首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Equine pituitary extract (EPE) has been reported to induce heightened follicular development in mares, but the response is inconsistent and lower than results obtained in ruminants undergoing standard superovulatory protocols. Three separate experiments were conducted to improve the ovarian response to EPE by evaluating: (1) effect of increasing the frequency or dose of EPE treatment; (2) use of a potent gonadotropin-releasing hormone agonist (GnRH-a) prior to EPE stimulation; (3) administration of EPE twice daily in successively decreasing doses. In the first experiment, 50 mares were randomly assigned to one of four treatment groups. Mares received (1) 25 mg EPE once daily; (2) 50 mg EPE once daily; (3) 12.5 mg EPE twice daily; or (4) 25 mg EPE twice daily. All mares began EPE treatment 5 days after detection of ovulation and received a single dose of cloprostenol sodium 7 days postovulation. EPE was discontinued once half of a cohort of follicles reached a diameter of >35 mm and hCG was administered. Mares receiving 50 mg of EPE once daily developed a greater number (P = 0.008) of preovulatory follicles than the remaining groups of EPE-treated mares, and more (P = 0.06) ovulations were detected for mares receiving 25 mg EPE twice daily compared to those receiving either 25 mg EPE once daily and 12.5 mg EPE twice daily. Embryo recovery per mare was greater (P = 0.05) in the mares that received 12.5 mg EPE twice daily than those that received 25 mg EPE once daily. In Experiment 2, 20 randomly selected mares received either 25 mg EPE twice daily beginning 5 days after a spontaneous ovulation, or two doses of a GnRH-a agonist upon detection of a follicle >35 mm and 25 mg EPE twice daily beginning 5 days after ovulation. Twenty-four hours after administration of hCG, oocytes were recovered by transvaginal aspiration from all follicles >35 mm. No differences were observed between groups in the numbers of preovulatory follicles generated (P = 0.54) and oocytes recovered (P = 0.40) per mare. In Experiment 3, 18 mares were randomly assigned to one of two treatment groups. Then, 6-11 days after ovulation, mares were administered a dose of PGF2, and concomitantly began twice-daily treatments with EPE given in successively declining doses, or a dose of PGF2alpha, but no EPE treatment. Mares administered EPE developed a higher (P = 0.0004) number of follicles > or = 35 mm, experienced more (P = 0.02) ovulations, and yielded a greater (P = 0.0006) number of embryos than untreated mares. In summary, doubling the dose of EPE generated a greater ovarian response, while increasing the frequency of treatment, but not necessarily the dose, improved embryo collection. Additionally, pretreatment with a GnRH-a prior to ovarian stimulation did not enhance the response to EPE or oocyte recovery rates.  相似文献   

2.
Cyclic mares were assigned to 1 of 3 treatments (n=15 per group): Group 1 received equine pituitary extract (EPE; 25 mg, i.m.) on Day 5 after ovulation; Group 2 received EPE on Day 12 after ovulation; while Group 3 received 3.3 mg of GnRH analogue (buserelin implant) on the day of ovulation and 25 mg, i.m. EPE on Day 12. Mares in each group were given 10 mg PGF(2)alpha on the first and second day of EPE treatment. The EPE treatment was continued daily until the first spontaneous ovulation, at which time 3,300 IU of human chorionic gonadotropin (hCG) were given to induce further ovulations. Mares in estrus with a >/=35 mm follicle were inseminated every other day with pooled semen from 2 stallions. Embryo recovery was attempted 7 days after the last ovulation. Follicular changes and embryo recovery during 15 estrous cycles prior to treatment were used as control data. During treatment, the number of follicles >/=25 mm was higher (P<0.05) for Day 5 than for Day 12 or control mares, but the number for Day-5 mares was similar (P>0.05) to that of mares treated with buserelin implants (Group 3). Initiation of EPE treatment on Day 5 resulted in a greater (P<0.05) number of ovulation (2.9) than on Day 12 (1.1) or in the control mares (1.3) but not in the buserelin-treated mares (1.8). The number of embryos recovered from mares in the Day 5 (1.2), Day 12 (1.0), buserelin (0.9) and control (0.9) groups was similar (P>0.05). The conclusions were 1) EPE initiated in early diestrus increased follicular development and ovulation and 2) treatment with GnRH analogue marginally improved response to EPE treatment.  相似文献   

3.
Equine pituitary extract (EPE), has been reported to induce multiple ovulation in mares, however ovulation rates are poor in comparison to those obtained in other species. Attempts to improve the effectiveness of EPE for induction of superovulation in cyclic mares has focused on daily frequency of EPE treatment. Two experiments were performed to compare the ovarian response of cyclic mares given EPE once or twice-daily. Mares were assigned to one of two treatment groups 6 to 8 days after ovulation: prostaglandin was given once and EPE (25 mg) was given once daily (Group 1) or twice daily (Group 2). In Experiment 1, more (P < 0.05) follicles > or = 35 mm were detected in mares treated with EPE twice daily (6.1 +/- 3.1) than in mares treated once a daily (2.0 +/- 0.6). In a second experiment, the embryo recovery rates of mares given the two EPE protocols used in Experiment 1 were compared. The number of ovulations per mare was higher (P < 0.05) for mares treated twice-daily (7.1 +/- 5.1, range 3 to 18) than for mares treated once daily (2.4 +/- 1.8, range 1 to 6). The number of embryos produced per mare was higher (P < 0.05) in mares in Group 2 (3.5) than in Group 1 (1.6). Although it is not clear whether the increased ovulation rate is due specifically to dose or frequency, twice-daily administration of a high dose of EPE significantly improved follicular development, ovulation and embryo recovery over the standard treatment of once-daily injection.  相似文献   

4.
The dynamics of ovarian follicular development depend on a timely interaction of gonadotropins and gonadal feedback in the mare. The development and efficacy of genetically cloned recombinant equine gonadotropins (reFSH and reLH) increase follicular activity and induce ovulation, respectively, but an optimum embryo recovery regimen in superovulated mares has not been established. The objective of this study was to determine if treatment with reFSH followed by reLH would increase the embryo per ovulation ratio and the number of embryos recovered after superovulation in mares. Sixteen estrous cycling mares of light horse breeds (4-12 years) were randomly assigned to one of two groups: Group 1; reFSH (0.65mg)/PBS (n=8) and Group 2; reFSH (0.65mg)/reLH (1.5mg) (n=8). On the day of a 22-25mm follicle post-ovulation mares were injected IV twice daily with reFSH for 3 days (PGF(2α) given IM on the second day of treatment) and once per day thereafter until a follicle or cohort of follicles reached 29mm after which either PBS or reLH was added and both groups injected IV twice daily until the presence of a 32mm follicles, when reFSH was discontinued. Thereafter, mares were injected three times daily IV with only PBS or reLH until a majority of follicles reached 35-38mm when treatment was discontinued. Mares were given hCG IV (2500IU) to induce ovulation and bred. Embryo recovery was performed on day 8 day post-treatment ovulation. Daily jugular blood samples were collected from the time of first ovulation until 8 days post-treatment ovulation. Blood samples were analyzed for LH, FSH, estradiol, progesterone and inhibin by validated RIA. Duration of treatment to a ≥35mm follicle(s) and number of ovulatory size follicles were similar between reFSH/reLH and reFSH/PBS treated mares. The number of ovulations was greater (P<0.01) in the reFSH/reLH group, while the number of anovulatory follicles was less (P<0.05) compared to the reFSH/PBS group. Number of total embryos recovered were greater in reFSH/reLH mares than in the reFSH/PBS mares (P≤0.01). The embryo per ovulation ratio tended to be greater (P=0.07) in the reFSH/reLH mares. Circulating concentrations of estradiol, inhibin, LH and progesterone were not statistically different between groups. Plasma concentrations of FSH were less (P<0.01) in the reFSH/reLH treated mares on days 0, 1, 4, 6, 7 and 8 post-treatment ovulation. In summary, reFSH with the addition of reLH, which is critical for final follicular and oocyte maturation, was effective in increasing the number of ovulations and embryos recovered, as well as reduce the number of anovulatory follicles, making this a more viable option than treatment with reFSH alone. Further evaluation is needed to determine the dose and regimen of reFSH/reLH to significantly increase the embryo per ovulation ratio.  相似文献   

5.
Embryo recovery per ovulation has been shown to be lower in superovulated mares than in untreated controls. The objectives of this study were to 1) determine whether follicles stimulated with superovulatory treatment ovulate or luteinize without ovulation, 2) determine fertilization rates of oocytes in oviducts of superovulated and control mares, and 3) evaluate viability of early stage embryos from superovulated and control mares when cultured in equine oviductal cell-conditioned medium. Cyclic mares were randomly assigned to 1 of 2 groups (n=14 per group) on the day of ovulation (Day 0): Group 1 received 40 mg of equine pituitary extract (EPE; i.m.) daily beginning on Day 5 after ovulation; mares assigned to Group 2 served as untreated controls. All mares were given 10 mg PGF(2alpha) on Day 5 and Day 6, and 3,300 IU of human chorionic gonadotropin (hCG) were administered intravenously once mares developed 2 follicles >/=35 mm in diameter (Group 1) or 1 follicle >/=35 mm in diameter (Group 2). Mares in estrus were inseminated daily with 1 x 10(9) progressively motile spermatozoa once a >/=35 mm follicle was obtained. Two days after the last ovulation the ovaries and oviducts were removed. Ovaries were examined for ovulatory tracts to confirm ovulation, while the oviducts were trimmed and flushed with Dulbeccos PBS + 10% FCS to recover fertilized oocytes. All fertilized oocytes (embryos) recovered were cultured in vitro for 5 d using TCM-199 conditioned with equine oviductal cells. Ninety-two percent of the CL's from EPE mares resulted from ovulations compared with 94% for mares in the control group (P>0.05). The percentages of ovulations resulting in embryos were 57.1 and 62.5% for EPE-treated and control mares, respectively (P>0.05). Eighty-eight (Group 1) and 91% (Group 2) of the freshly ovulated oocytes recovered were fertilized (P>0.05). After 5 d of culture, 46.4 and 40.0% of the embryos from EPE-treated and control mares developed to the morula or early blastocyst stage (P>0.05). In summary, the CL's formed in superovulated mares were from ovulations not luteinizations. Although embryo recovery was less than expected, fertilization rates and embryo development were similar (P>0.05) between superovulated and control mares.  相似文献   

6.
Traditionally, mares are put under artificial lights to advance the first ovulation of the year. The aim of the present study was to determine the efficacy of recombinant equine FSH (reFSH) in stimulating follicular development and advancing the first ovulation of the year in seasonally anestrous mares compared with anestrous mares given a placebo. Both groups of mares were housed under ambient light conditions. Sixty deep anestrous mares of light horse breeds (follicular diameters ≤20 mm in diameter and progesterone <1 ng/mL) were maintained under a natural photoperiod at three different sites: University of California, Davis, Colorado State University, and University of Kentucky Gluck Centre. Twenty mares at each site were randomly allocated to receive either 0.65 mg of reFSH (group A: treatment; n = 10) or a placebo (group B: control; n = 10) twice daily by im beginning on January 31. Treatment continued until one or more preovulatory follicles developed or up to a maximum of 15 days. Randomized treatments were blinded. Follicular development was closely monitored by transrectal ultrasonography. When the largest follicle reached ≥35 mm in diameter, reFSH treatment was discontinued and an injection of 2500 international units of hCG was administered iv 36 hours later to induce ovulation. Jugular blood samples were collected daily from all mares at University of California, Davis, and processed for LH, FSH, progesterone, estradiol-17β, and immunoreactive-inhibin by RIA. All 30 mares receiving reFSH (group A) developed follicles ≥35 mm within 7.4 ± 1.6 days of treatment. Twenty-three of the 30 reFSH-treated mares (group A) ovulated within 72 hours after hCG administration. In contrast, mares in group B (placebo, control) did not exhibit significant follicular development and none ovulated within the 15-day observation period. Mares in group A had significantly higher plasma levels of FSH, estradiol-17β, and immunoreactive-inhibin during treatment but did not exhibit a preovulatory LH surge. Mares administered reFSH returned to anestrus and spontaneously ovulated at a similar calendar date as control mares. These data indicate that reFSH was effective in stimulating the development of ovarian follicles and advancing the first ovulation of the year in seasonally anestrous mares under ambient lights but was not successful in inducing continued cyclicity.  相似文献   

7.
A linear-array ultrasound scanner with a 5-MHz transducer was evaluated for studying follicular and luteal status in mares, and the ultrasonic properties of equine ovaries were characterized. Follicular diameters were estimated in vivo and after removing and slicing six ovaries. Correlation coefficients between the two kinds of determinations were 0.91 for number of follicles >/=2 mm in diameter and 0.95 for diameter of largest follicle. The ovaries of five mares were examined daily until all mares had been examined from three days before an ovulation to three days after the next ovulation. There was a significant difference among days for diameter of largest follicle and second largest follicle and for number of follicles 2-5 mm, 16-20 mm, and >20 mm. Differences seemed to be caused by the presence of many 2- to 5-mm follicles during early diestrus, initiation of growth of large follicles at mid-cycle, selective accelerated growth of an ovulatory follicle beginning five days before ovulation, and regression of large nonovulatory follicles a few days before ovulation. In one of the five mares, the corpus luteum was identified throughout the interovulatory interval, and the corresponding corpus albicans was identified for three days after the second ovulation. In the other four mares, the corpus luteum was last identified an average of 16 days after ovulation or five days before the next ovulation. In a blind study, the location of the corpus luteum (left or right ovary) as determined by ultrasonography agreed with a previous determination of side of ovulation by palpation in 88% of 40 mares on days 0-14. In the remaining 12% and in all of 12 estrous mares, the location was recorded as uncertain. The ultrasound instrument was judged effective for monitoring and evaluating follicles and corpora lutea.  相似文献   

8.
Ovum pick-up (OPU) by transvaginal ultrasound guided aspiration (TUGA) is a procedure applied in equine-assisted reproduction programs such as oocyte transfer and in vitro embryo production. Despite a large number of studies reporting that it is a repeatable and safe technique, little information is available about the effect of repeated punctures on fertility of mares. Moreover, even if flushing follicles improves the oocyte recovery rate, to our knowledge the efficiency of flushing estrous and diestrous follicles has not been evaluated. The aims of the present study were (1) evaluate if repeated TUGAs negatively effects fertility and (2) investigate the influence of flushing the follicular cavity (as compared to aspiration only-unflushed) on the recovery rate from follicles of different sizes and in different stages of the estrous cycle. Seventy-six TUGAs were carried out on 20 mares during the breeding season; 153 follicles were aspirated and 31 oocytes were recovered (20.3% per follicle; 40.8% per TUGA attempt). Of the 76 aspirations, 52 were carried out during estrus and 24 in diestrus. Flushing the follicular cavity significantly increased (P < 0.01) the oocyte recovery rate from estrous follicles (13/28, 46.4% flushed versus 3/24, 12.5% aspirated only) but not (P > 0.05) from diestrous follicles of different diameters (3/30, 10% flushed versus 2/36, 5.6% aspirated only for follicles <2 cm in diameter; 6/20, 30% flushed versus 4/15, 26.7% aspirated only for follicles > or =2 cm in diameter). Mares underwent ultrasonic examinations after every aspiration and no alteration was found with the exception of two mares in which the corpus luteum (CL) did not form following aspiration of estrous follicle. Of the 20 mares involved in this study, 10 were artificially inseminated with fresh semen from a single fertile stallion at the first spontaneous heat following the previous aspiration. Of the 10 inseminated mares, 7 were found to be pregnant 16, 30 and 50 days after artificial insemination (AI), indicating that repeated TUGAs did not adversely affect fertility.  相似文献   

9.
Meiosis activating sterols (MAS) are pre-cholesterol sterols that can be isolated from follicular fluid (FF-MAS) or testes (T-MAS). Meiosis activating sterols trigger the resumption of meiosis in cultured meiotically competent oocytes. In the present work MAS, cholesterol and progesterone were assayed by HPLC in follicular fluids collected from pony mares at fixed days after the last ovulation. Follicles were divided into two groups according to whether they were aspirated before or after Day 17 after the last ovulation. The latter group was further divided according to whether the follicle diameter was < or = 22 mm or > 27 mm. Both FF-MAS and T-MAS were detected in almost all samples. Overall, the total amount of MAS in the follicular fluids increased with the size of the follicles but was accompanied by a decrease in the amount of free cholesterol. The amounts of MAS and progesterone in > 27 mm follicles aspirated after Day 17 were significantly higher as compared to the other groups. A transversal cohort analysis showed that the largest follicle at the time of aspiration had the highest level of MAS after day 17 of the cycle, which was not always true for follicle samples aspirated before Day 17 of the cycle. The study demonstrates that the content of MAS in equine follicular fluids increased during follicular maturation concomitant with a decrease in the concentration of free cholesterol. Moreover, MAS concentration is higher in dominant follicles than in subordinate follicles. The MAS may therefore play an as yet unknown physiological role during pre-ovulatory maturation.  相似文献   

10.
This study was conducted to test the hypothesis that supplementation of growing follicles with LH during the early spring transitional period would promote the development of steroidogenically active, dominant follicles with the ability to respond to an ovulatory dose of hCG. Mares during early transition were randomly assigned to receive a subovulatory dose of equine LH (in the form of a purified equine pituitary fraction) or saline (transitional control; n = 7 mares per group) following ablation of all follicles >15 mm. Treatments were administered intravenously every 12 h from the day the largest follicle of the post-ablation wave reached 20 mm until a follicle reached >32 mm, when an ovulatory dose of hCG (3000 IU) was given. Saline-treated mares during June and July were used as ovulatory controls. In a preliminary study, injection of this pituitary fraction (eLH) to anestrus mares was followed by an increase in circulating levels of LH (P < 0.01) but not FSH (P > 0.6). Administration of eLH during early transition stimulated the growth of the dominant follicle (Group x Day, P < 0.00001), which attained diameters similar to the dominant follicle in ovulatory controls (P > 0.1). In contrast, eLH had no effect on the diameter of the largest subordinate follicle or the number of follicles >10 mm during treatment (P > 0.3). The numbers of mares that ovulated in response to hCG in transitional control, transitional eLH and ovulatory control groups (2 of 2, 3 of 5 and 7 of 7, respectively) were not significantly different (P > 0.1). However, after hCG-induced ovulation, all transitional mares returned to an anovulatory state. Circulating estradiol levels increased during the experimental period in ovulatory controls but not in transitional eLH or transitional control groups (Group x Day, P = 0.013). In addition, although progesterone levels increased after ovulation in transitional control and transitional eLH groups, levels in these two groups were lower than in the ovulatory control group after ovulation (Group, P = 0.045). In conclusion, although LH supplementation of early transitional waves beginning after the largest follicle reached 20 mm promoted growth of ovulatory-size follicles, these follicles were developmentally deficient as indicated by their reduced steroidogenic activity.  相似文献   

11.
Superovulatory treatment may potentially increase the embryo recovery rate and the per-cycle pregnancy rate in normal or subfertile mares that are managed properly. However, some studies suggest a possible negative effect of superovulatory treatment on ovarian follicular maturation and embryo viability. Objectives of the present study were to investigate the early effects of eFSH treatment in reproductively normal mares in terms of: folliculogenesis, pregnancy rate, early embryonic development, reproductive tract parameters (tone and edema), and serum estradiol-17β and progesterone concentrations. Reproductively sound mares (n = 26) were evaluated daily by transrectal palpation and ultrasonography. Five days after spontaneous ovulation, mares were randomly assigned to one of two treatment groups. In the eFSH group, mares (n = 16 estrous cycles) were administered eFSH twice daily; beginning when a follicle ≥20 mm was detected, and continuing until at least one follicle reached a diameter of ≥35 mm. PGF2α was administered 2 days following initiation of eFSH therapy, and hCG was administered approximately 36 h after cessation of eFSH therapy. In the control group, mares (n = 26 estrous cycles) were administered PGF2α 7 days after spontaneous ovulation, and hCG when a follicle ≥35 mm was detected. All mares were bred with fresh semen, monitored for ovulation (Day 0), and evaluated for pregnancy on Days 11–16. Serum estradiol-17β and progesterone concentrations were analyzed using radioimmunoassay on the Day of hCG administration, and Days 8, 11 and 16. Mares treated with eFSH had more follicles ≥30 mm at the time of hCG administration (2.6 ± 0.4 compared with 1.1 ± 0.1; P < 0.01), and more ovulations (2.3 ± 0.5 compared with 1.1 ± 0.3; P < 0.01). However, pregnancy rates were not significantly different between groups (50%; 8/16 compared with 62%; 16/26). Mean overall daily growth rate of embryonic vesicles from Day 11 to 16 was not statistically different between the two groups (3.3 ± 0.3 compared with 3.7 ± 0.1 mm/day) (P = 0.2); however, was more variable (P < 0.01) in the eFSH group (95%CI: 2.6–3.8 mm/day) than in the control group (95%CI: 3.5–3.9 mm/day). Administration of eFSH modified the reproductive tract variables and serum concentrations of progesterone and estradiol-17β on the days that oocyte maturation, fertilization, and early embryonic development are expected to occur. These alterations may be related to the greater incidence of non-ovulatory follicles (25% compared with 0%), fewer embryos per ovulation rate (0.3 ± 0.1 compared with 0.6 ± 0.1), and the lesser than expected pregnancy rates in the eFSH-treated mares.  相似文献   

12.
Seasonally anovulatory mares were injected, i.m., twice daily with a GnRH analogue (GnRH-A), and hCG was given when the largest follicle reached 35 mm in diameter. In Exp. 1, treatment was initiated on 23 December when the largest follicle per mare was less than or equal to 17 mm. An ovulatory response (ovulation within 21 days) occurred in 17 of 30 (57%) GnRH-A-treated mares on a mean of 15.8 days. The shortest interval to ovulation in control mares (N = 10) was 57 days. The diameter of the largest follicle first increased significantly 6 days after start of treatment. In Exp. 2, treatment was begun on 15 January and mares were categorized according to the largest follicle at start of treatment. The proportion of mares ovulating within 21 days increased significantly according to initial diameter of largest follicle (less than or equal to 15 mm, 9/25 mares ovulated; 15-19 mm, 13/21; 20-24 mm, 20/24; greater than 25 mm, 3/3). The multiple ovulation rate was greater (P less than 0.01) for treated mares (27/86 mares had multiple ovulations) than for control mares (2/35). Treated mares in which the largest follicle at start of treatment was greater than or equal to 25 mm had a higher (P less than 0.01) multiple ovulation rate (9/14) than did mares in which the largest follicle was less than 25 mm (18/72). The pregnancy rate for single ovulators was not different between control mares (26/30 pregnant mares) and treated mares (43/54).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

13.
Flunixin meglumine (FM), a prostaglandin synthetase inhibitor, causes ovulatory failure in the mare. However, the effect of the FM treatment relative to the time of hCG administration on the ovulation failure has not been determined nor has its effect on the luteal function of treated mares. Estrous mares with a follicle ≥32 mm (range of 32-38 mm) were treated with 1.7 mg/kg b.w. of FM iv at zero, 12, 24 and 36 h (n=6), at 24 and 36 h (n=6), at 28 and 36 h (n=6), at 24h (n=6) or at 30 h (n=6) after treatment with 1500 IU hCG. One group received no FM (control, n=6). Progesterone concentrations were determined using RIA. Mares treated with FM 0-36 h and 24-36 h had higher (P<0.05) incidence of ovulatory failure (83 and 80%, respectively) than mares treated twice at 28 and 36 h, or once at 24 or at 30 h after hCG (16.7, 0 and 0%, respectively). The anovulatory follicles of FM treated mares luteinized and produced progesterone (>2 ng/ml). The progesterone concentration was lower in mares treated with FM at zero to 36 h and at 24-36 h after hCG than in the other groups. In conclusion, the FM administration was effective in blocking ovulation only when the treatment began ≤24 h after hCG and was continued every 12 h until ≥36 h. In addition, the FM-induced anovulatory follicles underwent luteinization of follicular cells with active production of progesterone.  相似文献   

14.
Superovulation could potentially increase embryo recovery for immediate transfer or cryopreservation. The objectives were to evaluate the effect of pretreatment with progesterone and estradiol (P+E) on follicular response to eFSH and compare doses of eFSH and ovulatory agents on follicular development and ovulation in mares. In Experiment 1, 40 mares were assigned to one of four treatment groups. Group 1 consisted of untreated controls. Group 2 mares were administered eFSH without pretreatment with P+E. Group 3 mares were administered P+E for 10 days starting in mid-diestrus followed by eFSH therapy. Group 4 mares were administered P+E for 10 days followed by eFSH therapy. All treated mares were administered 12.5mg eFSH twice daily and prostaglandins were given on the second day of eFSH therapy. Mares were bred with fresh semen the day of hCG administration and with cooled semen the following day. The numbers of preovulatory follicles and ovulations were lower for mares treated with P+E prior to eFSH treatment. Pretreatment with P+E in estrus also resulted in a lower embryo recovery rate per ovulation compared to the other two eFSH treatment groups. In Experiment 2, two doses of eFSH (12.5 and 6.25mg) and two ovulation-inducing agents (hCG and deslorelin) were evaluated. The number of preovulatory follicles was greater for mares given 12.5mg of eFSH compared to mares given 6.25mg. Number of ovulations was greatest for mares given 12.5mg of eFSH twice daily followed by administration of hCG. Embryo recovery per flush was similar among treatment groups, but the percent of embryos per ovulation was higher for mares given the low dose of eFSH. In summary, there was no advantage to giving P+E prior to eFSH treatment. In addition, even though the lower dose of eFSH resulted in fewer ovulations, embryo recovery per flush and embryo recovery per ovulation were similar or better for those given the lower dose of eFSH.  相似文献   

15.
Sixty light-horse, nonlactating mares were used to compare the efficacy of equine pituitary extract versus follicle stimulating hormone (FSH-P) for inducing multiple ovulations. On Day 12 of diestrus, mares were assigned to receive 1) no treatment, controls; 2) subcutaneous injections of 750 Fevold rat units of equine pituitary extract once daily; or 3) intramuscular injection of 150 mg of FSH-P twice daily. Ultrasound was used twice daily to visualize follicular changes and ovulation. For mares in Groups 2 and 3, treatment was initiated when two or more follicles > 20 mm were detected, and it continued until all large follicles (> 30 mm) had ovulated or regressed. Five milligrams of prostaglandin F(2)alpha (PGF(2)) were administered to mares in Groups 2 and 3 on the first day of treatment. Human chorionic gonadotropin (3,300 IU) was given to all groups of mares during estrus when a 35-mm follicle was detected. Ovulation rate was greater (P < 0.05) for mares treated with pituitary extract (2.2) compared to FSH-P treatment (1.6) or no treatment (1.0). Thirteen of 18 mares treated with the extract had more than one ovulation versus only four of nine FSH-treated mares. Mares in the pituitary extract group were given injections for an average of 6.4 d compared to 6.8 d (13.7 injections) for FSH-treated mares. Intervals to estrus and ovulation from initial injection of extract were 2.9, 7.6; and 2.6, 9.2 d for FSH-treated mares. The mean number of medium-sized follicles (25 to 30 mm) was greater (P < 0.05) in extract-treated mares compared to the FSH-treated mares. Both extract and FSH increased (P < 0.05) the number of follicles > 30 mm and the size of the second largest follicle 1 and 2 d prior to ovulation when compared to controls. Overall, mares with multiple ovulations had more (P < 0.05) follicles 25 to 30 mm and > 30 mm on Day -6 through -1 (Day 0 = day of ovulation) than single ovulating mares. Those mares that had multiple ovulations had less (P < 0.05) size difference between the largest and second largest follicle when compared to single ovulating mares. In summary, FSH-P at the one dose studied was less effective than equine pituitary extract in inducing follicular activity and multiple ovulation in the mare.  相似文献   

16.
A regimen of progesterone plus estradiol (P&E) was used as a standard for ovarian synchronization to test the efficacy and evaluate the commercial application of ultrasound-guided follicle ablation as a non-steroidal alternative for ovulation synchronization in mares. Recipient mares at a private embryo transfer facility were at unknown stages of the estrous cycle at the start of the experiment on Day 1 when they were randomly assigned to an ablation group (n=18-21 mares) or to a P&E group (n=20-21 mares). In the ablation group, mares were lightly sedated and all follicles > or = 10 mm were removed by transvaginal ultrasound-guided follicle aspiration. In the P&E group, a combination of progesterone (150 mg) plus estradiol (10mg) prepared in safflower oil was given daily (im) for 10 d. Two doses of prostaglandin F(2alpha) (PGF, 10mg/dose, im) were given 12 h apart on Day 5 in the ablation group, or a single dose on Day 10 in the P&E group. Human chorionic gonadotropin (hCG, 2500 IU/mare, im) was given at a fixed time, 6 and 10 d after PGF treatment in the ablation and P&E groups, respectively, with the expectation of a follicle > or = 30 mm at the time of treatment. In both the ablation and P&E groups, transrectal ultrasonography was done at the start of the study (Day 1) and again on the day of hCG treatment and daily thereafter to determine the presence of a CL, measure diameter of the largest follicle and detect ovulation. The mean interval from the start of the study and from PGF treatment to ovulation was shorter (P<0.0001) in the ablation group (13.7 and 9.7 d, respectively) compared to the P&E group (22.3 and 13.2 d, respectively). Following fixed-day treatment with hCG after PGF treatment, the degree of ovulation synchronization was not different (P>0.05) between the ablation and P&E groups within a 2-d (56 and 70%) or 4-d (83% and 90%) period. Although ultrasound-guided follicle ablation may not be practical in all circumstances, it excluded the conventional 10-d regimen of progesterone and estradiol and was considered an efficacious and feasible, non-steroidal alternative for ovulation synchronization in mares during the estrous cycle.  相似文献   

17.
The only gonadotrophin preparation shown to stimulate commercially useful multiple ovulation in mares is equine pituitary extract (EPE); even then, the low and inconsistent ovulatory response has been ascribed to the variable, but high, LH content. This study investigated the effects of an LH-free FSH preparation, recombinant human follicle stimulating hormone (rhFSH), on follicle development, ovulation and embryo production in mares. Five mares were treated twice-daily with 450 i.u. rhFSH starting on day 6 after ovulation, coincident with PGF(2alpha) analogue administration; five control mares were treated similarly but with saline instead of rhFSH. The response was monitored by daily scanning of the mares' ovaries and assay of systemic oestradiol-17beta and progesterone concentrations. When the dominant follicle(s) exceeded 35 mm, ovulation was induced with human chorionic gonadotrophin; embryos were recovered on day 7 after ovulation. After an untreated oestrous cycle to 'wash-out' the rhFSH, the groups were crossed-over and treated twice-daily with 900 i.u. rhFSH, or saline. At the onset of treatment, the largest follicle was <25 mm in all mares, and mares destined for rhFSH treatment had at least as many 10-25 mm follicles as controls. However, neither dose of rhFSH altered the number of days before the dominant follicle(s) reached 35 mm, the number of follicles of any size class (10-25, 25-35, >3 mm) at ovulation induction, the pre- or post-ovulatory oestradiol-17beta or progesterone concentrations, the number of ovulations or the embryo yield. It is concluded that rhFSH, at the doses used, is insufficient to stimulate multiple follicle development in mares.  相似文献   

18.
In mares, the shortage of oocytes and the variability in nuclear maturation at a certain time of the oestrous cycle hinders the optimization of methods for in vitro maturation and in vitro fertilization. Increasing the number of small-to-medium-sized follicles available for aspiration in vivo may increase the overall oocyte yield. The aims of the present study were to investigate whether administration of crude equine gonadotrophins affects follicular development, oocyte recovery rate, in vivo oocyte maturation and follicular concentrations of meiosis-activating sterols. During oestrus, all follicles >/= 4 mm were aspirated from 19 pony mares (first aspiration: A1). Over the next 8 days, the mares were treated daily with either 25 mg crude equine gonadotrophins (n = 10) or physiological saline (n = 9). Between day 1 and day 8, follicular growth was monitored by ultrasonography. On day 8, all follicles >/= 4 mm were evacuated (second aspiration: A2) and nuclear maturation of the recovered oocytes was assessed after orcein staining. Follicular growth between A1 and A2, as well as the number and size of follicles at A2 were similar for control mares and mares treated with crude equine gonadotrophins. The oocyte recovery rates at A1 and A2 were similar. At A2, the oocyte recovery rate and oocyte maturation in vivo were not affected by treatment with crude equine gonadotrophins. The number of expanded cumulus oophorus complexes recovered from follicles 相似文献   

19.
Synchronization of emergence of follicular waves in cattle   总被引:1,自引:0,他引:1  
In Experiment 1, heifers were randomly allocated to a control group (saline, im; n = 6) or a GnRH group (100 microg, im; n = 6). Treatment was given approximately 32 h before ovulation. The GnRH treatment shortened (P < 0.001) the time from treatment to emergence of Wave 1 and to the peak concentration of FSH associated with emergence. Administration of GnRH synchronized (less variability, P < 0.01) the time from treatment to ovulation but did not significantly synchronize follicular wave emergence, and tended (P < 0.06) to synchronize the time to the peak concentration of FSH. The mean number of follicles >5 mm per wave was higher (P < 0.01) in the GnRH group (10.7 +/- 1.3) than in the control group (5.7 +/- 0.8). In Experiment 2, either Folltropin (a porcine pituitary extract) was given or the dominant follicle of Wave 1 was aspirated 5 d after ovulation and the following wave (Wave 2) studied. Folltropin and/or aspiration shortened (<0.05) the time from treatment to emergence of Wave 2 and to the peak concentration of FSH associated with wave emergence, and all treatments synchronized (P < 0.01) wave emergence. Retrospective study indicated that the future dominant follicle could have been collected for experimental purposes with a 100% success rate if the following criteria had been used: 1) diameter of largest follicle 10 mm (largest follicle taken), 8 mm (2 largest follicles taken), or 7 mm (3 largest follicles taken); 2) diameter difference between the 2 largest follicles of 4 mm (largest follicle taken), 3 mm (2 largest follicles taken), or 2 mm (3 largest follicles taken); 3) 2 days after wave emergence (2 or 3 largest follicles taken); or 4) 5 days (largest follicle taken), 4 days (2 largest follicles taken), or 3 days (3 largest follicles taken) after treatment (Folltropin or dominant-follicle aspiration).  相似文献   

20.
Prostaglandins play an obligatory role during the process of ovulation in mammals. Ovulation can be blocked by intrafollicular administration of non-steroidal anti-inflammatory drugs (NSAIDs) in several domestic species including the mare as well as by systemic administration of these drugs in women. In the mare, the effect of systemic NSAIDs treatment on ovulation has not been critically studied. The objectives of this study were: a) to determine whether high dose of flunixin-meglumine (FM) administered systemically to mares during the periovulatory period was able to block ovulation; and b) to study the follicular ultrasound characteristics of FM treated mares. Six mares were used in the study during two consecutive estrous cycles. Each mare received 2 mg FM/kg i.v. twice a day starting at the time of treatment with hCG when the follicle reached a diameter of ≥ 32 mm and continuing until ovulation. During the consecutive control cycle (CON) the mares received the same dose of hCG but were not administered FM. During the FM cycles five of six mares failed to ovulate and collapse the preovulatory follicle; but echoic specks were observed within the follicles, which continued to grow until a mean diameter of 55 mm. Eventually, the follicular contents were organised and luteinised. All CON mares ovulated normally. In conclusion, when mares were treated with FM, they had a higher incidence of ovulatory failure and development of luteinised unruptured follicles (83%, P = 0.015) compared with untreated mares.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号