首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A new group of hybrid nitric oxide-releasing anti-inflammatory drugs (NONO-coxibs) wherein an O(2)-acetoxymethyl-1-(N-ethyl-N-methylamino)diazen-1-ium-1,2-diolate (11a-c) NO-donor moiety is attached directly to the carboxylic acid group of 1-(4-methanesulfonylphenyl)-5-aryl-1H-pyrazol-3-carboxylic acids were synthesized. The diazen-1-ium-1,2-diolate compounds 11a-c all released a low amount of NO upon incubation with phosphate buffer (PBS) at pH 7.4 (7.7-9.3% range). In comparison, the percentage of NO released was significantly higher (67.5-73.6% of the theoretical maximal release of two molecules of NO/molecule of the parent hybrid ester prodrug) when the diazen-1-ium-1,2-diolate ester prodrugs were incubated in the presence of rat serum. These incubation studies suggest that both NO and the anti-inflammatory 1-(4-methanesulfonylphenyl)-5-(4-H, 4-F or 4-Me-phenyl)-1H-pyrazol-3-carboxylic acid (9a-c) would be released from the parent NONO-coxib upon in vivo cleavage by non-specific serum esterases. The 1-(4-methanesulfonylphenyl)-5-(4-H, 4-F or 4-Me-phenyl)-1H-pyrazol-3-carboxylic acids (9a-c) exhibited AI activities (ID(50)=85.2-104.4 mg/kg po range) between that exhibited by the reference drugs aspirin (ID(50)=128.7 mg/kg po) and celecoxib (ID(50)=10.8 mg/kg po). Hybrid ester anti-inflammatory/NO-donor prodrugs (NONO-coxibs) offers a potential drug design concept targeted toward the development of anti-inflammatory drugs that are devoid of adverse ulcerogenic and/or cardiovascular effects.  相似文献   

2.
A new class of hybrid nitric oxide-releasing anti-inflammatory (AI) ester prodrugs (NONO-coxibs) wherein an O2-acetoxymethyl-1-(N-ethyl-N-methylamino)diazen-1-ium-1,2-diolate (13ab), or O2-acetoxymethyl-1-(2-methylpyrrolidin-1-yl)diazen-1-ium-1,2-diolate (16ab), NO-donor moiety was covalently coupled to the COOH group of 5-(4-carboxymethylphenyl)-1-(4-methane(amino)sulfonylphenyl)-3-trifluoromethyl-1H-pyrazole (11ab) was synthesized. The percentage of NO released from these diazen-1-ium-1,2-diolates was significantly higher (59.6–74.6% of the theoretical maximal release of 2 molecules of NO/molecule of the parent hybrid ester prodrug) upon incubation in the presence of rat serum, relative to incubation with phosphate buffer (PBS) at pH 7.4 (5.0–7.2% range). These incubation studies suggest that both NO and the AI compound would be released from the parent NONO-coxib upon in vivo cleavage by non-specific serum esterases. All compounds were weak inhibitors of the COX-1 isozyme (IC50 = 8.1–65.2 μM range) and modest inhibitors of the COX-2 isozyme (IC50 = 0.9–4.6 μM range). The most potent parent aminosulfonyl compound 11b exhibited AI activity that was about sixfold greater than that for aspirin and threefold greater than that for ibuprofen. The ester prodrugs 13b, 16b exhibited similar AI activity to that exhibited by the more potent parent acid 11b when the same oral μmol/kg dose was administered. These studies indicate hybrid ester AI/NO donor prodrugs of this type (NONO-coxibs) constitute a plausible drug design concept targeted toward the development of selective COX-2 inhibitory AI drugs that are devoid of adverse cardiovascular effects.  相似文献   

3.
A new group of hybrid nitric oxide-releasing anti-inflammatory drugs wherein an O(2)-acetoxymethyl-1-(N-ethyl-N-methylamino)diazen-1-ium-1,2-diolate (11a-d), or 2-nitrooxyethyl (12a-d), (*)NO-donor moiety is attached directly to the carboxylic acid group of (E)-3-(4-methanesulfonylphenyl)-2-(phenyl)acrylic acids were synthesized. The 2-nitrooxyethyl ester prodrugs (12a-d) all exhibited in vitro inhibitory activity against the cyclooxygenase-2 (COX-2) isozyme (IC(50)=0.07-2.8 microM range). All compounds released a low amount of (*)NO upon incubation with phosphate buffer (PBS) at pH 7.4 (1.0-4.8% range). In comparison, the percentage (*)NO released was significantly higher (76.2-83.0% range) when the diazen-1-ium-1,2-diolate ester prodrugs were incubated in the presence of rat serum, or moderately higher (7.6-10.1% range) when the nitrooxyethyl ester prodrugs were incubated in the presence of L-cysteine. These incubation studies suggest that both (*)NO and the parent anti-inflammatory (E)-3-(4-methanesulfonylphenyl)-2-(phenyl)acrylic acid would be released upon in vivo cleavage by non-specific serum esterases in the case of the diazen-1-ium-1,2-diolate esters (11a-d), or interaction with systemic thiols in the case of the nitrate esters (12a-d). O(2)-Acetoxymethyl-1-(N-ethyl-N-methylamino)diazen-1-ium-1,2-diolate (E)-3-(4-methanesulfonylphenyl)-2-phenylacrylate (11a) released 83% of the theoretical maximal release of 2 molecules of (*)NO/molecule of the parent hybrid ester prodrug upon incubation with rat serum. Hybrid ester anti-inflammatory/(*)NO donor prodrugs offer a potential drug design concept targeted toward the development of anti-inflammatory drugs that are devoid of adverse ulcerogenic and/or cardiovascular effects.  相似文献   

4.
A novel hybrid nitric oxide-releasing anti-inflammatory (AI) ester prodrug (NONO-coxib 14) wherein an O2-acetoxymethyl 1-(2-carboxypyrrolidin-1-yl)diazen-1-ium-1,2-diolate (O2-acetoxymethyl PROLI/NO) NO-donor moiety was covalently coupled to the CH2OH group of 3-(4-hydroxymethylphenyl)-4-(4-methylsulfonylphenyl)-5H-furan-2-one (12), was synthesized. The prodrug 14 released a low amount of NO (4.2%) upon incubation with phosphate buffer (PBS) at pH 7.4 which was significantly higher (34.8% of the theoretical maximal release of two molecules of NO/molecule of the parent hybrid ester prodrug) upon incubation in the presence of rat serum. These incubation studies suggest that both NO and the parent compound 12 would be released from the prodrug 14 upon in vivo cleavage by non-specific serum esterases. The prodrug ester 14 is a selective COX-2 inhibitor that exhibited AI activity (ED50 = 72.2 mmol/kg po) between that of the reference drugs celecoxib (ED50 = 30.9 μmol/kg po) and ibuprofen (ED50 = 327 μmol/kg po). The NO donor compound 14 exhibited enhanced inhibition of phenylephrine-induced vasoconstriction of isolated mesenteric arteries compared with that observed under control conditions. These studies indicate hybrid ester AI/NO donor prodrugs (NONO-coxibs) constitutes a plausible drug design concept targeted toward the development of selective COX-2 inhibitory AI drugs that are devoid of adverse cardiovascular effects.  相似文献   

5.
A novel group of hybrid nitric oxide-releasing anti-inflammatory drugs (11) possessing a 1-(N,N-diethylamino)diazen-1-ium-1,2-diolate, or 1-(pyrrolidin-1-yl)diazen-1-ium-1,2-diolate, nitric oxide (.NO) donor moiety attached via a one-carbon methylene spacer to the carboxylic acid group of (E)-3-(4-methanesulfonylphenyl)-2-(phenyl)acrylic acids were synthesized. These ester prodrugs (11) all exhibited in vitro inhibitory activity against the cyclooxygenase-2 (COX-2) isozyme (IC(50)=0.94-31.6 microM range). All compounds released .NO upon incubation with phosphate buffer (PBS) at pH 7.4 (3.2-11.3% range). In comparison, the percentage of .NO released was significantly higher (48.6-75.3% range) when these hybrid ester prodrugs were incubated in the presence of rat serum. These incubation studies suggest that both .NO and the parent anti-inflammatory (E)-3-(4-methanesulfonylphenyl)-2-(phenyl)acrylic acid would be released upon in vivo cleavage by non-specific serum esterases. O(2)-[(E)-2-(4-Acetylaminophenyl)-3-(4-methanesulfonylphenyl)acryloyloxymethyl]-1-(pyrrolidin-1-yl)diazen-1-ium-1,2-diolate (11f) is a moderately potent (IC(50)=0.94 microM) and selective (SI>104) COX-2 inhibitor that released 73% of the theoretical maximal release of two molecules of .NO/molecule of the parent hybrid ester prodrug upon incubation with rat serum. Hybrid ester .NO-donor prodrugs offer a potential drug design concept for the development of anti-inflammatory drugs that are devoid of adverse ulcerogenic and/or cardiovascular side effects.  相似文献   

6.
A new group of hybrid nitric oxide (NO) releasing anti-inflammatory (AI) ester prodrugs (NONO-NSAIDs) wherein a 1,3-dinitrooxy-2-propyl (12ac), or O2-acetoxymethyl-1-[2-(methyl)pyrrolidin-1-yl]diazen-1-ium-1,2-diolate (14ac), NO-donor moiety is directly attached to the carboxylic acid group of aspirin, indomethacin or ibuprofen were synthesized. NO release from the dinitrooxypropyl, or diazen-1-ium-1,2-diolate, ester prodrugs was increased substantially upon incubation in the presence of l-cysteine (12ac) or rat serum (14ac). The ester prodrugs (12ac, 14ac), which did not inhibit the COX-1 isozyme, exhibited modest inhibitory activity against the COX-2 isozyme. The NONO-NSAIDs 12ac and 14ac exhibited in vivo AI activity that was similar to that exhibited by the parent drug aspirin, indomethacin or ibuprofen when the same oral dose (μmol/kg) was administered. These similarities in oral potency profiles suggest these NONO-NSAIDs act as classical prodrugs that require metabolic activation by esterase-mediated hydrolysis. Hybrid NO-donor/anti-inflammatory prodrugs of this type (NONO-NSAIDs) offer a potential drug design concept targeted toward the development of anti-inflammatory drugs with reduced adverse gastrointestinal effects.  相似文献   

7.
A group of racemic 3-isopropyl 5-[(2-piperazin-1-yl)ethyl] 1,4-dihydro-2,6-dimethyl-4-(pyridyl)-3,5-pyridinedicarboxylates (12a-c), 3-isopropyl 5-{2-[4-nitrosopiperazinyl]ethyl} 1,4-dihydro-2,6-dimethyl-4-(pyridyl)-3,5-pyridinedicarboxylates (14a-c) and 3-isopropyl 5-{2-[(O(2)-acetoxymethyldiazen-1-ium-1,2-diolate)(N,N-dialkylamino or 4-piperazin-1-yl)]ethyl} 1,4-dihydro-2,6-dimethyl-4-(pyridyl)-3,5-pyridinedicarboxylates (22-30) were prepared using modified Hantzsch reactions. This group of compounds (12a-c, 14a-c, and 22-30) exhibited less potent calcium channel antagonist activity (IC(50)=0.11 to 3.35muM range) than the reference drug nifedipine (IC(50)=0.01 microM). The point of attachment of the isomeric C-4 substituent was a determinant of calcium channel antagonist activity providing the potency profile 2-pyridyl3-pyridyl4-pyridyl. The N-nitrosopiperazinyl compounds (14a-c) did not release nitric oxide. The prodrugs 22-30 that have a C-5 2-[(O(2)-acetoxymethyldiazen-1-ium-1,2-diolate)(N,N-dialkylamino or 4-piperazin-1-yl)]ethyl ester substituent, upon incubation with guinea pig serum, undergo consecutive cleavage of the O(2)-acetoxymethyl moiety to give a nitric oxide donor diazenium-1-ium-1,2-diolate species that subsequently releases nitric oxide. The extent of nitric oxide released from the diazen-1-ium-1,2-diolate group is dependent upon the nature of the amino functionality attached directly to the diazen-1-ium N-1 position where the nitric oxide release profile is 1,4-piperazinyl>N-Et>N-(n-Bu)>N-Me upon exposure to guinea pig serum esterase(s). The results from this study suggest this class of hybrid calcium channel antagonist/nitric oxide donor prodrugs should release the vasodilator nitric oxide in vivo, preferentially in the vascular endothelium, to enhance the smooth muscle calcium channel antagonist effect to produce a combined synergistic antihypertensive effect.  相似文献   

8.
A group of 4-[2-(4-methyl(amino)sulfonylphenyl)-5-trifluoromethyl-2H-pyrazol-3-yl]-1,2,3,6-tetrahydropyridines possessing a variety of substituents (Me, CO2Et, H, N=O) attached to the 1,2,3,6-tetrahydropyridyl N(1)-nitrogen atom were synthesized and evaluated as anti-inflammatory agents. Structure-activity relationship data showed that the N-methyl-1,2,3,6-tetrahydropyridyl moiety is a suitable bioisosteric replacement for the tolyl moiety in celecoxib. The most potent compound 4-[5-(1-methyl-1,2,3,6-tetrahydropyridin-4-yl)-3-trifluoromethylpyrazol-1-yl]benzenesulfonamide (ED(50)=61.2 mg/kg po) exhibited an anti-inflammatory activity between that of the reference drugs celecoxib (ED(50)=10.8 mg/kg po) and aspirin (ED(50)=128.7 mg/kg po). The synthesis of model hybrid nitric oxide donor N-diazen-1-ium-1,2-diolate derivatives of 4-[2-(4-methyl(amino)sulfonylphenyl)-5-trifluoromethyl-2H-pyrazol-3-yl]-1,2,3,6-tetrahydropyridines requires further investigation since the reaction of 1,2,3,6-tetrahydropyridines with nitric oxide furnished the undesired N-nitroso-1,2,3,6-tetrahydrohydropyridyl product rather than the desired N-diazen-1-ium-1,2-diolate-1,2,3,6-tetrahydropyridyl product.  相似文献   

9.
A group of racemic 4-aryl(heteroaryl)-1,4-dihydro-2,6-dimethyl-3-nitropyridines possessing nitric oxide donor O(2)-acetoxymethyl-1-(N-ethyl-N-methylamino, or 4-ethylpiperazin-1-yl)diazen-1-ium-1,2-diolate, C-5 ester substituents were synthesized by coupling the respective 4-aryl(heteroaryl)-1,4-dihydro-2,6-dimethyl-3-nitropyridine-5-carboxylic acids with either O(2)-acetoxymethyl-1-[N-(2-methylsulfonyloxyethyl)-N-methylamino]diazen-1-ium-1,2-diolate, or O(2)-acetoxymethyl-1-[4-(2-methylsulfonyloxyethyl)piperazin-1-yl]diazen-1-ium-1,2-diolate. Compounds having a C-4 2-pyridyl, 4-pyridyl, 2-trifluoromethylphenyl, or benzofurazan-4-yl substituent exhibited more potent smooth muscle calcium channel antagonist activity (IC(50)'s in the 0.37-1.09 microM range) than related analogs having a C-4 3-pyridyl substituent (IC(50)'s=3.03-9.14 microM range) relative to the reference drug nifedipine (IC(50)=9.13 nM). The point of attachment of C-4 isomeric pyridyl substituents was a determinant of smooth muscle calcium channel antagonist activity where the relative potency profile was 4-pyridyl>2-pyridyl>3-pyridyl. Replacement of the C-5 methyl ester substituent of methyl 1,4-dihydro-2,6-dimethyl-3-nitro-4-(2-trifluoromethylphenyl)pyridine-5-carboxylate (Bay K 8644) by an O(2)-acetoxymethyl-1-(N-ethyl-N-methylamino)diazen-1-ium-1,2-diolate, or O(2)-acetoxymethyl-1-(4-ethylpiperazin-1-yl)diazen-1-ium-1,2-diolate, C-5 ester substituent provided compounds, which exhibited a lower, yet respectable, cardiac positive inotropic effect (IC(50)'s=4.82 and 4.05 microM, respectively) relative to the reference drug Bay K 8644 (IC(50)=0.30 microM). All compounds released nitric oxide upon incubation with either phosphate buffer at pH7, or porcine liver esterase. However, the percentage nitric oxide released was up to 3-fold higher (76%) when these O(2)-acetoxymethyl-1-(alkylamino)diazen-1-ium-1,2-diolates were incubated with guinea pig serum. These results suggest that *NO would be released in vivo, upon cleavage by nonspecific serum esterases, preferentially in the vascular endothelium where it may enhance smooth muscle calcium channel antagonist activity.  相似文献   

10.
A new class of anti-inflammatory (AI) cupferron prodrugs was synthesized wherein a diazen-1-ium-1,2-diolato ammonium salt, and its O2-methyl and O2-acetoxyethyl derivatives, nitric oxide (NO) donor moieties were attached directly to an aryl carbon on a celecoxib template. The percentage of NO released from the O2-methyl and O2-acetoxyethyl compounds was higher (18.0–37.8% of the theoretical maximal release of one molecule of NO/molecule of the parent compound) upon incubation in the presence of rat serum, relative to incubation with phosphate buffer saline (PBS) at pH 7.4 (3.8–11.6% range). All compounds exhibited weak inhibition of the COX-1 isozyme (IC50 = 5.8–17.0 μM range) in conjunction with weak or modest inhibition of the COX-2 isozyme (IC50 = 1.6–14.4 μM range). The most potent AI agent 5-[4-(O2-ammonium diazen-1-ium-1,2-diolato)phenyl]-1-(4-sulfamoylphenyl)-3-trifluoromethyl-1H-pyrazole exhibited a potency that was about fourfold and twofold greater than that observed for the respective reference drugs aspirin and ibuprofen. These studies indicate that use of a cupferron template constitutes a plausible drug design approach targeted toward the development of AI drugs that do not cause gastric irritation, or elevate blood pressure and induce platelet aggregation that have been associated with the use of some selective COX-2 inhibitors.  相似文献   

11.
A new group of hybrid nitric oxide (NO) releasing anti-inflammatory (AI) coxib prodrugs (NO-coxibs) wherein the para-tolyl moiety present in celecoxib was replaced by a N-(4-nitrooxybutyl)piperidyl 15ab, or N-(4-nitrooxybutyl)-1,2,3,6-tetrahydropyridyl 17ab, NO-donor moiety was synthesized. All compounds released a low amount of NO upon incubation with phosphate buffered saline (PBS) at pH 7.4 (2.4–5.8% range). In comparison, the percentage NO released was higher (3.1–8.4% range) when these nitrate prodrugs were incubated in the presence of l-cysteine. In vitro COX-1/COX-2 isozyme inhibition studies showed this group of compounds are moderately more potent, and hence selective, inhibitors of the COX-2 relative to the COX-1 enzyme. AI structure–activity relationship data acquired showed that compounds having a MeSO2 COX-2 pharmacophore exhibited superior AI activity compared to analogs having a H2NSO2 substituent. Compounds having a MeSO2 COX-2 pharmacophore in conjunction with a N-(4-nitrooxybutyl)piperidyl (ED50 = 132.4 mg/kg po), or a N-(4-nitrooxybutyl)-1,2,3,6-tetrahydropyridyl (ED50 = 118.4 mg/kg po), moiety exhibited an AI potency profile that is similar to aspirin (ED50 = 128.7 mg/kg po) but lower than ibuprofen (ED50 = 67.4 mg/kg po).  相似文献   

12.
A novel group of O2-acetoxymethyl-protected diazeniumdiolate-based non-steroidal anti-inflammatory prodrugs (NONO-NSAIDs) were synthesized by esterifying the carboxylate group of aspirin, ibuprofen, or indomethacin with O2-acetoxymethyl 1-[N-(2-hydroxyethyl)-N-methylamino]diazeniumdiolate. The resulting nitric oxide (*NO)-releasing prodrugs (7-9) did not exhibit in vitro cyclooxygenase (COX) inhibitory activity against the COX-1 and COX-2 isozymes (IC50s>100 microM). In contrast, prodrugs 7 and 8 significantly decreased carrageenan-induced rat paw edema showing enhanced in vivo anti-inflammatory activities (ID50's=552 and 174 micromol/kg, respectively) relative to those of the parent NSAIDs aspirin (ID50=714 micromol/kg) and ibuprofen (ID50=326 micromol/kg). The rate of porcine liver esterase-mediated *NO release from prodrugs 7-9 (2 mol of *NO/mol of test compound in 0.6-6.5 min) was substantially higher compared to that observed without enzymatic catalysis (about 1 mol of *NO/mol of test compound in 40-48 h). These incubation studies suggest that both *NO and the parent NSAID would be released upon in vivo activation (hydrolysis) by esterases. Data acquired in an in vivo ulcer index (UI) assay showed that NONO-aspirin (UI=0.8), NONO-indomethacin (UI=1.3), and particularly NONO-ibuprofen (UI=0) were significantly less ulcerogenic compared to the parent drugs aspirin (UI=57), ibuprofen (UI=46) or indomethacin (UI=34) at equimolar doses. The release of aspirin and *NO from the NONO-aspirin (7) prodrug constitutes a potentially beneficial property for the prophylactic prevention of thrombus formation and adverse cardiovascular events such as stroke and myocardial infarction.  相似文献   

13.
A hitherto unknown class of celecoxib analogs was designed for evaluation as dual inhibitors of the 5-lipoxygenase/cyclooxygenase-2 (5-LOX/COX-2) enzymes. These compounds possess a SO(2)Me (11a), or SO(2)NH(2) (11b) COX-2 pharmacophore at the para-position of the N(1)-phenyl ring in conjunction with a 5-LOX N-hydroxypyrid-2(1H)one iron-chelating moiety in place of the celecoxib C-5 tolyl group. The title compounds 11a-b are weak inhibitors of the COX-1 and COX-2 isozymes (IC(50)=7.5-13.2 microM range). In contrast, the SO(2)Me (11a, IC(50)=0.35 microM), and SO(2)NH(2) (11b, IC(50)=4.9 microM), compounds are potent inhibitors of the 5-LOX enzyme comparing favorably with the reference drug caffeic acid (5-LOX IC(50)=3.47 microM). The SO(2)Me (11a, ED(50)=66.9 mg/kg po), and SO(2)NH(2) (11b, ED(50)=99.8 mg/kg po) compounds exhibited excellent oral anti-inflammatory (AI) activities being more potent than the non-selective COX-1/COX-2 inhibitor drug aspirin (ED(50)=128.9 mg/kg po) and less potent than the selective COX-2 inhibitor celecoxib (ED(50)=10.8 mg/kg po). The N-hydroxypyridin-2(1H)one moiety constitutes a novel pharmacophore for the design of cyclic hydroxamic mimetics capable of chelating 5-LOX iron for exploitation in the design of 5-LOX inhibitory AI drugs.  相似文献   

14.
A group of 1-(4-methane(amino)sulfonylphenyl)-5-(4-substituted-aminomethylphenyl)-3-trifluoromethyl-1H-pyrazoles (12af) was synthesized and evaluated as anti-inflammatory agents. While all the compounds (20 mg/kg) showed significant anti-inflammatory activity after 3 h of inflammation induction (69–89%) as compared to celecoxib (80%), 1-(4-methanesulfonylphenyl)-5-(4-methylaminomethylphenyl)-3-trifluoromethyl-1H-pyrazole (12a) was found to be the most effective one (89%). The synthesis of model hybrid nitric oxide donor N-diazen-1-ium-1,2-diolate derivatives of 1-(4-methanesulfonylphenyl)-5-(4-substituted-aminomethylphenyl)-3-trifluoromethyl-1H-pyrazoles (10af) requires further investigation since the reaction of N-(4-(1-(4-(methylsulfonyl)phenyl)-3-(trifluoromethyl)-1H-pyrazol-5-yl)benzyl)ethanamine (12b) or 1-(4-(1-(4-(methylsulfonyl)phenyl)-3-(trifluoromethyl)-1H-pyrazol-5-yl)benzyl)piperazine (12c) with nitric oxide furnished N-nitroso derivatives (13 and 14), respectively, rather than the desired N-diazen-1-ium-1,2-diolate derivatives (10b and 10c).  相似文献   

15.
Nitric oxide (NO) prodrugs such as O(2)-(2,4-dinitrophenyl) 1-[(4-ethoxycarbonyl)piperazin-1-yl]diazen-1-ium-1,2-diolate (JS-K) are a growing class of promising NO-based therapeutics. Nitric oxide release from the anti-cancer lead compound, JS-K, is proposed to occur through a nucleophilic aromatic substitution by glutathione (GSH) catalyzed by glutathione S-transferase (GST) to form a diazeniumdiolate anion that spontaneously releases NO. In this study, a number of structural analogues of JS-K were synthesized and their chemical and biological properties were compared with those of JS-K. The homopiperazine analogue of JS-K showed anti-cancer activity that is comparable with that of JS-K but with a diminished reactivity towards both GSH and GSH/GST; both the aforementioned compounds displayed no cytotoxic activity towards normal renal epithelial cell line at concentrations where they significantly diminished the proliferation of a panel of renal cancer cell lines. These properties may prove advantageous in the further development of this class of nitric oxide prodrugs as cancer therapeutic agents.  相似文献   

16.
Due to the involvement of nitric oxide (NO) in numerous and diverse physiological processes, site-directed delivery of therapeutic NO in order to minimize unwanted side-effects is necessary. O2-(4-Nitrobenzyl) diazeniumdiolates are designed as substrates for Escherichia coli nitroreductase (NTR), an enzyme that is frequently used to facilitate directed delivery of cytotoxic species to cancers. O2-(4-Nitrobenzyl) diazeniumdiolates are found to be stable in aqueous buffer but are metabolized by NTR to produce NO. A cell viability assay revealed that cytotoxic effects of O2-(4-nitrobenzyl)1-(2-methylpiperidin-1-yl)diazen-1-ium-1,2-diolate (4b) towards two cancer cell lines is significantly enhanced in the presence of NTR suggesting the potential for use of this compound in nitric oxide-based directed prodrug therapy.  相似文献   

17.
A group of celecoxib analogs having a SO(2)NH(2) (9a-f), or SO(2)Me (12a-f), COX-2 pharmacophore at the para-position of the N-1 phenyl ring in conjunction with a C-5 phenyl ring having a variety of substituents (4-, 3-, 2-OAc; 4-Me,2-OAc, 4-Me,3-OAc, 4-F,2-OAc) was synthesized for evaluation as cyclooxygenase (COX) inhibitors of the COX-1/COX-2 isozymes. Within this group of compounds, 1-(4-aminosulfonylphenyl)-3-trifluoromethyl-5-(2-acetoxy-4-fluorophenyl)pyrazole (9f) emerged as the most potent (COX-1 IC(50)=0.7 μM; COX-2 IC(50)=0.015 μM) and selective (COX-2 selectivity index=47) inhibitor agent that exhibited good anti-inflammatory activity (ED(50)=42.3mg/kg) which was lower than the reference drug celecoxib (ED(50)=10.8 mg/kg), but greater than ibuprofen (ED(50)=67.4 mg/kg) and aspirin (ED(50)=128.7 mg/kg). Molecular modeling studies for 9f showed that the SO(2)NH(2) group assumes a position within the secondary pocket of the COX-2 active site wherein the SO(2)NH(2) oxygen atom is hydrogen bonded to the H90 residue (2.90?), the SO(2)NH(2) nitrogen atom forms a hydrogen bond with L352 (N?O=2.80?), and the acetyl group is positioned in the vicinity of the S530 residue where the acetyl oxygen atom undergoes hydrogen bonding to L531 (2.99?).  相似文献   

18.
Diazeniumdiolate anions and their prodrug forms are reliable sources of nitric oxide (NO) that have generated interest as promising therapeutic agents. A number of structural analogues of O(2)-(2,4-dinitro-5-(4-(N-methylamino)benzoyloxy)phenyl) 1-(N,N-dimethylamino)diazen-1-ium-1,2-diolate (PABA/NO), an anti-cancer lead compound that is designed to release NO upon activation by glutathione, were prepared. The nitric oxide release patterns of these O(2)-(2,4-dinitrophenyl) diazeniumdiolates in the presence of glutathione were tested and it was found that in the absence of competing pathways, these compounds release nearly quantitative amounts of NO. The ability of PABA/NO and its structural analogues to inhibit human leukemia cell proliferation was determined and it was found that compounds releasing elevated amounts of NO displayed superior cytotoxic effects.  相似文献   

19.
Neuroblastoma cells are capable of hypoxic adaptation, but the mechanisms involved are not fully understood. We hypothesized that caveolin-1 (cav-1), a plasma membrane signal molecule, might play a role in protecting neuroblastoma cells from oxidative injury by modulating nitric oxide (NO) production. We investigated the alterations of cav-1, cav-2, nitric oxide synthases (NOS), and NO levels in human SK-N-MC neuroblastoma cells exposed to hypoxia with 2% [O2]. The major discoveries include: (i) cav-1 but not cav-2 was up-regulated in the cells exposed to 15 h of hypoxia; (ii) NO donor 1-[N, N-di-(2-aminoethyl) amino] diazen-1-ium-1, 2-diolate up-regulated the expression of cav-1, whereas the non-selective NOS inhibitor N(G)-nitro-L-arginine methyl ester and inducible NOS (iNOS) inhibitor 1400W each abolished the increase in cav-1 expression in the hypoxic SK-N-MC cells. These results suggest that iNOS-induced NO production contributes to the up-regulation of cav-1 in the hypoxic SK-N-MC cells. Furthermore, we studied the roles played by cav-1 in regulating NO, NOS, and apoptotic cell death in the SK-N-MC cells subjected to 15 h of hypoxic treatment. Both cav-1 transfection and cav-1 scaffolding domain peptide abolished the induction of iNOS, reduced the production of NO, and reduced the rates of apoptotic cell death in the hypoxic SK-N-MC cells. These results suggest that increased expression of cav-1 in response to hypoxic stimulation could prevent oxidative injury induced by reactive oxygen species. The interactions of cav-1, NO, and NOS could be an important signal pathway in protecting the neuroblastoma cells from oxidative injury, contributing to the hypoxic tolerance of neuroblastoma cells.  相似文献   

20.
We present the structures of bovine catalase in its native form and complexed with ammonia and nitric oxide, obtained by X-ray crystallography. Using the NO generator 1-(N,N-diethylamino)diazen-1-ium-1,2-diolate, we were able to generate sufficiently high NO concentrations within the catalase crystals that substantial occupation was observed despite a high dissociation rate. Nitric oxide seems to be slightly bent from the heme normal that may indicate some iron(II) character in the formally ferric catalase. Microspectrophotometric investigations inline with the synchrotron X-ray beam reveal photoreduction of the central heme iron. In the cases of the native and ammonia-complexed catalase, reduction is accompanied by a relaxation phase. This is likely not the case for the catalase NO complex. The kinetics of binding of NO to catalase were investigated using NO photolyzed from N,N'-bis(carboxymethyl)-N,N'-dinitroso-p-phenylenediamine using an assay that combines catalase with myoglobin binding kinetics. The off rate is 1.5 s(-1). Implications for catalase function are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号