首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Iron is one of the essential micronutrients, and as such, is required for growth, development, and normal cellular functioning. In contrast to some other micronutrients such as water-soluble vitamins, there is a significant danger of toxicity if excessive amounts of iron accumulate in the body. A finely tuned feedback control system functions to limit this excessive accumulation by limiting absorption of iron. This chapter will discuss systemic and brain iron homeostasis.  相似文献   

2.
Pollinators contribute around 10% of the economic value of crop production globally, but the contribution of these pollinators to human nutrition is potentially much higher. Crops vary in the degree to which they benefit from pollinators, and many of the most pollinator-dependent crops are also among the richest in micronutrients essential to human health. This study examines regional differences in the pollinator dependence of crop micronutrient content and reveals overlaps between this dependency and the severity of micronutrient deficiency in people around the world. As much as 50% of the production of plant-derived sources of vitamin A requires pollination throughout much of Southeast Asia, whereas other essential micronutrients such as iron and folate have lower dependencies, scattered throughout Africa, Asia and Central America. Micronutrient deficiencies are three times as likely to occur in areas of highest pollination dependence for vitamin A and iron, suggesting that disruptions in pollination could have serious implications for the accessibility of micronutrients for public health. These regions of high nutritional vulnerability are understudied in the pollination literature, and should be priority areas for research related to ecosystem services and human well-being.  相似文献   

3.
The geriatric population is at a high risk of developing deficiencies of essential micronutrients such as minerals, vitamins, and trace elements and their related deficiency signs and symptoms. Scarce data is available on the dietary intake of essential micronutrients among geriatric subjects in India. Hence, to fill the gap in the existing knowledge, a community-based cross-sectional study was conducted during 2015–2016 in District Nainital, Uttarakhand State, India. A total of 255 geriatric subjects were enrolled from 30 clusters (villages) identified by using population proportionate to size sampling methodology. Data were collected on sociodemographic profile and dietary intake of essential micronutrients (24-h dietary recall, food frequency questionnaire) from all the geriatric subjects. A high percentage of geriatric subjects did not consume the recommended daily intake for essential micronutrients such as energy (78%), protein (78%), calcium (51%), thiamine (33%), riboflavin (64%), niacin (88%), vitamin C (42%), iron (72%), folic acid (72%), magnesium (48%), zinc (98%), copper (81%) and chromium (89%) adequately. Food groups rich in essential micronutrients such as pulses, green leafy vegetables, roots and tubers, other vegetables, fruits, nonvegetarian food items, and milk and milk products were consumed irregularly by the subjects. The overall intake of energy and essential micronutrients was inadequate among the geriatric population in India, possibly due to poor quality and quantity of the diet consumed.  相似文献   

4.
Deficiency of micronutrients is considered as the basic cause of health issues. There are a large number of micronutrients to be considered for good health, which are analyzed separately. However, such analyses involve practical as well as methodological complications and it requires construction of an index representing malnutrition of micronutrients. This study proposes copula methodology to categorize malnutrition of micronutrients at household level by combining the dependence structure of various correlated variables. Data of eleven micronutrients are extracted from HIICS- 2015–16 published by Pakistan -Bureau of Statistics. Seven out of the eleven variables are highly correlated, which are considered to construct the index. These include calcium, iron, iodine, zinc, riboflavin, thiamine and phosphorus intakes per capita at household level. Normal probability distribution is found as the best fit to the sample data of all variables. Gaussian copula function is used to derive multivariate probability distribution by combining univariate marginal probability distribution of each micronutrient. The Multivariate distribution of Gaussian copula model is used to calculate cumulative probabilities, which provide a base to categorize households’ malnutrition w.r.t. micronutrients. The results show that 60% households lie in very low or low category of micronutrient intakes, 20% of households fall into medium category while 20% fall into high or very high category of micronutrient consumption. The proposed methodology might be helpful to combine other micronutrients as well as a variety of correlated variables in many other fields having a survey data  相似文献   

5.
Iron and copper in fetal development   总被引:1,自引:0,他引:1  
Copper and iron are both essential micronutrients. Because they can both accept and donate electrons, they are central to many energy dependent chemical reactions. For example, copper is a critical part of ferroxidase enzymes ceruloplasmin, hephaestin and zyklopen, as well as enzymes such as dopamine-β-monoxygenase, while iron is part of the catalytic site of many cytochromes and enzymes involved in fatty acid desaturation. Unsurprisingly, therefore, copper and iron deficiency, especially during pregnancy, when cell proliferation and differentiation are very active, sub-optimal nutrient status can lead to serious consequences. These problems can persist into adulthood, with an increased risk of mental problems such as schizophrenia and, in animal models at least, hypertension and obesity. In this review, we consider what these problems are and how they may arise. We examine the role of copper and iron deficiencies separately during fetal development, in terms of birth outcome and then how problems with status in utero can have long term sequelae for the offspring. We examine several possible mechanisms of action, both direct and indirect. Direct causes include, for example, reduced enzyme activity, while indirect ones may result from changes in cytokine activity, reductions in cell number or increased apoptosis, to name but a few. We examine a very important area of nutrition-interactions between the micronutrients and conclude that, while we have made significant advances in understanding the relationship between micronutrient status and pregnancy outcome, there is still much to be learned.  相似文献   

6.
7.
L Song  JG Qin  S Su  J Xu  S Clarke  Y Shan 《PloS one》2012,7(7):e41459
The requirements of micronutrients for biomass and hydrocarbon production in Botryococcus braunii UTEX 572 were studied using response surface methodology. The concentrations of four micronutrients (iron, manganese, molybdenum, and nickel) were manipulated to achieve the best performance of B. braunii in laboratory conditions. The responses of algal biomass and hydrocarbon to the concentration variations of the four micronutrients were estimated by a second order quadratic regression model. Genetic algorithm calculations showed that the optimal level of micronutrients for algal biomass were 0.266 μM iron, 0.707 μM manganese, 0.624 μM molybdenum and 3.38 μM nickel. The maximum hydrocarbon content could be achieved when the culture media contained 10.43 μM iron, 6.53 μM manganese, 0.012 μM molybdenum and 1.73 μM nickel. The validation through an independent test in a photobioreactor suggests that the modified media with optimised concentrations of trace elements can increase algal biomass by 34.5% and hydrocarbon by 27.4%. This study indicates that micronutrients play significant roles in regulating algal growth and hydrocarbon production, and the response surface methodology can be used to optimise the composition of culture medium in algal culture.  相似文献   

8.
Over two billion people, depending largely on staple foods, suffer from deficiencies in protein and some micronutrients such as iron and zinc. Among various approaches to overcome protein and micronutrient deficiencies, biofortification through a combination of conventional and molecular breeding methods is the most feasible, cheapest, and sustainable approach. An interspecific cross was made between the wheat cultivar 'Chinese Spring' and Aegilops kotschyi Boiss. accession 396, which has a threefold higher grain iron and zinc concentrations and about 33% higher protein concentration than wheat cultivars. Recurrent backcrossing and selection for the micronutrient content was performed at each generation. Thirteen derivatives with high grain iron and zinc concentrations and contents, ash and ash micronutrients, and protein were analyzed for alien introgression. Morphological markers, high molecular weight glutenin subunit profiles, anchored wheat microsatellite markers, and GISH showed that addition and substitution of homoeologous groups 1, 2, and 7 chromosomes of Ae. kotschyi possess gene(s) for high grain micronutrients. The addition of 1U/1S had high molecular weight glutenin subunits with higher molecular weight than those of wheat, and the addition of 2S in most of the derivatives also enhanced grain protein content by over 20%. Low grain protein content in a derivative with a 2S-wheat translocation, waxy leaves, and absence of the gdm148 marker strongly suggests that the gene for higher grain protein content on chromosome 2S is orthologous to the grain protein QTL on the short arm of group 2 chromosomes.  相似文献   

9.
Over the last two or three decades meat and especially liver have been looked upon as unhealthy food with high fat content and carcinogenic potential. In addition, its content of highly valuable micronutrients has mostly been ignored. As a result, the mean uptake and serum levels of several micronutrients in the population are below the recommended levels. In the meantime, the contamination of liver with heavy metals and other contaminants has fallen far below the allowed thresholds and sometimes even below the detection limit while its content of micronutrients like iron, folate, selenium or zinc are still high. As a further advantage, the bioavailability of many micronutrients often is better from meat and liver then from plant sources. Considering these advantages and the low content of contaminants in meat and liver leads us to propose that meat - including liver - should be a regular part of a mixed and balanced healthy diet along with vegetables and fruits as the major components to ensure an optimal supply of micronutrients.  相似文献   

10.
The transgenic indica rice lines of IR68144 and BR29, developed using endosperm-specific promoters were analyzed for their iron, zinc and β-carotene content in the endosperm. Biochemical analysis clearly revealed the presence of higher accumulation of iron, zinc and β-carotene in transgenic rice grains in comparison with control. Prussian blue staining reaction evidenced the presence of iron in the endosperm cells of transgenic rice grains in comparison with control where iron is restricted only to aleurone and embryo. The rice grain structure of IR64, IR72, IR68144, Swarna, BRRI Dhan 29 (BR29), BR28, Taipai 309 (T309) and New Plant Type-3 (NPT3) indicated that the number of aleurone layers, size of the embryo and size of the caryopsis determines the quantity of important micronutrients (iron, zinc) in the grains. Biochemical analysis revealed that iron and zinc content drastically varies in polished and unpolished rice and among the varieties examined. During the polishing process almost entire aleurone and most part of the embryo is removed which are the main storehouse for major micronutrients. It is estimated that more than 70% of micronutrients are lost during polishing process.  相似文献   

11.
铁是植物生命活动必需的微量元素之一,土壤中有效铁含量较低,易导致植物缺铁。bHLH转录因子家族多个成员参与植物缺铁响应,发挥重要的调控作用。为深入了解植物对缺铁的反应机制,文中对植物缺铁胁迫应答的bHLH转录因子的结构、分类和功能及其调控机制、介导的缺铁胁迫信号通路进行综述,为应用bHLH转录因子培育缺铁耐受作物或富铁作物提供理论依据和设计策略。  相似文献   

12.
The role of micronutrients in the etiology of type 2 diabetes is not well established. Several lines of evidence suggest that iron play may a role in the pathogenesis of type 2 diabetes. Iron is a strong pro-oxidant and high body iron levels are associated with increased level of oxidative stress that may elevate the risk of type 2 diabetes. Several epidemiological studies have reported a positive association between high body iron stores, as measured by circulating ferritin level, and the risk of type 2 diabetes and of other insulin resistant states such as the metabolic syndrome, gestational diabetes and polycystic ovarian syndrome. In addition, increased dietary intake of iron, especially that of heme iron, is associated with risk of type 2 diabetes in apparently healthy populations. Results from studies that have evaluated the association between genetic mutations related to iron metabolism have been inconsistent. Further, several clinical trials have suggested that phlebotomy induced reduction in body iron levels may improve insulin sensitivity in humans. However, no interventional studies have yet directly evaluated the effect of reducing iron intake or body iron levels on the risk of developing type 2 diabetes. Such studies are required to prove the causal relationship between moderate iron overload and diabetes risk.  相似文献   

13.
Transition metals, particularly iron, zinc and copper, have multiple biological roles and are essential elements in biological processes. Among other micronutrients, these metals are frequently available to cells in only limited amounts, thus organisms have evolved highly regulated mechanisms to cope and to compete with their scarcity. The homeostasis of such metals within the animal hosts requires the integration of multiple signals producing depleted environments that restrict the growth of microorganisms, acting as a barrier to infection. As the hosts sequester the necessary transition metals from invading pathogens, some, as is the case of fungi, have evolved elaborate mechanisms to allow their survival and development to establish infection. Metalloregulatory factors allow fungal cells to sense and to adapt to the scarce metal availability in the environment, such as in host tissues. Here we review recent advances in the identification and function of molecules that drive the acquisition and homeostasis of iron, copper and zinc in pathogenic fungi.  相似文献   

14.
Summary In a greenhouse study, inoculation with the mycorrhizal fungusGlomus fasciculatum enhanced peanut growth and increased its dry matter more than 2-fold compared with the non-inoculated control, in both sterilized and non-sterilized soil. It also significantly increased uptake of phosphorus and micronutrients such as zinc, copper, manganese and iron.Present address: International Crops Research Institute for the semi-arid tropics (ICRIAST), Patancheru 502 324, A.P. India.  相似文献   

15.
SUMMARY

Water samples were collected from fourteen sampling points along the Hunyani River system and subjected to various filtration treatments involving glass fibre filters and 1,2 and 0,45 pm membrane filters. Chemical analyses of the filtered waters showed that nitrogen, phosphorus and iron were lost by different filtration treatments. Filtration by membrane filters led to a reduction of algal growth potential as demonstrated by algal bioassays using Selanastrwn capricornutum Printz as the test alga.

Algal bioassays showed that biologically available phosphorus was primarily removed by the 1,2 μm membrane filter while biologically available nitrogen and iron was principally lost by filtration through the 0,25 μm membrane filter. A refined algal bioassay designed to determine the identity of limiting micronutrients found that all essential micronutrients were affected by membrane filtration.  相似文献   

16.
The transport of metal micronutrients to developing organs in a plant is mediated primarily by the sieve elements. Ligands are thought to form complexes with the free ions in order to prevent cellular damage, but no binding partners have been unequivocally identified from plants so far. This study has used the phloem-mediated transport of micronutrients during the germination of the castor bean seedling to identify an iron transport protein (ITP). It is demonstrated that essentially all (55)Fe fed to seedlings is associated with the protein fraction of phloem exudate. It is shown that ITP carries iron in vivo and binds additional iron in vitro. ITP was purified to homogeneity from minute amounts of phloem exudate using immobilized metal ion affinity chromatography. It preferentially binds to Fe(3+) but not to Fe(2+) and also complexes Cu(2+), Zn(2+), and Mn(2+) in vitro. The corresponding cDNA of ITP was cloned using internal peptide fragments. The deduced protein of 96 amino acids shows high similarity to the stress-related family of late embryogenesis abundant proteins. Its predicted characteristics and its RNA expression pattern are consistent with a function in metal ion binding. The ITP from Ricinus provides the first identified micronutrient binding partner for phloem-mediated long distance transport in plants and is the first member of the late embryogenesis abundant protein family shown to have such a function.  相似文献   

17.
Ferritin is a major iron storage protein involved in the regulation of iron availability. Each ferritin molecule comprises 24 subunits. Various combinations of H-subunits and L-subunits make up the 24-subunit protein structure and these ferritin isoforms differ in their H-subunit to L-subunit ratio, as well as in their metabolic properties. Ferritin is an acute-phase protein and its expression is up-regulated in conditions such as uncontrolled cellular proliferation, in any condition marked by excessive production of toxic oxygen radicals, and by infectious and inflammatory processes. Under such conditions ferritin up-regulation is predominantly stimulated by increased reactive oxygen radical production and by cytokines. The major function of ferritin in these conditions is to reduce the bio-availability of iron in order to stem uncontrolled cellular proliferation and excessive production of reactive oxygen radicals. Ferritin is not, however, indiscriminately up-regulated in these conditions as a marked shift towards a predominance in H-subunit rich ferritins occurs. Preliminary indications are that, while the L-subunit primarily fulfils the conventional iron storage role, the H-subunit functions primarily as rapid regulator of iron availability, and perhaps indirectly as regulator of other cellular processes. It is suggested that the optimum differential expression of the two subunits differ for different cells and under different conditions and that the expression of appropriate isoferritins offers protection against uncontrolled cellular proliferation, oxidative stress and against side effects of infectious and inflammatory conditions.  相似文献   

18.
Iron and zinc are critical micronutrients for human health. Approximately two billion people suffer from iron and zinc deficiencies worldwide, most of whom rely on rice (Oryza sativa) and wheat (Triticum aestivum) as staple foods. Therefore, biofortifying rice and wheat with iron and zinc is an important and economical approach to ameliorate these nutritional deficiencies. In this review, we provide a brief introduction to iron and zinc uptake, translocation, storage, and signaling pathways in rice and wheat. We then discuss current progress in efforts to biofortify rice and wheat with iron and zinc. Finally, we provide future perspectives for the biofortification of rice and wheat with iron and zinc.  相似文献   

19.
Biological Trace Element Research - Although simultaneous supplementation with iron and folic acid is justified, the potential interactions between these micronutrients are unknown. The aim of this...  相似文献   

20.
Uptake and translocation of micronutrients are essential for plant growth. These micronutrients are also important food components. We generated transgenic rice plants over-expressing OsIRT1 to evaluate its functional roles in metal homeostasis. Those plants showed enhanced tolerance to iron deficiency at the seedling stage. In paddy fields, this over-expression caused plant architecture to be altered. In addition, those plants were sensitive to excess Zn and Cd, indicating that OsIRT1 also transports those metals. As expected, iron and zinc contents were elevated in the shoots, roots and mature seeds of over-expressing plants. This demonstrates that OsIRT1 can be used for enhancing micronutrient levels in rice grains.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号