首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 640 毫秒
1.
Surface electromyograms (EMGs) were analysed on the short and long head of the biceps brachii (BBSH and BBLH) during single (F and S) or dual (F+S) flexion and supination tasks. It was confirmed, by the analysis of EMG root-mean-square (RMS) values, that the highest activations of BBSH and BBLH were obtained during a maximal dual task. This study was essentially concerned with the analysis of power spectra data obtained during progressive or ramp contractions (RCs). The shape of the power spectra established during the first second of the RCs differs between F, S and F+S tasks. Differences in mean power frequency (MPF) calculated during RCs would be representative of a recruitment of motor units (MUs) that is, at least partly, task-dependent. In order to compare MPF values calculated from RCs performed under different mechanical conditions (F, S and F+S), MPF-RMS(PSD) relationships have been established (RMS(PSD) being defined as the power spectrum density RMS). Both BBSH and BBLH exhibited initial MPF values higher in supination RC than in flexion RC. Because of plateau values reached at the same level of muscle activation whatever the task performed, the slope of the MPF-RMS(PSD) relationship was lower in S than in F. These results are in favour of MU recruitment that is, at least partly, different in F and in S conditions. Dual submaximal tasks seem to mix the activation of the F and S subpopulations of MUs as revealed by the spectral parameters obtained during F+S ramp contractions. This study could find some implication in the field of muscle rehabilitation or reinforcement.  相似文献   

2.
The explosion of data and transactions demands a creative approach for data processing in a variety of applications. Research on remote memory systems (RMSs), so as to exploit the superior characteristics of dynamic random access memory (DRAM), has been performed for many decades, and today’s information explosion galvanizes researchers into shedding new light on the technology. Prior studies have mainly focused on architectural suggestions for such systems, highlighting different design rationale. These studies have shown that choosing the appropriate applications to run on an RMS is important in fully utilizing the advantages of remote memory. This article provides an extensive performance evaluation for various types of data processing applications so as to address the efficacy of an RMS by means of a prototype RMS with reliability functionality. The prototype RMS used is a practical kernel-level RMS that renders large memory data processing feasible. The abstract concept of remote memory was materialized by borrowing unused local memory in commodity PCs via a high speed network capable of Remote Direct Memory Access (RDMA) operations. The prototype RMS uses remote memory without any part of its computation power coming from remote computers. Our experimental results suggest that an RMS can be practical in supporting the rigorous demands of commercial in memory database systems that have high data access locality. Our evaluation also convinces us of the possibility that a reliable RMS can satisfy both the high degree of reliability and efficiency for large memory data processing applications whose data access pattern has high locality.  相似文献   

3.
Exogenous type D simian retroviruses (SRV/D) are prevalent in captive and feral populations of various macaque monkeys. Thus far, five subtypes of SRV/Ds have been reported, three of which (SRV-1, -2 and -3) have been molecularly characterized. Two SRV/D strains (N27 and T150) were isolated from seropositive cynomolgus macaques at the Tsukuba Primate Center (TPC) in Japan, showing clinical signs of SRV/D infection, including anemia and persistent unresponsive diarrhea. Electron microscopy demonstrated that both SRV/D isolates have a virion morphology typical of type D retrovirus. The SRV/D N27 and T150 isolates were essentially the same based on sequence analysis. From homology analysis of the entire gag sequence, the N27 isolate is closely related to the other known SRV/Ds but is distinct from the three molecularly characterized SRV/Ds. Thus, we have tentatively designated the N27 and T150 viruses isolated from TPC cynomolgus macaques as SRV/D-Tsukuba (SRV/D-T).  相似文献   

4.
A novel series of complexes of the type [M(C(24)H(16)N(4))X(2)]; where M = Co(II), Ni(II), Cu(II), Zn(II) and Cd(II); X = Cl(-1), NO(-1)(3), CH(3)COO(-1) has been synthesized by template condensation of 1,8-diaminonaphthalene and glyoxal in the presence of divalent metal salts in methanolic medium. The complexes have been characterized with the help of elemental analyses, conductance measurements, molecular weight determination, magnetic measurements, electronic, NMR, infrared and far infrared spectral studies. The low value of molar conductance indicates them to be non-electrolytes. On the basis of various studies a distorted octahedral geometry may be proposed for all of these complexes. These metal complexes were also tested for their in vitro antibacterial and antifungal activities to assess their inhibiting potential.  相似文献   

5.
Power laws, that is, power spectral densities (PSDs) exhibiting behavior for large frequencies f, have been observed both in microscopic (neural membrane potentials and currents) and macroscopic (electroencephalography; EEG) recordings. While complex network behavior has been suggested to be at the root of this phenomenon, we here demonstrate a possible origin of such power laws in the biophysical properties of single neurons described by the standard cable equation. Taking advantage of the analytical tractability of the so called ball and stick neuron model, we derive general expressions for the PSD transfer functions for a set of measures of neuronal activity: the soma membrane current, the current-dipole moment (corresponding to the single-neuron EEG contribution), and the soma membrane potential. These PSD transfer functions relate the PSDs of the respective measurements to the PSDs of the noisy input currents. With homogeneously distributed input currents across the neuronal membrane we find that all PSD transfer functions express asymptotic high-frequency power laws with power-law exponents analytically identified as for the soma membrane current, for the current-dipole moment, and for the soma membrane potential. Comparison with available data suggests that the apparent power laws observed in the high-frequency end of the PSD spectra may stem from uncorrelated current sources which are homogeneously distributed across the neural membranes and themselves exhibit pink () noise distributions. While the PSD noise spectra at low frequencies may be dominated by synaptic noise, our findings suggest that the high-frequency power laws may originate in noise from intrinsic ion channels. The significance of this finding goes beyond neuroscience as it demonstrates how power laws with a wide range of values for the power-law exponent α may arise from a simple, linear partial differential equation.  相似文献   

6.
Cryopreservation-induced modifications of zona pellucida (ZP) have been explored to a lesser extent compared to other oocyte compartments. Different methods have been applied to identify ZP changes, but most of them are invasive and measure only few properties of ZP. Raman microspectroscopy (RMS) is a powerful technique for studying the molecular composition of cells but to date few studies have been performed on the oocytes using this method. The aim of the present study is to investigate the structural modifications of ZP of vitrified/warmed in vitro matured ovine oocytes by means of RMS. Cumulus-oocyte complexes were recovered from the ovaries of slaughtered adult sheep, matured in vitro and vitrified following the Minimum Essential Volume method using cryotops. ZPs of vitrified/warmed oocytes (VITRI), were exposed to vitrification solutions but not cryopreserved (CPA-exp) and untreated oocytes (CTR) were analyzed by RMS. We focused our analysis on the ZP protein and carbohydrate components by analyzing the 1230-1300 cm(-1) amide III region and the 1020-1140 cm(-1) spectral range in RMS spectra, respectively. The spectral profiles in the ranges of proteins and carbohydrates were comparable between CTR and CPA-exp ZPs, whereas VITRI ZPs showed a significantly altered protein secondary structure characterized by an increase in β-sheet content and a decrease in the α-helix content. A significant modification of the carbohydrate components was also observed. This study demonstrates that vitrification of ovine oocytes induces biochemical changes of ZP related to the secondary structure of proteins and carbohydrate residues. Cryoprotectants do not strongly alter the molecular composition of ZP which is affected mainly by cooling. Raman technology offers a powerful and non-invasive tool to assess molecular modifications induced by cryopreservation in oocytes.  相似文献   

7.
A high-throughput screening method has been developed which enables functional analysis of bacteriorhodpsin in whole cell pastes. Reflectance spectra, from as little as 5 ml of Halobacterium salinarum cells, show close correspondence to that obtained from the purified purple membrane (PM), containing bacteriorhodopsin (BR) as the sole protein component. We demonstrate accurate quantification of BR accumulation by ratiometric analysis of BR (Amax 568) and a membrane-bound cytochrome (Amax 410). In addition, ground-state light- and dark-adapted (LA and DA, respectively) spectral differences were determined with high accuracy and precision. Using cells expressing the BR mutant D85N, we monitored transitions between intermediate-state homologues of the reprotonation phase of the light-activated proton pumping mechanism. We demonstrate that phenotypes of three mutants (D85N/T170C, D85N/D96N, and D85N/R82Q) previously characterized for their effect on photocycle transitions are reproduced in the whole cell samples. D85N/T170C stabilizes accumulation of the N state while D85N/D96N accumulates no N state. D85N/R82Q was found to have perturbed the pKa of M accumulation. These studies illustrate the correspondence between pH-dependent ground-state transitions accessed by D85N and the transitions accessed by the wild-type protein following photoexcitation. We demonstrate that whole cell reflectance spectroscopy can be used to efficiently characterize the large numbers of mutants generated by engineering strategies that exploit saturation mutagenesis.  相似文献   

8.
The purpose of this study was to evaluate gender and muscle differences in electromyographic (EMG) amplitude and median frequency mean and standard deviation during maximal voluntary contractions of the quadriceps femoris. Thirty recreationally active volunteers were assessed for isometric EMG activity of the vastus medialis (VM), vastus lateralis (VL), and rectus femoris (RF) muscles during three 5-s maximal isometric voluntary contractions (MVCs). Median frequency of the three muscles was assessed through a power spectral analysis (fast Fourier transformation, Hanning window processing, 512 points). The power spectral analysis was performed during the middle 3 s of each contraction over 11 consecutive, 512 ms epochs overlapping each other by half their length (256 ms). The median frequency (F(med)) for each of the 11 windows was determined for each muscle. The mean and standard deviation of the F(med) across the 11 overlapping windows were then calculated for each contraction and muscle. EMG amplitude was determined by calculating the root mean square (RMS-50 ms time constant) over the same contraction period for each muscle. The mean amplitude and standard deviation about the mean value were then determined. A three-factor ANOVA with repeated measures was performed on the calculated F(med) mean and standard deviation values, and RMS standard deviations, to assess any gender, muscle, or trial differences, or interactions. A two-factor (gender by muscle) ANOVA with repeated measures was performed on the RMS mean amplitude for each muscle. Intraclass correlation coefficients (ICCs-2,1), standard errors of measurement (SEMs), and associated 95% confidence intervals were then calculated for maximal quadriceps torque and F(med) for each muscle. The results from this study demonstrated that the VL muscle displayed significantly higher F(med) values than the RF and VM muscles. The RF muscle showed significantly higher F(med) values (mean of 11 overlapping windows) than the VM muscle. Intrasession reliability was found to be high for the calculated mean values (ICC=0.85-0.96), but was shown to be low for variability (ICC=0.13-0.45). The major findings of this study support the notion that the EMG signal is "quasi-random" in nature, as demonstrated by the reproducible F(med) means and unreliable variability.  相似文献   

9.
A series of β-keto esters were synthesized from heteroaryl esters and ethyl acetate using LiHMDS as base at -50 to -30 °C. The increase in yields of cross condensed product were observed and the percentage of self condensed product was reduced drastically by applying the suitable base (LiHMDS), solvent and the minimum amount of ethyl acetate. All these β-keto esters were characterized using (1)H NMR, (13)C NMR and mass spectral data. A plausible mechanism is also depicted to prove the formation of trans-esterified products. All the synthesized compounds were subjected to test for their cytotoxicity towards various cancer cell lines and also tested for their antimicrobial activity towards various bacterial and fungal strains and some of them were found to have promising activity.  相似文献   

10.
The aim of this study was to investigate the long term reliability of surface electromyography (sEMG) measurements in adults with cystic fibrosis (CF). Eighteen healthy subjects (CO) and sixteen adults with CF were tested on two occasions, six weeks apart. sEMG was recorded from the rectus femoris, vastus lateralis and vastus medialis obliquus muscles during maximal voluntary contraction (MVC) and 50% MVC until exhaustion. Quadriceps muscle activity during 50% MVC was described using four measures (initial, final, normalized and slope values) for both frequency and time domain. Relative (ICC) and absolute (SEM) reliabilities were applied to asses test-retest reliability. In CF group, median frequency (MDF) values for 100% MVC and initial, final and normalized final MDF for 50% MVC demonstrated moderate to very high relative reliability (ICC = 0.60–0.91) and low variability (SEM = 5.5–13%). MDF slope showed large variability in both groups. Root mean square (RMS) values were not reproducible in both groups whatever the intensity of exercise and can not be recommended as outcomes parameters. In conclusion, sEMG measurements during maximal and submaximal isometric contractions could be valid and reliable tools for clinical applications in cystic fibrosis patients but mainly in the frequency domain and from rectus femoris.  相似文献   

11.
This study sought to characterize muscle loading and fatigue during static shoulder abductions with varying force. In a supine posture, participants maintained fixed shoulder abductions against a time-varying external resistance, generated by a dynamometer-spring mechanism. Patterns (cumulative distribution) of the external resistance were varied by selecting different 10th and 90th percentiles of the distribution. Dynamometer angular velocities were also varied, to reflect different rates of cyclic muscle contraction. The degree of local fatigue development was assessed by common measures, including endurance time, strength reduction, and perceived discomfort. Myoelectric (EMG) signals were continuously obtained from the middle deltoid muscle throughout experimental exercise (60min max). Changes in EMG root-mean-square (RMS) and spectral measures (derived from 1-s windows at peaks in the cyclic contractions) were used as manifestations of muscle fatigue. For each minute, the RMS signal was further reduced using two methods, the cumulative probability distribution of EMG (CPDE) and exposure variation analysis (EVA). The former resulted in three percentile values (10th, 50th, and 90th), whereas the latter method resulted in 10 different measures (grouped by EMG activity level and duration). A main finding of the study was the applicability of several common fatigue indicators for these cyclic, repetitive exertions. Overall, the use of CPDE and EVA to characterize task differences and predict muscle fatigue was found to have limited value.  相似文献   

12.
长江航运业的快速发展导致长江中船舶数量激增,相应的水体噪声污染可能对同水域的长江江豚(Neophocaena asiaeorientalis asiaeorientalis)产生一定的负面影响,本研究采用宽频录音设备对长江和畅洲北汊非正式通航江段的各类常见大型船舶(长>15m且宽>5m)的航行噪声进行了记录,并分析其峰值-峰值声压级强度(SPLp-p)和功率谱密度(PSD)等。结果表明,大型船舶的航行噪声能量分布频率范围较广(>100kHz),但主要集中于中低频(<10kHz)部分,各频率(20Hz~144kHz)处的均方根声压级(SPLrms)对环境背景噪声在该频率处的噪声增量范围为3.7~66.5dB。接收到的1/3倍频程声压级(TOL)在各频率处都大于70dB,在8~140kHz频段内都高于长江江豚的听觉阈值。说明大型船舶的航行噪声可能会对长江江豚个体间的声通讯及听觉带来不利影响,如听觉掩盖。  相似文献   

13.
This study aimed to examine within-day and between-days intratester reliability of mechanomyography (MMG) in assessing muscle fatigue. An accelerometer was used to detect the MMG signal from rectus femoris. Thirty one healthy subjects (15 males) with no prior knee problems initially performed three maximum voluntary contractions (MVCs) using an ISOCOM dynamometer. After 10 min rest, subjects performed a fatiguing protocol in which they performed three isometric knee extensions at 75% MVC for 40 s. The fatiguing protocol was repeated on two other days, two to four days apart for between-days reliability. MMG activity was determined by overall root mean squared amplitude (RMS), mean power frequency (MPF) and median frequency (MF) during a 40 s contraction. RMS, MPF and MF linear regression slopes were also analysed. Intraclass Correlation Coefficients (ICC); ICC1,1 and ICC1,2 were used to assess within-day reliability and between-days reliability respectively. Standard error of measurement (SEM) and smallest detectable difference (SDD) described the within-subjects variability. MMG fatigue measures using linear regression slopes showed low reliability and large between-days error (ICC1,2 = 0.43–0.46; SDD = 306.0–324.8% for MPF and MF slopes respectively). Overall MPF and MF, on the other hand, were reliable with high ICCs and lower SDDs compared to linear slopes (ICC1,2 = 0.79–0.83; SDD = 21.9–22.8% for MPF and MF respectively). ICC1,2 for overall MMG RMS and linear RMS slopes were 0.81 and 0.66 respectively; however, the SDDs were high (56.4% and 268.8% respectively). The poor between-days reliability found in this study suggests caution in using MMG RMS, MPF and MF and their corresponding slopes in assessing muscle fatigue.  相似文献   

14.
Synaptic plasticity represents the long lasting activity-related strengthening or weakening of synaptic transmission, whose well-characterized types are the long term potentiation and depression. Despite this classical definition, however, the molecular mechanisms by which synaptic plasticity may occur appear to be extremely complex and various. The post-synaptic density (PSD) of glutamatergic synapses is a major site for synaptic plasticity processes and alterations of PSD members have been recently implicated in neuropsychiatric diseases where an impairment of synaptic plasticity has also been reported. Among PSD members, scaffolding proteins have been demonstrated to bridge surface receptors with their intracellular effectors and to regulate receptors distribution and localization both at surface membranes and within the PSD. This review will focus on the molecular physiology and pathophysiology of synaptic plasticity processes, which are tuned by scaffolding PSD proteins and their close related partners, through the modulation of receptor localization and distribution at post-synaptic sites. We suggest that, by regulating both the compartmentalization of receptors along surface membrane and their degradation as well as by modulating receptor trafficking into the PSD, postsynaptic scaffolding proteins may contribute to form distinct signaling micro-domains, whose efficacy in transmitting synaptic signals depends on the dynamic stability of the scaffold, which in turn is provided by relative amounts and post-translational modifications of scaffolding members. The putative relevance for neuropsychiatric diseases and possible pathophysiological mechanisms are discussed in the last part of this work.  相似文献   

15.
Myristoylated alanine-rich C kinase substrate (MARCKS) is an unfolded protein that contains well characterized actin-binding sites within the phosphorylation site domain (PSD), yet paradoxically, we now find that intact MARCKS does not bind to actin. Intact MARCKS also does not bind as well to calmodulin as does the PSD alone. Myristoylation at the N terminus alters how calmodulin binds to MARCKS, implying that, despite its unfolded state, the distant N terminus influences binding events at the PSD. We show that the free PSD binds with site specificity to MARCKS, suggesting that long-range intramolecular interactions within MARCKS are also possible. Because of the unusual primary sequence of MARCKS with an overall isoelectric point of 4.2 yet a very basic PSD (overall charge of +13), we speculated that ionic interactions between oppositely charged domains of MARCKS were responsible for long-range interactions within MARCKS that sterically influence binding events at the PSD and that explain the observed differences between properties of the PSD and MARCKS. Consistent with this hypothesis, chemical modifications of MARCKS that neutralize negatively charged residues outside of the PSD allow the PSD to bind to actin and increase the affinity of MARCKS for calmodulin. Similarly, both myristoylation of MARCKS and cleavage of MARCKS by calpain are shown to increase the availability of the PSD so as to activate its actin-binding activity. Because abundant evidence supports the conclusion that MARCKS is an important protein in regulating actin dynamics, our data imply that post-translational modifications of MARCKS are necessary and sufficient to regulate actin-binding activity.  相似文献   

16.
This paper studies the time-dependent power spectral density (PSD) estimation of nonstationary surface electromyography (SEMG) signals and its application to fatigue analysis during isometric muscle contraction. The conventional time-dependent PSD estimation methods exhibit large variabilities in estimating the instantaneous SEMG parameters so that they often fail to identify the changing patterns of short-period SEMG signals and gauge the extent of fatigue in specific muscle groups. To address this problem, a time-varying autoregressive (TVAR) model is proposed in this paper to describe the SEMG signal, and then the recursive least-squares (RLS) and basis function expansion (BFE) methods are used to estimate the model coefficients and the time-dependent PSD. The instantaneous parameters extracted from the PSD estimation are evaluated and compared in terms of reliability, accuracy, and complexity. Experimental results on synthesized and real SEMG data show that the proposed TVAR-model-based PSD estimators can achieve more stable and precise instantaneous parameter estimation than conventional methods.  相似文献   

17.
Understanding the inherent dynamics of the EEG associated to sleep-waking can provide insights into its basic neural regulation. By characterizing the local properties of the EEG using power spectrum, empirical mode decomposition (EMD) and Hilbert-spectral analysis, we can examine the dynamics over a range of time-scales. We analyzed rat EEG during wake, NREMS and REMS using these methods. The average instantaneous phase, power spectral density (PSD) of intrinsic mode functions (IMFs) and the energy content in various frequency bands show characteristic changes in each of the vigilance states. The 2nd and 7th IMFs show changes in PSD for wake and REMS, suggesting that those modes may carry wake- and REMS-associated cognitive, conscious and behavior-specific information of an individual even though the EEG may appear similar. The energy content in θ2 (6Hz-9Hz) band of the 1st IMF for REMS is larger than that of wake. The decrease in the phase function of IMFs from wake to REMS to NREMS indicates decrease of the mean frequency in these states, respectively. The rate of information processing in waking state is more in the time scale described by the first three IMFs than in REMS state. However, for IMF5-IMF7, the rate is more for REMS than that for wake. We obtained Hilbert-Huang spectral entropy, which is a suitable measure of information processing in each of these state-specific EEG. It is possible to evaluate the complex dynamics of the EEG in each of the vigilance states by applying measures based on EMD and Hilbert-transform. Our results suggest that the EMD based nonlinear measures of the EEG can provide useful estimates of the information possessed by various oscillations associated with the vigilance states. Further, the EMD-based spectral measures may have implications in understanding anatamo-physiological correlates of sleep-waking behavior and clinical diagnosis of sleep-pathology.  相似文献   

18.
Rhabdomyosarcoma (RMS), a form of soft tissue sarcoma, is one of the most common pediatric malignancies. A complex disease with at least three different subtypes, it is characterized by perturbations in a number of signaling pathways and genetic abnormalities. Extensive clinical studies have helped classify these tumors into high and low risk groups to facilitate different treatment regimens. Research into the etiology of the disease has helped uncover numerous potential therapeutic intervention points which can be tested on various animal models of RMS; both genetically modified models and tumor xenograft models. Taken together, there has been a marked increase in the survival rate of RMS patients but the highly invasive, metastatic forms of the disease continue to baffle researchers. This review aims to highlight and summarize some of the most important developments in characterization and in vivo model generation for RMS research, in the last few decades.  相似文献   

19.
Assessment of brain connectivity among different brain areas during cognitive or motor tasks is a crucial problem in neuroscience today. Aim of this work is to use a neural mass model to assess the effect of various connectivity patterns in cortical electroencephalogram (EEG) power spectral density, and investigate the possibility to derive connectivity circuits from EEG data. To this end, a model of an individual region of interest (ROI) has been built as the parallel arrangement of three populations, each described as in Wendling et al. (Eur J Neurosci 15:1499–1508, 2002). Connectivity among ROIs includes three parameters, which specify the strength of connection in the different frequency bands. The following main steps have been followed: (1) we analyzed how the power spectral density (PSD) is significantly modified by the kind of coupling hypothesized among the ROIs; (2) with the model, and using an automatic fitting procedure, we looked for a simple connectivity circuit able to reproduce PSD of cortical EEG in three ROIs during a finger-movement task. The estimated parameters represent the strength of connections among the ROIs in the different frequency bands. Cortical EEGs were computed with an inverse propagation algorithm, starting from measurement performed with 96 electrodes on the scalp. The present study suggests that the model can be used as a simulation tool, able to mimic the effect of connectivity on EEG. Moreover, it can be used to look for simple connectivity circuits, able to explain the main features of observed cortical PSD. These results may open new prospectives in the use of neurophysiological models, instead of empirical models, to assess effective connectivity from neuroimaging information.  相似文献   

20.
We present an algorithm to build self-avoiding lattice models of chain molecules with low RMS deviation from their actual 3D structures. To find the optimal coordinates for the lattice chain model, we minimize a function that consists of three terms: (1) the sum of squared deviations of link coordinates on a lattice from their off-lattice values, (2) the sum of “short-range” terms, penalizing violation of chain connectivity, and (3) the sum of “long-range” repulsive terms, penalizing chain self-intersections. We treat this function as a chain molecule “energy” and minimize it using self-consistent field (SCF) theory to represent the pairwise link repulsions as 3D fields acting on the links. The statistical mechanics of chain molecules enables computation of the chain distribution in this field on the lattice. The field is refined by iteration to become self-consistent with the chain distribution, then dynamic programming is used to find the optimal lattice model as the “lowest-energy” chain pathway in this SCF. We have tested the method on one of the coarsest (and most difficult) lattices used for model building on proteins of all structural types and show that the method is adequate for building self-avoiding models of proteins with low RMS deviations from the actual structures. © 1996 Wiley-Liss, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号