. Each complex contained 0.8-0.9 mol of proteinase/mol of inhibitor. In the alpha 2M-thrombin, alpha 2M-plasmin, and alpha 2M-trypsin complexes, approximately 50%, 60%, and 75% of the subunits are cleaved, respectively. Titration of sulfhydryl groups revealed that all purified binary complexes contained 2 +/- 0.5 mol of thiol/mol of complex, suggesting that each complex retains two intact thiol ester bonds. When the purified complexes were incubated with excess trypsin or with methylamine, an additional 1-2 mol of sulfhydryl/mol of complex could be titrated.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

15.
We have compared the reactions of trypsin with human alpha 2-macroglobulin (alpha 2M), and three rat plasma protease inhibitors, alpha 1-macroglobulin (alpha 1M), alpha 1-inhibitor III (alpha 1I3), and alpha 2M. All four of these proteins appear to contain reactive thiol esters. The electrophoretic mobility in agarose gels of human and rat alpha 2M is increased by 1 mol of trypsin, while the mobility of alpha 1M and alpha 1I3 is decreased. Treatment with methylamine causes similar mobility changes, except in the case of rat alpha 2M. Titration of human and rat macroglobulins by repeated small additions of trypsin and by assay of liberated SH groups or enhanced ligand fluorescence revealed a stoichiometry of about 1 mol of trypsin/mol of inhibitor. In contrast, addition of macroglobulin to a fixed amount of trypsin and detection of residual amidase or protease activity revealed a stoichiometry of about 2 mol of trypsin for 1 mol of human alpha 2M, about 1.4 mol for rat alpha 1M, and about 1 mol for rat alpha 2M. One mol of trypsin reacted with 2 or more mol of alpha 1I3 by the criteria of SH groups liberated or protease inhibition. Methylamine-treated rat alpha 2M binds a significant amount of trypsin releasing about 2 mol of SH. Radioactive beta-trypsin was covalently bound to subunits of the purified plasma inhibitors. The Mr of the labeled products with rat and human alpha 2M had molecular weights which suggested trypsin was bound to intact as well as cleaved subunit chains and also to multiple chains via cross-linking. Rat alpha 1M also produced a product which may be an intact subunit alpha chain plus trypsin. Greater than 80% of the trypsin was bound covalently to these inhibitors at low molar ratios.  相似文献   

16.
1. Experiments were performed to determine whether the specific collagenases and other metal proteinases are bound and inhibited by alpha(2)-macroglobulin, as are endopeptidases of other classes. 2. A specific collagenase from rabbit synovial cells was inhibited by human serum. The inhibition could be attributed entirely to alpha(2)-macroglobulin; alpha(1)-trypsin inhibitor was not inhibitory. alpha(2)-Macroglobulin presaturated with trypsin or cathepsin B1 did not inhibit collagenase, and pretreatment of alpha(2)-macroglobulin with collagenase prevented subsequent reaction with trypsin. The binding of collagenase by alpha(2)-macroglobulin was not reversible in gel chromatography. 3. The collagenolytic activity of several rheumatoid synovial fluids was completely inhibited by incubation of the fluids with alpha(2)-macroglobulin. 4. The collagenase of human polymorphonuclear-leucocyte granules showed time-dependent inhibition by alpha(2)-macroglobulin. 5. The collagenolytic metal proteinase of Crotalus atrox venom was inhibited by alpha(2)-macroglobulin. 6. The collagenase of Clostridium histolyticum was bound by alpha(2)-macroglobulin, and inhibited more strongly with respect to collagen than with respect to a peptide substrate. 7. Thermolysin, the metal proteinase of Bacillus thermoproteolyticus, was bound and inhibited by alpha(2)-macroglobulin. 8. It was shown by polyacrylamidegel electrophoresis of reduced alpha(2)-macroglobulin in the presence of sodium dodecyl sulphate that synovial-cell collagenase, clostridial collagenase and thermolysin cleave the quarter subunit of alpha(2)-macroglobulin near its mid-point, as do serine proteinases. 9. The results are discussed in relation to previous work, and it is concluded that the characteristics of interaction of the metal proteinases with alpha(2)-macroglobulin are the same as those of other proteinases.  相似文献   

17.
Human cationic (trypsin 1) and anionic (trypsin 2) trypsins were obtained by controlled activation of purified trypsinogens 1 and 2, respectively. The interactions of trypsin 1 and trypsin 2 with human alpha 1-proteinase inhibitor (alpha 1PI) were analysed and compared by studies in vitro. The enzymatic activity and inhibitory capacity measurements were assessed using Glp-Gly-Arg-Nan as substrate. The association rate constants showed that the inhibition of trypsin 2 occurred more than 10 times faster than that of trypsin 1. The equimolar complexes obtained between either trypsin and alpha 1PI were visualized by electrophoresis followed by immunoblotting. The inhibition of the two trypsins was temporary i.e. the complexes trypsin 1-alpha 1PI and trypsin 2-alpha 1PI broke down with time yielding inactive alpha 1PI (Mr 50,000) and active enzyme. But the stability time for trypsin 1-alpha 1PI was much larger than that of trypsin 2-alpha 1PI. In vivo, alpha 1PI is not able to control the activity of trypsin 1 except when alpha 2-macroglobulin (alpha 2M) is already saturated. According to the delay times of inhibition calculated from normal concentrations in serum, alpha 1PI inhibits trypsin 2 as fast as alpha 2M inhibits trypsin 1. These results suggest that a significant role can be assigned to alpha 1PI in the inhibition of trypsin 2 in physiological conditions and of trypsin 1 in pathological ones.  相似文献   

18.
The concentration of alpha 2-macroglobulin in human plasma has been remeasured utilizing a carefully isolated and characterized sample of alpha 2-macroglobulin as a standard. A highly purified sample of alpha 2-macroglobulin with a total trypsin binding capacity of 1.7 mol trypsin/mol alpha 2-macroglobulin was used as a standard for both a radial immunodiffusion and a rocket immunoelectrophoresis technique. With this preparation as a standard, the concentration of alpha 2-macroglobulin in a normal plasma pool over 10,000 donors was found to be about 1.2 mg/ml. A similar concentration (1.3 mg/ml) was found when using a functional trypsin binding assay. This concentration is considerably less than the usually accepted mean of the normal range for alpha 2-macroglobulin.  相似文献   

19.
A papain-binding protein (PB-protein) was purified to homogeneity from the plasma of plaice (Pleuronectes platessa L.). PB-protein inhibited the activity of trypsin and pancreatic elastase (serine proteinases), thermolysin (a metalloproteinase) and papain (a cysteine proteinase). Presaturation of PB-protein with trypsin prevented the subsequent inhibition of thermolysin, and vice versa. Only catalytically active endopeptidases were bound by PB-protein. The catalytic activity of trypsin bound by PB-protein was inhibited by 95% against an insoluble protein substrate, but only by 38% against a low-molecular-weight synthetic substrate. The remaining activity of the bound trypsin was partially protected against further inhibition by soya-bean trypsin inhibitor. Trypsin bound by PB-protein showed a decrease of 67% in its reactivity with antibodies. The inhibitory activity of PB-protein was inactivated at pH 8.0 by methylamine (0.2M) or dithiothreitol (1 mM). The inhibition of proteinases by plaice PB-protein shows the distinctive characteristics of inhibition by human alpha 2-macroglobulin, and it is concluded that the plaice protein is a homologue of the human macroglobulin.  相似文献   

20.
The structures of the two proteinase-binding sites in human alpha 2-macroglobulin (alpha 2M) were probed by treatment of alpha 2M with the serine proteinases thrombin and plasmin. Each proteinase forms an equimolar complex with alpha 2M (a binary alpha 2M-proteinase complex) which results in the activation and cleavage of two internal thiolester bonds in alpha 2M. Binary alpha 2M-proteinase complexes demonstrated an incomplete conformational change as determined by nondenaturing polyacrylamide gel electrophoresis and incomplete receptor recognition site exposure as determined by in vivo plasma elimination studies. Treatment of binary alpha 2M-proteinase complexes with CH3NH2, trypsin, or elastase resulted in cleavage of an additional one or two thiolester bonds in alpha 2M and complete receptor recognition site exposure, demonstrating that a limited conformational change had occurred. Treatment of the alpha 2M-thrombin complex with elastase resulted in the incorporation of approximately 0.5 mol proteinase/mol alpha 2M and completion of the conformational change in the complex. Similar treatment of the alpha 2M-plasmin complex resulted in the incorporation of less than 0.1 mol proteinase/mol alpha 2M. Unlike the alpha 2M-thrombin complex, the alpha 2M-plasmin complex did not undergo a complete conformational change following treatment with CH3NH2 or trypsin. Incubation of this complex with elastase resulted in proteolysis of the kringle 1-4 region of the alpha 2M-bound plasmin heavy chain, and following this treatment the alpha 2M-plasmin complex underwent a complete conformational change. The results of this investigation demonstrate that binary alpha 2M-proteinase complexes retain a relatively intact proteinase-binding site. In the case of the alpha 2M-plasmin complex, however, the heavy chain of alpha 2M-bound plasmin protrudes from the proteinase-binding site and prevents a complete conformational change in the complex despite additional thiolester bond cleavage.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号